
322
Notre Dame Journal of Formal Logic
Volume XII, Number 3, July 1971
NDJFAM

THE STRONG DECIDABILITY OF CUT-LOGICS I:
PARTIAL PROPOSITIONAL CALCULI

E. WILLIAM CHAPIN, JR.

1. Introduction. Recent study of partial propositional calculi in which any
number of applications of the deduction rules is allowed has shown that such
calculi tend to be highly undecidable; i.e., problems may be constructed
concerning such calculi which are of any given degree of unsolvability (cf.
[3], [4], [5]). However, in the case of calculi in which the number of appli-
cations of the deduction rules is limited, the situation is rather the reverse.
It is proved below that all such calculi with finite numbers of axiom
schemata and the rule modus ponens (or equivalently with finite numbers of
axioms and the rules modus ponens and simultaneous substitution or sub-
stitution) are decidable and decidable in a rather strong way. The second
part of this paper will concern the generalization of the decidability results
to other classes of calculi (modal logics, higher order calculi, etc.)

2. Definitions. For the purposes of this first paper, a partial propositional
calculus shall mean a triple (M,R,N) where M is a finite set of well-formed
formulae which are theorems of the classical propositional calculus, R is
either the rule modus ponens (MP) or the rule MP together with the rule
simultaneous substitution (SS), or the rule MP together with the rule sub-
stitution (S) and N is a non-negative integer or infinity (°°). If N is infinity,
(M,MP,iV> is to be thought of as the calculus with axiom schemata corre-
sponding to the elements of M, and sole rule MP; (M, (MP,SS),iV> is to be
thought of as the corresponding calculus with the elements of M as axioms
and MP and SS as rules, and similarly for (M, (MP,S),iV). The correspond-
ing calculi when N is finite are the same calculi with the restriction that
the rule MP may be applied N or fewer times only. Thus each (M,R,n)
represents a subset of the calculus represented by (M,R,m) for n< m, and
also a subset of the calculus represented by {M,R,<*>). Usually we shall
identify a triple and the calculus it represents whenever this causes no
confusion. The calculi with infinite will be called cut-propositional calculi.

In general, the proofs below will be carried out for the case that the
connectives present are implication (=>) and a constant false (f), but the
modifications for other sets of connectives should be reasonably easy for
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the reader to see and will be covered in the second part of the paper. Any
calculus of any of the above types is called decidable if there exists an
effective method, given any well-formed formula of the propositional
calculus, for determining whether that formula is a theorem of the given
calculus. Such a calculus will be called strongly decidable if one can
effectively find a finite set of well-formed formulae such that the set of
theorems of the calculus coincides with the set of simultaneous substitution
instances of the given set of formulae. For example, it was proved in [1]
and [2] that, while both of the calculi ((P D (Q D P)), MP, °°> and <((P z> (Q D
R)) D ((P D Q) 7) (p D R))), MP, °°> are decidable, neither is strongly de-
cidable. On the other hand, it is proved in [1] that <(((P z>/) =>/) D P),
MP, °°) is strongly decidable.

3. Statement of theorems and proofs of lemmas.

Theorem A. For all M and for all finite N, (M,R,N) is strongly decidable;
i.e. all cut-propositional calculi are strongly decidable.

One would expect that the proof of such a theorem would involve com-
plications with MP; i.e., there should be some sort of cut-elimination in-
volved, if perhaps carefully disguised. In fact, this is so, but the reduction
to questions about SS is of such a simple nature that the main burden falls
on the theorem below which seemingly concerns SS alone. Given a well-
formed formula W, let W\ be the set of all simultaneous substitution in-
stances of W. We call W\ the closure under SS of W.

Theorem B. For any two well-formed formulae W and X, W\ Π l ! is
representable as a finite union o/A!U5!U. .. u N\ and given W and X, we
can effectively find A,B, . . . ,N.

Since Theorem B is needed in the proof of Theorem A, we prove
Theorem B first. For any well-formed formula W, we shall write AW for
the antecedent of W and CW for the consequent of W, provided Wis of the
form X~3 Y, i.e., AW D CW. In more complicated circumstances we shall
write AAW,ACW,etc.,with the obvious meanings. Now Theorem B requires
us, given two formulae W and X, to characterize the set of all formulae
which are at the same time simultaneous substitution instances of Wand of
X. This procedure can be carried out in two steps, roughly first finding the
common SS instances ignoring the fact that some variables occur more than
once in W or in X and then taking into account these coincidences of vari-
ables. The following lemma may appear obvious, and follows easily by
induction on the length of formulae, but it is essential for the effectiveness
of the decision problem involved.

Lemma 1. Given two well-formed formulae W and X, one may effectively
tell if X is an SS instance of W; if X is such an instance, one can effectively
assign to each variable in W the subformula of X which was substituted for
it in W to get X.

Proof. We do induction on the length of W. If Wis of length one, it is either
a variable or a constant. If Wis a constant, X is not an SS instance unless
it is that same constant. In thai case, the constant corresponds to itself for
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the effective assignment. If W is a variable, then X is an SS instance of W
and the whole formula X corresponds to the single variable of W. Now
assume the lemma true for W oί length n-1 or less, and suppose that W is
of length n. Then if X is of length n-\ or less, it is not an SS instance, since
SS always maintains or increases length. If X is of length n or greater, it
is an SS instance of W if and only if AX is an SS instance of AW and CX is an
SS instance of CW and the formulae assigned to variables occurring in both
AW and CW by the two assignments (AX to APT and CXto CW) are the same.
The necessity of the condition is immediate. Further, if the condition is
satisfied, we can list, for each variable in W, the formula to be substituted
for it in W to attain X by SS, so that X is an SS instance of W. But the
lengths oί AW and CW are both of necessity shorter than the length of W,
so that the lemma follows by induction, the effective assignment desired for
the variables in W being the union of the effective assignments for AW and
CW which union is consistent in the sense of assigning only one formula to
each variable by the above discussion. Q.E.D.

Given a well-formed formula W9 define its length to be the total number
of signs appearing in it, counting repetitions but not parentheses (so that
the length of (P =>(Q 3 J?)) is 5), and its variable length to be the total num-
ber of variables appearing in the formula, counting repetitions (so that the
variable length of (P Ώ (Q D Pi) is 3). If W has variable length n, define the
generalized version of W to be the formula that results from Why replacing
its variables from left to right by the first n variables in a fixed ordering
of the variables. (For purposes of examples, we shall assume that this list
begins with the 26 letters of the English alphabet in the usual order, so that
the generalized version of (P z>(Q ΏP)) is (A ^>(B DC)).) For the general-
ized version of a formula ^we shall write W#, then W is an SS instance of
W# so that we have

Lemma 2. To every formula W, there corresponds a unique generalized
version W% of which W is an SS instance. Given W we can effectively find
W% and can effectively establish the correspondence between the variables
of W# and W through which W arises as an SS instance of W#. Q.E.D.

Lemma 3. Given two formulae W and X, each of which has the property that
no variable occurs in it more than once, W\C\X\ is either empty or repre-
sentable as AI for some formula A, and given W and X, we can effectively
find A or show that the intersection is empty.

Proof: We do induction on the length of the shorter of W and X, which
without loss of generality, we may assume to be W. If the length of W is
one, either it is a constant or a variable. If it is a constant, either X is the
same constant, a different constant, a variable standing alone, or a formula
of length greater than one. If X is the same constant, say c, then take A = c.
If X is a different constant, the intersection is empty. If X is a variable,
take A = c. If the length of X is greater than one, all its substitution in-
stances must contain a connective, so we take the intersection empty. The
other possibility is that Wis a variable. In that case, we take A = X.

Now assume that the lemma is true for all cases in which the shorter
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of the two formulae has length less than n, and assume that the length of W
is n. Since we are in the case n >1, W must be of the form AW DCW, and
since the length of X is greater than or equal to the length of W, X must be
of the form AX D CX. Hence, by the induction assumption, we can find a
formula A such that A! = AW\ΠAX\ and formula B such that B\ = CWίΛCX.
Now A DB is a formula such that (A Dβ)! is W\ΠX\. First, if U is an SS
instance of W and of X, its antecedent and consequent are SS instances of
the antecedents and consequents of W and X, respectively. Second, since
the antecedent and consequent of W and X have no variables in common, if
Uf is an SS instance of both the antecedents and Un such an instance of both
the consequents, then Uf D U" is an SS instance of both W andX as desired.
We are now done, since the above process is effective at every step, either
telling us that there is no instance in common or giving us a formula A such
that the desired intersection is A!. Q.E.D.

Corollary. Given tivo formulae W and X, one can effectively find a formula,
call it (W,X)# such that W\(ΛX\ = {WyX)#\.

Proof: W\ andX! both have the property that no variable occurs more than
once. Q.E.D.

Lemma 4. In Lemma 3, to each variable of W {of X), there corresponds a
unique effectively determinable subformula of A such that A results from W
(from X) by SS of the subformulae for the variables of W (of X).

Proof: By induction, A is an SS instance of Wand of X. Hence apply lemma
1. Q.E.D.

Corollary. Given two formulae W and X, to each variable v of W and to
each variable vr of X, one may effectively associate a finite collection
Cv (Cvt) of subformulae of (W,X)# such that C is the collection of those
subformulae that are associated with the variables of W#(X^) which are
associated with v.

Proof: Lemmas 2 and 4. Q.E.D.

Note that, in the above process, since W\ and JΠ have the property that
no variable occurs more than once in them singly, by a change of vari-
ables (say, instead of using the first m variables for-X', we use the variables
from the first one not used in W# on to formX*) we can assure that (W,X)#
also has the property that no variable occurs more than once in it. So, by
another effective change of variables we may assume that if the variable
length of (W,X)# is p, then the variables of {W,Xψ from left to right are the
first p variables.

We now form a collection of formulae, the variable instances of (W,X)$
as follows. If the variable length of (W,X)# isp, there are /^distinct se-
quences of length/) with elements in the sequence chosen from the first/)
variables. Call the n-th such sequence, (listing the sequences in alphabeti-
cal order) sn =nl9n2,... ,np. Then the variable instances of (W,X)# are the
formulae resulting from it by the simultaneous substitution of Wi,n2,... >np
for the first p variables in alphabetical order, respectively. Since, given
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(W,X) and a particular variable instance, say Sn corresponding to the sub-
stitution of sn,we have an effective correspondence between the variables of
Sn and {W,xψ, by the above lemmas we have

Lemma 5. Given two formulae W and X, to each variable v of W (of X) one
may effectively associate a finite collection C of subformulae of any vari-
able instance S» of (W9Xψ such that Cr is the collection of those subformulae
that result from the subformulae of C (cf. Corollary to Lemma 4) by the
substitution associated with sn. Q.E.D.

Now, given W and X, call any of the corresponding Sn W-good (X-good)
if for each variable in WQt), the corresponding collection of subformulae
given by Lemma 5 consists of exactly one formula, possibly repeated more
than once. A formula which is both X-good and W-good will be called a
mutual SS instance of X and W.

4. Proofs of theorems.

Pϊ'oof of Theorem B: Let A, B, . . ., N be the collection of mutual SS in-
stances of W and X, & collection effectively available given W and X. Sup-
pose that / is an SS instance of one of the mutual SS instances, say of K.
Then K is an SS instance of W#and moreover an SS instance of W: namely
for each variable v in W substitute the unique formula in the collection C'
given in Lemma 5. Thus since / is an SS instance of an SS instance of W,
it is an SS instance of W and so belongs to W\. Similarly, / belongs toX!,
so that /belongs to WinXl. Thus A\ \jB\ u . . . ΌNl c W\Γ\X\. On the other
hand, let / belong to WlOXl. Then, since / is an SS instance of W\ and of W
and of X and W and X are SS instances of {W9Xψ, / is an SS instance of
(W,X)*. Hence, it is an instance of some of the variable instances of [W,xψ
(since this collection contains (W,X)# itself). We need only show that it is
an instance of one at theA,J3,. .. ,N chosen. Now let us start with {W,xψ
and identify its variables in such a way that we get a mutual SS instance of
W and X of which I is also an SS instance. First, we may divide {W,xψ into
segments corresponding to the variables of W. Call these segments the
first segment, the second segment, etc., going from left to right. If the first
segment corresponds to a variable V{ in W which occurs elsewhere in W,
we take the segments in (W,X)% corresponding to the other occurrences of
V{ in W and replace each one by the first segment. By the construction,
this amounts to an SS in (W,xψ. Now we underline the first segment and all
these changed segments. We now consider the first non-underlined seg-
ment, counting from the left and go through the same process, comparing it
with all non-underlined segments to the right of it—there are none available
to the left. We repeat this process until all segments are underlined. This
is possible since there are only a finite number of segments. Call the re-
sulting formula/'. This formula results from / by making the minimum
number of identifications so that the result is an SS instance of W. Since /
is an SS instance of (W9X)# which is also an SS instance of W, it must have
at least these identifications made and hence it is also an SS instances of /'.
Similarly, starting with X and (W,X)# we can get a formula/", one of the
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X-good Sn. Now begin again with (W,X)$ and its first variable. To get /',
this variable was identified with a collection of variables occurring to its
right. Replace each of these variables by this first variable. Do the same
to those variables which were identified with this first variable in /" (call
the resulting formula /i). Now consider the variable occurring in the
second position for variables in the resulting formula. This will be either
the second variable of (W,X)# or else the first variable appearing again be-
cause of one of the substitutions made previously. At any rate, call this
variable V and the variable to which it corresponds in (W,X)#, Vf. Replace
all the variables in h which correspond to variables in {W,xψ which were
identified with V to form /' or /" by V, to get a formula J2. Note that this
new substitution does not change any of the variables previously changed.
Now continue with this procedure until the variable corresponding to the
rightmost variable of (W,X)^ has been reached. At this point, we have a
formula In which is such that the minimal number of identifications have
been made so that the given formula is an SS instance both of PFand of X,
i.e., so that it is a mutual SS instance of W and X. Also note that / is an SS
instance of In since it is an SS instance of (W,X)# and must have at least the
identifications made that were made in (W,X)# to make this formula an SS
instance of W and of X (since it is an SS instance of both these formulae).
Hence / is an SS instance of one of our A, B,. . ., N as desired. Q.E.D.

Given this theorem, the proof of Theorem A is not very difficult.

Proof of Theorem A: The proof will be by induction on the number N. The
two cases, axioms and axiom schemata do not significantly differ since we
are allowed as many applications as we desire of SS, no matter what N is.
Also note that the use at S and SS are equivalent for our purposes, since
any SS may be accomplished by a sufficient number of applications of S.
Hence, for each N (M,R,N) is closed under SS and we need show only that
we can find a finite set of wffs, the set of all of whose SS instances is
(M,R,N). Call (M,R,0 ) the collection of SS instances of the axioms. Using
the axioms as the finite set, we have that (M,R,0) is strongly decidable.
Now the elements of (M,R,1) arise from those of (M,R,0) by the use of MP.
Again, since unlimited use of SS is available, we know that (M,R,1) is
closed under SS and need show only that we can find the appropriate finite
set of formulae. This set includes the finite set found for (M,R,Q) and
certain other axioms arising from the axioms in (M,R,0) by the use of MP.
Namely, for each pair (W,X) from the finite set for (M,R,0), we apply
Theorem B to AW and X to get the finite set of formulae A,B, . . . ,N. In
applying MP for the pair (W,X), we are covering the cases in which we take
an SS instance W of W as major premises and an SS instance X1 oίX as
minor premise such that AW =Xf. The new theorem will be CWf, but
every such Xf = AWf is an SS instance of one of A, B,. . ., N and conversely,
so that the new theorems are precisely the SS instances that result from
the formulae obtained from CWby making the SS by which A resulted from
AW, or from the formulae obtained from CWby making the SS by which B
resulted from AW, etc. Call this finite set of formulae (W,X)*. Then all of
the new consequences are SS instances of some formulae in some (W,X)*
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and conversely. Hence, our new finite set of formulae is the union of the
(W,X)* and the finite set of formulae available for (M,R,0). Given any
(M,R,N), assume that it has the given structure, i.e., that there exists an
appropriate finite set of formulae. Then applying the above process, we get
another finite collection of formulae which will do for (M,R,N+1), so that
the theorem follows by induction. Q.E.D.

The proofs in this case may seem quite specific, in that we limited our
calculi to those with 3 as the only available connective. In fact, this is no
limitation, as the second part of this paper will demonstrate.
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