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MATRIX SATISFIABILITY AND AXIOMATIZATION

ROBERT ACKERMANN

The appearance of Polish Logic 1920-1939 (edited by Storrs McCall) is
an event of considerable importance for logicians interested in the develop-
ment of modern symbolic logic.® In conjunction with Tarski’s Logic,
Semantics, and Metamathematics, this collection of papers makes the
central early source material from the Polish school of logicians available
in English translation.? There are, however, a few matters of fitbetween
the volumes which have escaped scrutiny. This is in no way intended to be
a criticism of McCall’s editorial decisions. Within the limits of a single
volume of source papers, his choices seem uniformly excellent. In this
paper I would like to discuss one theorem which is stated in [3] without
proof, and no proof for which occurs in the papers which were chosen for
inclusion in [2]. This theorem seems worthy of discussion because of the
interesting connection which it establishes between matrix characteriza-
tions of propositional calculi and equivalent axiomatic systems.-.

In their paper ‘‘Investigations into the Sentential Calculus,’’ J. Ruka-
siewicz and A. Tarski state the following theorem about the arbitrary
calculus L, (2 < n <R):*

Let M =(A, B, f, g) be a normal matrix in which the set AUB is finite.
If the sentences ‘CCpqCCqrCpr’, ‘CCqrCCpqCpr’, <‘CCqrCpp’,
‘CCpgCNgNp’, ‘CNqCCpgNp’ are satisfied by this matrix, then the set
of sentences satisfying M may be finitely axiomatized.

1. See [2].

2. See [3].

3. See [1], p. 50. A normal matrix in which B is {1} defines the calculus L, when
the number of values n is identical with the number of values A in the matrix.
Strictly, a normal matrix could have more than one designated value, so that
Wajsberg’s theorem applies to a larger class of calculi than the calculi L,. As
only the calculi L, have assumed an important role in the literature, we will
ignore this complication in what follows except for one remark preceding Lemma
10.
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I will assume here that the terminology is known from [3], so that L,is an
arbitrary many-valued calculus with C and N as primitive logical signs of
the kind investigated extensively by Lukasiewicz and Tarski. This theorem
clearly establishes the existence of a finite axiom set for each such cal-
culus. The proof of this theorem referred to in [3] appears in a paper of
M. Wajsberg which is not among those included in McCall’s collection.* My
purpose in this paper is to fill in the lacuna by presenting Wajsberg’s
proof.

The following presentation is not a translation of Wajsberg’s proof in
the ordinary sense, but a close paraphrase containing some additional
clarifying material. Further, I am not concerned to deal with Wajsberg’s
entire paper, which overlaps at many points with material available in [2]
and [3]. The relevant proof by Wajsberg appears in section §3 of his
article. I here present the exact outline of Wajsberg’s proof in that
Lemmas 1-23 of this paper correspond exactly in content with Wajsberg’s
Saetze 1-23. In each case, the proof I give for a Lemma will follow
Wajsberg’s proof strategy closely, but I have taken some liberties in re-
statement, and I correct some obvious misprints and a few minor errors in
proof. My object is to sketch the proof in sufficient detail to exhibit that it
is correct to readers whose knowledge of the related literature is assumed
to be restricted to some familiarity with allied papers in [2] and [3]. In line
with this object, some material embedded in Wajsberg’s proof which is not
essential to the development of the proof is also omitted. The terminology
and symbolism of this paper is taken from [2]and [3].

Apart from notational differences, the Hauptsatz of Wajsberg’s paper
differs in one respect from the theorem stated by Eukasiewicz and Tarski
in [3]. Where [2] includes CCqrCpp among the sentences assumed to satisfy
the matrix M. Wajsberg includes CCqqCpp. Since the latter is an immediate
consequence of the former, Wajsberg’s proof can be regarded as establish-
ing both theorems. We now state the Hauptsatz of Wajsberg’s paper:

Hauptsatz. The set of sentences satisfying a finite normal matyvix M
can be finitely axiomatized if the following seniences satisfy the
matvix:

CCpqCCqrCpr (Syly),
CCqrCCpqCpr  (Sylp),

CCpqCNgNp (Transp,),
CNqCCpgNp (Transp,),
CCqqCpp (Ta*).

4, The paper is [5]. At the time of appearance of [2], Geoffrey Keene of Exeter
University (England) and I had been working on a similar volume. {2] put paid to
that idea, but I am very grateful to Keene for hard work on translating articles
from the original Polish, work that now appears to have had no consequence
except improving the quality of his translation. Iam also grateful to my wife Inge
for help in translating sox?e articles from the original German. The three of us
can attest to the high quality exhibited by the translations included in [2].
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In the statement of Lemmas and their proofs, we use small greek letters
(except p and o) to stand for arbitrary sentences of the calculi L,. An ex-
pression containing greek letters is not really a sentence unless the greek
letters are replaced by sentences, but we will use sentence to refer either
to sentences or to sentential expressions containing greek letters. The
introduction of sufficient terminology to be completely rigorous would be
tedious, and no obscurity results from this decision. Similarly with quota-
tion. We will rely entirely on context to mark relevant use-mention
distinctions involving sentences or symbols of any of the calculi. The sign
- 1is used to express deducibility in the relevant calculus, where deducibility
is defined as the sole use of correct substitution and modus ponens. Some
properties of deducibility are assumed throughout, in particular

(@) ara ,

() Ifar+Band By, then a vy ,
(¢) If ~a and a+ B, then -8 ,

(d) If ~Cap, then a B,

(e) If a+Band B,y 0, then a,y +~ 6.

An expression like C(1) CNgNr is used to stand for the conditional sentence
with (1) as antecedent sentence and CNgNr as consequent, with (1) given as
an explicit sentence in the context.

Wajsberg’s proof can be looked at as having two parts. Lemmas 1-9
establish meta-theorems concerning deducibility for all propositional cal-
culi defined by matrix characterization. Lemmas 10-23 construct an axiom
set for an arbitrary but fixed L, and establish that any sentences satisfying
the matrix M defining the calculus L,is deducible from this axiom set. It
might be noted that proof of some of the Lemmas depends on some simple
theorems of algebra or number theory, which could in principle be
eliminated. The remainder of this paper consists of a statement of
Lemmas 1-23 and a proof or proof sketch of each.

Lemma 1. CafB, CBy - Cay .

Proof. Lemma 1 follows from (Syl,) by substitution (S: p/a, ¢/8, /) and
two uses of modus ponens. (This illustrates the substitution notation to be
used throughout, except that obvious substitutions will not always be explic-
itly cited.)

Lemma 2. CaB, CyCB6+-CyCab .

Proof. CaB+CCB5Cad can be obtained by substitution into (Syl,), and
CyCRd, CCBRdCad - Cy Cad by substitution into Lemma 1. Lemma 2 follows
from property (e) of .

We now introduce some symbolism to be used in connection with later
Lemmas. The first is a device which can be used to refer to any sentence
which appears as a proper part of another sentence. If Caf is a sentence,
we set (Cap)' = a and (CeB)° = B. Further, we set (Na)' = a. By an obvious
recursive procedure, we can thus refer to any sentence -a-which is a proper
part of a sentence B by enclosing B in parentheses and following the
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parentheses with a suitable string of 1’s and 0’s, such a string to be known
as a place index. The place index is read from left to right. A place index
is even if it has an even numbeyr of 1’s in it, othevwise it is odd. Clearly,
each sentential variable occurring as a proper part of some sentence a can
be uniquely referred to by enclosing a in parentheses and following it with a
suitable place index. For example, p = (CCpgr)'t, q = (CCpgr)*°, q =
(CCquw)m, and so on. Using the notion of a place index, we let the
formula S(a, 8, ¥, 5, x) express the fact that a sentence j is obtained from a
sentence a when the sentence (or variable) y defined as the proper part of a
with place index x is substituted for by the sentence (or variable) 5. Thus
we have S(Cpp,Cpq,p,q,0) and S(Cqp,CNgp,q,Ng,1). Using this new sym-
bolism, we state several additional Lemmas.

Lemma 3. If S(a,B,v,0,%), then if x is even, -CaCCy8B and +-CCydCaf,
and if x is odd, +CaCCbyB and +CCdyCalf.

Proof. The proof is by induction on the length of the place index x. For
place index of length one, x = 0 or x = 1. In the former case, @ and 8 are of
the form Cny and Cnd, respectively. Then CCy8CaB is provable by substi-
tution into (Syl,). Similarly, CaCCy68 is provable by substitution into (Syl,).
If x =1, then a and B are either of the form Cyn and Con respectively, or
they are of the form Ny and Nb. In the former case, we prove CaCCdyB and
CCdyCaB by substitution into (Syl,) and (Syl,) as in the case x = 0. In the
latter case, we prove CaCCby8 and CCoyCaf by substitution into (Transps)
and (Transp;) respectively. Notice that (Syl,), (Syl,), (Transp,), and
(Transp,) are all used to establish this important Lemma. To complete the
proof by induction, we must show that if the proof holds when the place
index ¥ has X numerals, it also holds when the place index x has X + 1
numerals. In this case x has the form A0 or A1. We must consider in each
case whether X is odd or even, giving four cases of A + 1 all together. We
discuss just the case where A is even and x is of the form A0. By the
assumption that the proof holds for x =X, we have S(a,8,7',0’,A) and
the provability of CaCCy'd’'8 and CCy'6'CaB, where ¥’ and 6' are of the
forms Cny and Cnd in view of the place index A0. Substituting into Lemma
2, we obtain the deducibility of CaCCy88 from CCy6CCnyCnd and
CaCCCnyCndB. But CCy5CCnyCné is a substitution instance of (Syl,) and
CaCCCnyCnbdp is equivalent to CaCCy'6’8 which is already known to be
provable. Similarly, we establish that CCydCaf can be obtained by substi-
tution into Lemma 1 along with the established provability of CCY6CCnyCnd
and CCy'6'CaB. Proof of the cases where X is even and x is of the form Al
and where A is odd and x is of the form X0 or A1 proceed similarly.

Lemma 4. CaiCay... Capy, Cyd - Ca;Cay. .. Cad.

Proof. Let abe Ca;Ca;,...Cayyand B be Ca;Coy...Ca,d. By Lemma 3,we
have S(a, 83,7, 6,x) for an even x, and the provability of CCy8CaB. Using
modus ponens twice with Cy0 and @, we have the provability of 8.

Lemma 5. Suppose we have S(0;, @;4y, ¥i> 05, %) for i=1,2,..., k.
Then we have as provable sentences Ca;CBiCBs...CBrapyy and CBiCB. ..
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CBCarar+y. Bi is of the form Cyidi or CO;vi, depending on whether i is
even ov odd.

Proof. Use induction on 2. For 2 =1, Lemma 3 suffices. The induction
step is easy to work out for various cases using Lemmas 3 and 4. Detailed
proofs of Lemmas 3 and 5 can be found on pp. 270-272 of [2].

To state the next few Lemmas, we give a recursive definition of a
superscripted C:

C’q =q,
and
C'*pg = CpClpg.

These identities allow us to replace one sentence by its notational variant
in doing proofs.

Lemma 6. If B follows from a by substitution of 6 for y at k places with
even place index and 1 places with odd place index, then the sentences
CaC*Cy8C'CoyB and CaC'CoyC*Cydp are provable. (Neitherk nov 1 is0.)

Proof. If the notation is read correctly, this Lemma is a special case of
one half of Lemma 5. Notice, for example, that CaC*CoyC*Cy06p is equiva-
lent to CaCCdyCCdyCCdyCCydCCydB.

Lemma 7. If B follows from a by substitution of & for y at k places with
even place index and | places with odd place index, then the following hold:

(a) ar Ckcysclcoys,
(b) ar Clcoyckcyop,
(¢) a, Cyd+ClCoYB,
(d) a, COY FC*CyoB,
(e) @, Cyo, Coy +B.

Proof. Obvious consequence of Lemma 6 and properties of .

Lemma 8. If a contains the wvarviable p as a proper part, then
CaCCpqCCqpa and CaCCqpCCpqa are provable.

Proof. We have S(a, a,p,p,x) for some place index x, and so by Lemma 3,
CaCCppa is provable. Furthermore, we have S(CCppa, CCqpa,p, q, 11),
and so again by Lemma 3 we have CCCppaCCpgqCCqpa. From the provabil-
ity of these two sentences and Lemma 1, we have CaCCpgCCqpa. A similar
proof shows that CaCCqpCCpqa is provable.

Lemma 9. If a contains the variable p as a proper part, then the
sentences CaC*CpqC*Cqpa and CaC*qpCkpqa are provable. (b =1,2,...)

Proof. By induction on k. For k2 =1, Lemma 8 is sufficient. Let the
Lemma be assumed true for 2-1. Then

(1) Ccact'cpgctcopa

and
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(2) cac**cgpc*Cpga

are provable. Substitution in Lemma 8 ($: a/C*Cgpa) yields
(8) CCF'CqpaCCpqCCapCt*Cqpa,

and another substitution in Lemma 8 ($: a/C**Cpqa) yields
(4) CC*CpqaCCqpCCpqC**Cpqa.

By the definition of the superscript, we have
(5) cc*tcgpaCCpqCrCypa,

and
(6) cC**CpgaCCqpCtCpga

from (3) and (4). By substitution in Lemma 4 (S: &/, a;/Cpq G =
2,3,...,k), y/C*'Cqpa, 6/CCpgC*Cqpa) we obtain

(7) CaC**CpgCCpqC*Cypa

from (1) and (5). To complete the proof, we need the following property of
the superscript notation:

C*¥qCap = C*ap.

This is easily proved by induction. For % = 1, the equivalence follows from
the definition. Assuming the property for k-1, we have Ck'zaCaB = Ck'laﬁ.
Then C¥*aCaf = CaC* %aCaf = CaC* *aB = C*aB by the definition. We use
this property of the superscript notation to find (7) equivalent to
CaC*CpqC*Cqpa, proving one half of the Lemma. The other half follows
from (2) and (6) by Lemma 4 and a similar use of properties of the super-
script notation.

(In Lemmas 1-9, various meta-theorems concerning deducibility in all
of the propositional calculi defined by finite normal matrices were estab-
lished. To this point, we have used the sentences (Syl,), (Syl,), (Transp,),
and (Transp,) from the antecedent of the Hauptsatz. In the remaining
Lemmas, we will use (Id*) and we will assume that M refers to a fixed
finite normal matrix. (Syly), (Syl.), (Transp,), (Transp,), and (Id*), all of
which satisfy M by hypothesis, will be taken as axioms of a deductive sys-
tem using I as its deducibility relation. This set of five axioms will then be
constructively enlarged until it can be shown that any sentence satisfying M
can be deduced from the enlarged, but finite, axiom set. The existence of
this axiom set is sufficient to establish the Hauptsatz.)

We let Eq(a, B) express the ‘equivalence of a and g with respect to M,
that is, the fact that o and B are assigned the same value by I whenever
those variables common to a and B are assigned the same value from .
Em is obviously reflexive, commutative, and transitive. We let E™(a, g)
express the fact that CaB and CBa are both assigned the value 1 (this for L,,
otherwise any designated value) on every assignment of values to their
constituent variables. Clearly, if Em(y,0), then if a satisfies M, so will B,
where B is obtained from a by substituting ¢ for & at one or more occur-
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rences of v in a. We can thus proceed as though Eg(y,d) provided us with
a replacement rule.

Lemma 10. If Ex(a,B), then E™(a,p).

Proof. We can establish Cpp (Id) from (Id*). CCqqCqq is first obtained
from Lemma 1, using (Id*) and CCppCqq, an obvious substitution instance
of (Id*). Substitution in (Id*) (S: ¢/Cqq) yields CCCqqCqqCpp. By modus
ponens, the two sentences just obtained give (Id). We therefore have Caa,
by consideration of the role of small greek letters. By the replacement
rule equivalent to the use of Eg(,8), CaB and CBa follow from Cae, and the
Lemma is proved.

For convenience in establishing the next Lemmas, we will assume that
the variables of the propositional calculi are ordered in this fashion: py, ps,
ps3, and so on. To preserve continuity with the earlier part of the paper, we
may assume the well known convention that p, is p, p, is ¢, ps is #, and so
forth. We then define V(n) as the set of sentences in which only proposi-
tional variables identical with one of p;, to p, occur.

Lemma 11. Theve is a finite set N(n)C V(n) such that for every sen-
tence a e V(n), we have an element § e N(n) such that Egla,p).

Proof. 1t is easy to see that such a finite set exists. Let m be the number
of values in the matrix M. Then the possible value assignments to then
propositional variables p,,...,p, are m” in number. Any particular sen-
tence could have any of the m values assigned to each of its constituent
variables. There are thus at most m” distinet functions given M from
sentences with # variables to values in M. One could construct a set N(n)
by finding representative sentences for » =1,z = 2, and so on, on the basis
of the given matrix M. To fix ideas, we will adopt the following procedure.
We start with the set T, consisting of the propositional variables py, pa, ...,
p». Then a series of sets T,, T;,... is formed by the following recursive
strategy. If N; is the set of all sentences of the form CaB, CBa, and Na,
where « is in T;-;, and B is in any of the sets T, Ts,..., T;.;, then T; is
any subset of N; which contains a single sentence B for every sentence a of
N; which is not equivalent with respect to M to some sentence in one of the
sets T, Tp,..., T;_;. By the observation made above, some set T; will be
the first empty set of the sequence. (It is easy to find an upper bound on the
value of ¢ within which the first empty set will appear.) The union of the
sets T,UT,U...UT;., will have the properties attributed to N(n) by
Lemma 11.

Lemma 12. Every infinite set of seniences which is a subset of V(i)
contains as a proper parvt an infinite subset of sentences which arve all
equivalent with respect to M.

Proof. Obvious as a corollary to Lemma 11.

Lemma 13. If a e Vim) (wheve m is the number of values in M), then
there exists a certain a' e Nim) such that +Caa’ and +Ca'a.



316 ROBERT ACKERMANN

Proof. If a is a variable, then a is identical with one of the variables
D1y ,bm. By construction of N(m), all of the variables are elements of
N(m). Hence the Lemma is trivial in view of the provability of (Id). The
remaining cases are where a is of the form NB or CBy. To prove Lemma
13 in these cases, we will start our definition of the set of sentences Ax
which will eventually establish the axiomatization of the sentences satisfy-
ing M. The first step is to define the set A; which will be a subset of Ax.
A, contains (Syl;), (Syl,), (Transp,), (Transp,), (Id*) as well as all sentences
satisfying M which are in N(m) and all sentences of the form CCaBy and
CyCaB, where a, 8, ¥ are sentences in N(m) and y is equivalent to Caf with
respect to M and all sentences of the form CNay and CyNa where a, y are
sentences in N(m) and y is equivalent to Na with respect to M. Since N(m)
is finite, A; is obviously finite. We prove just one of the cases. Let a be
of the form CBy. Then there are sentences 8’, ¥’ in N(m) such that the
statements CBBR’', CBR’'B, Cyy', and Cy'y are provable by Lemmas 10 and 11.
A, contains the sentences (1) CCB'y’a’ and (2) Ca’CB’y' in view of the con-
struction of A,. By replacement (which can in this case be rigorously
justified by means of Lemma 3), we can also prove CCBya' and Ca'CpBy.
Thus we have Egla, CB8'y") and En(CB'y’, a'), therefore +Caa' and +Ca'a
by Lemma 10. The case where a is of the form NS can be proved in an
analogous fashion.

A sentence containing exactly k distinct variables will be called % -di-
mensional. The set of all 2Z-dimensional sentences will be designated by
V.. V. should be distinguished from V(%), the set of sentences containing
only propositional variables from pi, pa,...,pr Which was introduced in
Lemma 11.

Lemma 14. If a satisfies M and is at most m-dimensional, then a is
provable.

Proof. We assume that a e V(m), that is, uses at most the variables
D1, D2y ..., pm. Otherwise a is equivalent to some 8 which has this property,
and B is taken as the @ of the Lemma. By Lemma 13, there is an element
a' of N(m) such that +Caa’ and +Ca'a. Caa’ clearly satisfies M, and since
a satisfies M by the assumption of the Lemma, o' also satisfies M. Since
all sentences satisfying M which are elements of N(m) are elements of A,
o' is an element of A,. But from this fact and the provability of Ca'a, it
follows that @ is provable (given 4,).

We now consider the set of all sentences ¢ of the form CiCpipops G =
0,1,2,...). This set is an infinite subset of V(3) and must therefore (in
view of Lemma 12) contain two sentences which are equivalent to each other
with respect to M. Let p, p + 0 (0 #0) be the pair of smallest indices such
that ¢, = C” Cpipapsand ¢,,,= CP*7Cpipaps are equivalent to each other with
respect to M. By Lemma 10 we have +CCPT7 CpipapsC Cpipops. By our in-
formal convention interchanging subscripted variables with the usual nota-
tion, this means that we can prove (Red) CC’*°CpgrCPCpqr. We add (Red)
to the sentences of A; to form the set A,.
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Lemma 15. The following sentences ave provable given A,:
CoCqpCC°CppCPCpqrCPCpgr
CCpqCCppChpq

CCpqCCrrCpq ,

CCpqC°CrvCpq
CCPCpgrC°CppCCpqr
CCqpCC°CppCPCpar C°CppCPChpqr
cCqpCrr

CCrsC°CqpCrs
CCC°CqpCrstCCrst
CCPH*oCpqrCPCpar (B =1, 2,...).

Proofs:

(a)
()

(c)
(d)

(e)
()

(g)

(h)

(i)
G

Proof from Lemma 7(a) by substitution (S: a/(Red), B/CC°CppC’
CparC*Cpqr, k /o, 1/0, v/4,8/D).

Proof from (Syl,) by substitution (S: 7/p).

Use (b), Lemma 3, and substitution in (Id*) or (1d).

Substitution in(c) (S: p/Crr, q/Cpq) yields (1) CCCr»CpgCCrrCCrrCpq.
(1) and (c), in view of Lemma 1, yield CCpgCCr»CCr¥Cphgq, or
CCpqC3:CrvCpq. Repeated use of this strategy yields (d) for the partic-
ular value of ¢ required.

Substitution in (d) (S: p/Cpq, q/CP~* Cpar, v /p).

In Lemma 4, let CPCpqr be substituted for y. Then (a) and (e) are ob-
vious substitutions into the sentences assumed in Lemma 4, and (£)
follows from an application of the Lemma.

In Lemma 4, let 2=0. Then substitution (S: o;/Cqp, y/CC°CppC’
CparC°’CppCPCpqr, 8/Cry) and the Lemma yield (g). The assumptions
of the Lemma after substitution are (f) and a substitution instance of
(1d*) (S: g/C°CppCPCpgn.

Substitution in Lemma 3 (S: a/C°CqpCrr, B/C°CqpCrs, v /7,6/s), and
modus ponens on the result with (g).

Substitution in (Syl1,)(S: p/Crs, q/C°CqpCrs, r/t) yields a sentence from
which a use of modus ponens with (h) yields (i).

Induction on % using (Red) and Lemma 1.

In order to state and prove the remaining Lemmas, we introduce a

number of definitions:

(a) gr(a, B) = the number of the even place indices ¥ such that 8 = ax.
If ¢ is a variable, x is defined as 1 or 0 depending on whether 8 = «
or B # a.

(o) ngr(a, B) = the number of the odd place indices ¥ such that 8 = ax.
If a is a variable, then ngr(e, B) = 0.

(C) df(a’ .3) =gr (a’ .B) = ngr (a’ B)o

(d) div(e) = the greatest common divisor of the numbers df(e, 8) dif-
ferent from 0, where B is a variable occurring in a; 0 if no such
divisor otherwise exists.
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(e) div(X) (X is a set of sentences) = the greatest common divisor of
all numbers div(a), where aeX; div(X) =0 if no such divisor
otherwise exists.

(£) div(M) = div(E(M)), where E(M) is the set of sentences satisfying
m.

Examples. gr(Ckpq,p) =0, ngr(Ckpq,j)) =k, df(Ckpq,p) = -k, Qr(p’p) = df(p’p)
=1. The divisors (div) of (Id), (Id*), (Syl,), (Syl,), (Transp,), and (Transp,)
are equal to 0, on the other hand the divisor of (Red) is equal to o.

Lemma 16. Suppose B and a ave not variables, and substitution of q
for p turnsB into a. If gr(a,p) =k and ngr(a,p) =, then CBC**"CqpCH*"Cpqa
and CBCH™Cpq C*™Cqpa ave both provable, where m is any natural number.

Proof. Using Lemma 6, and the conditions on this Lemma, we can prove
CBC*CqpC'Cpga and CPC' CpgC*Cqpa. Using Lemma9 (S: k/m (m=1,2,...),
a/C'Cpga or C*Cqpa) we can then prove CC'CpgaC"CqpC™CpqC’ Cpga and
CC*Cqpa C"CpqC™CqpC*Cqpa. The Lemma is then provable from these
sentences by means of Lemma 4.

Lemma 17. If a satisfies M, and dfla,p) = +m (m=1,2,...), then
C"CqpCrr satisfies M.

Proof. If a=p8(S: p/g) and o satisfies M, so will 8. From Lemma 16,
(1) C*CgpC’ Cpga satisfies M. Assuming % =1, and setting 2-1 = m, we
write (1) as (2) C"CgpC'CqpC'Cpga. a contains p as a proper part, since
not both gr(a,p) and ngr(a,p) are equal to 0. By substitution in Lemma 9
and use of modus ponens with a, it follows that CqupC’Cpqa satisfies M.
Since Crr satisfies M, we have (3) CC'CqpC!CpgaCrr, by Lemma 10. Using
Lemma 4 on (2) and (3), we have C"CqpCrr». If < 1, then letting I-%=m,
and exchanging pand ¢, we obtain the same result.

Lemma 18. If C*CqpCrr and C'CqpCrr (k, 1 =1,2,...) satisfy M, and
m is the greatest common divisor of k and 1, then C"CqpCry satisfies M.

Proof. To establish Lemma 18, we first show that if (1) C**CqpCrr and
(2) C*CqpCrr satisfy M, then (3) C'CqpCrr satisfies M. (1) is equivalent to
(4) C'CgpC*CqpCrv. From (2), and the fact that Crv satisfies M, we have
(5) CC*CqgpCrvCrr by Lemma 10. Lemma 4 with (4) and (5) yields (3),
proving this new rule of inference. This rule can now be used with
(6) C*CgpCrr and (7) C'CgpCrr from the antecedent of Lemma 18 to obtain
C"CqpCrr by means of number theoretic considerations. Without loss of
generality, we assume & > [, If m = [, the theorem is proved. We therefore
assume m <I. We can set 2 =ma and ! =mb, with a > b Further, by
virtue of the fact that » is the greatest common divisor of 2 and 7, a and &
must be relatively prime. Now consider the quantity (¢-1). Either (2-1) <1
or 1 <(k-1). We establish the remainder of the proof for the case (¢-1) <1.
Similar remarks could be constructed if 1 <(2-1). By the rule of inference
introduced, we obtain C%*~YCgpCrr from (6) and (7). Continuing the use of
the rule, we can obtain Cz'(k'l)quCr'r, C"z(k'l)quCw’, and so on, until we
obtain C'~A*-D CqpCry with 1-M(-1) the smallest such number larger than
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0. If I-Mk-1) = m, the theorem is proved. Otherwise, since a and b are
relatively prime, I-A(k-1) <k-1, and (k-1I) # c(l-(k-1)) for ¢ =1,2,... If
this were not so, since m divides (2-1) and (I -(2-1)), both % and I would be
multiples of (k-1), and hence of md (d = 2,3,...), so that 2 and I would not
be relatively prime after division by =, contrary to hypothesis. We use
(1-(k-1)) to obtain C¥=P=U=&=D) CqpCrr, and so on, until either we reach
C™CqpCrr or some sentence C™”CgpCrv which can be reduced by repeating
the same procedure until C"CgpCrr is finally obtained.

Lemma 19. CHVRICqpCrr satisfies M.

Proof. This follows immediately from Lemma 17 and 18 and the definition
of div(M).

Lemma 20. div(M) =o.

Proof. o is given a value in (Red) such that ¢ = df((Red),p) and (Red) satis-
fies M. o is therefore some multiple of div(M), say & div(M). Since both ¢
and div(M) are greater than 0, we need only show that 2 = 1. By the defini-
tion of (Red), p +0 is the smallest number greater than p for which
(Red) CCP*°CpqrCPCpqr satisties M. By Lemma 19, we have (1) Cdiv(®)
CqpCrr satisfies M. Repeating the derivation of (i) from (g) in Lemma 15,
using Lemma 3 and (Syl,;), except that div() replaces o everywhere in the
derivation, we can obtain (2) CCCHV®)CqpCrstCCrst from (1). Substituting
in (2) (S: q/p, p/q, v/Cpq, s/CPo=9VI=1Cpay t/CPCpqr), and using the
identity o = & div(M), we obtain (3) C(Red)CC* =4V ®+2ChayCPCpgr. Using
modus ponens with (Red) on (3), we obtain that (4) cC*-1dv®+PCpa,CPCpgr
satisfies M. Now, unless z-1 = 0, the fact that (4) satisfies M is incompat-
ible with the stipulation used to define (Red) that p,0 are the smallest
indices such that CC**°CCpqrC’Cpqr satisfies M. (An easily proved prop-
erty of exponents is required.) Therefore % = 1.

Lemma 21. Let a satisfy M and contain the variable p as a proper
part. Let B be provable from A, wheve B is obtained from aif p is every-
wheve veplaced by q. Then the sentences CCqpC’Cpqa and C’CpqC’Cqpa
are provable.

Proof. If the assumptions of the Lemma hold, and gr(a, p) = # and ngr(a,p)
=1, then by Lemma 16 the statements (1) ck '”quC”"’qua and
(2) C*"CpgC*t™Capa are provable, for any m. With a suitable choice of ,
we have &+ m =p (mod 0) and I +m = p (mod 0). This follows from the fact
that since a satisfies M, and k-1 = df(a,p), o (which is by Lemma 20 identi-
cal with div(M)) must divide £-1. We therefore have =1 (mod o). Using
(Red) and Lemma 4, we can always obtain the sentences desired from (1)
and (2) with suitable choice of m.

We now introduce a sentence-type which satisfies M, and when added to
A, to yield A;, results in an axiomatization of the sentences satisfying M,
with A; as the axiom set. This sentence, to be referred to as (Fin,), de-
pends on the degree of M, and on p and 0. Consider sentences of the form
C’Cop CPpipiCqr, where £<1, and k,1=1,2,...,m+ 1. There will be



320 ROBERT ACKERMANN

m(m+1)/2 sentences of this form,which we can designate ¢;,¢s,. . ., @,(mi1/2-
(Fin,) is then the following:

C%C%gy.vvy CoOnimir)/2 C°* Om(menys2 C2P CqqCqr. (For example, with
m = 2, we have (Fin,):

C°CPCpy p» CPCpa p1 CqrC°CPCh p5 CPCps py CarC'CPCpy ps C°Chs p, CqrCo* CP
Cpo p3 CPCps p,CqrC?** CqqCqr. Notice that we do not strictly adhere to our
convention in which p; =p, p =4, and so on, because ¢ and » are used in
(Fin,) as variables distinct from any of the p; (i = 1,2,..., m+ 1).)

Lemma 22. (Fin,) satisfies M.
Proof. First we derive some sentences from Aj:

(a) cCpgC’CPCrsCPCsrCPCtuC’CutCowCpq. (Substitution in Lemma 15(h)
(S: »/p, s/q, q/Crs, p/CP~*CrsCPCsrCPCtuC? CutCvw).)

(b) CPCpgCPCqpCpp. (Substitution in Lemma 9 (S: o/Cpp, k/p) yields
CCppCPCpqCPCqpCpp, which in turn yields (b) after modus ponens with
(1d).)

(c) CPCpgCPCqpCrr. (From (b) and CCppCrr (Substitution in (Id*)) using
Lemma 4.)

(d) COrsCPCpgCPCqpCrs. (Substitution in Lemma 3 (S: a/(c), 8/C"CpaC’
CqpCrs, v/v, 8/s) yields C(c)(d). Modus ponens with (c) obviously then
yields (d).

(e) CCowC’CtuC’CutCow. (Substitution in (d) (S: »/v, s/w, p/t, q/u).)

() cc’ctuc’cutCowC’CrsCPCsrCPCtuCP CutCow. (Substitution in (e) (S:
v/Ctu, w/CP~* CtuCPCutCow, t/r, u/s).)

(g) cCpgC’*CPCrsCPCsrCowCCPCtuC?CutCowCpq. (Using Lemma 5, with
a/(a), we let (e) be C6,%,. Replacing ¥, by &, at o-1 odd places in (a),
we obtain CCpgC°™ CPrsCPsrCowCCPCrsCPCsrCPCtuCP CutCowCpw , as
ap of Lemma 5. Now, using (f), we obtain (g) as a;; of Lemma 5.)

Returning to (Fin,), some pair of variables p;, pr¢ # ki, %2 =1,2,...,m +1)
must have equal values on any given valuation. As a result, (Fin,) satisfies
P on any particular valuation, and hence on all valuations, that is, satisfies
M in the sense of the Lemma. This is shown only for the case where m = 2,
and p, and p, are assigned the same value. (Fin,) is then of the following
form:

(1) COCEPCpop, CqrC*t CPCp,p g CPCpgp, CqrC? CqqCqr.

If, in this sentence, we replace Cp,p, with Cqq everywhere, we obtain a
sentence (2) such that C(1)(2) and C(2)(1) are provable by (Id*) and Lemma
7. (2) satisfies M since it is a substitution instance of

(3) CCpqC°* cPCrsCPCsrCowCCPtuC P CutCowC?° CxyCpq.

(3) may be proved.from Lemma 22(g) and Lemma 15(h) using Lemma 4. It
is easily seen that other cases can be proved in a similar manner, and
hence that (1), or (Fin,) in the general case, satisfies M. We now add
(Finy) to A, to obtain A; and state Lemma 23.
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Lemma 23. All sentences which satisfy M are provabdble from As.

Proof. The proof proceeds by establishing this inductive statement: I, for
any s =m, all the s-dimensional (or less) sentences satisfying M are prov-
able, then the s+1-dimensional (or less) sentences satisfying M are also
provable. Let a be any s+1-dimensional sentence in which all of the vari-
ables Py, Pa,...,Pmy1 occur. Consider the sentences obtained from a by
replacing occurrences of a variable p, with another variable p; where
pi < tr. By hypothesis, all such sentences satisfy M and are provable. By
Lemma 21, t‘herefore, all sentences of the form CPChep:CPCh;pra are
provable. If a is of the form CBy, then by means of ( Fin,), it is possible to
prove c?r CBBCBy, and therefore also CBy. If a is of the form NO, then the
sentence (1) CC55Nb satisfies M by substitution in (Transp,). (1) is of the
form CBvy and is also s+l1-dimensional. Therefore (1) and hence ¢ is prov-
able by the strategy just suggested. As « is provable no matter what its
form, Lemma 23 is proved. This also suffices to establish the Hauptsatz,
since the construction of A; completes the development of an axiom set Ax
for the sentences satisfying the arbitrary matrix M.
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