OMITTING THE REPLACEMENT SCHEMA IN RECURSIVE ARITHMETIC

I. J. HEATH

We shall consider a formalisation of primitative recursive arithmetic similar to that in Goodstein [1] in which the replacement schema (Goodstein's Sb_{2}) is deduced from certain special cases using a double recursive uniqueness rule. In Lee [2] the replacement schema is deduced from an infinite number of instances, whereas here we need only a finite number of instances. In our formalisation we make use of only special cases of the singly recursive uniqueness rule.
§1. Axioms and Rules of Inference. As axioms we take all definitions by recursion and substitution. Among these we specify

$$
\begin{aligned}
a+0 & =a \\
a+S b & =S(a+b) \\
a .0 & =0 \\
a \cdot S b & =a \cdot b+a \\
a=0 & =a \\
0-a & =0 \\
S a-S b & =a=b
\end{aligned}
$$

We shall denote recursive functions by f, g, h, \ldots, and recursive terms by A, B, C, \ldots We take the following rules of inference

$$
\begin{array}{rlrl}
f x & =g x \vdash f A=g A \\
A & =B \vdash S A=S B \\
A & =B \vdash x+A=x+B \\
A & =B \vdash A+x=B+x \\
A & =B \vdash x=A=x=b \\
A & =B \vdash A=x=B=x \\
A & =B, A=C \vdash B=C & & \\
f S x & =f x \vdash f x=f 0 & \ldots(\mathbf{I}) \\
f 0=g 0, f S x & =S f x, g S x=S g x \vdash f x=g x & & \ldots .\left(\mathrm{E}_{1}\right) \\
f 0=g 0, f S x & =g S x \vdash f x=g x & & \\
f(m, 0)=g(m, 0), f(0, n) & =g(0, n), f(S m, S n)=f(m, n), & & \\
g(S m, S n) & =g(m, n) \vdash f(m, n)=g(m, n) & & \ldots\left(\mathbf{E}_{2}\right) \tag{2}
\end{array}
$$

Abbreviations

$$
\begin{aligned}
1 & \equiv S 0 \\
P A & \equiv A=1 \\
\alpha A & \equiv 1=(1: A) \\
|A, B| & \equiv(A \div B)+(B \div A) \\
A=B \rightarrow C=D & \equiv(1 \div|A, B|)|C, D|=0
\end{aligned}
$$

§2. Development. We now develop the theory to the point in which we have proved the axioms and rules of inference of Goodstein's system \Re_{1}. This means we must prove the key equation

$$
a+(b \leq a)=b+(a \leq b)
$$

and the substitution theorem

$$
a=b \rightarrow f a=f b
$$

which will give us the replacement schema by substitution and modus ponens.

First we show equality is an equivalence relation. We obtain $A+0=A$ by substitution and hence $A=A$ by T . Then we get $A=B \vdash B=A$ by taking C as A in T . We shall henceforth make free use of these properties of equality, the substitution schema, and replacement in functions formed from $S,+$, and - by substitution. Whenever an equation follows by one of the uniqueness rules we shall name the rule on the right.

$$
\begin{array}{rlr}
S a & =S(a+0)=a+1 & \\
P S a & =S a=S 0=a=0=a & \\
a=a & =0 & \\
\alpha 0 & =0 & \\
\alpha S a & =1 & \\
0+a & =a & \mathrm{~S} \\
S b+a & =S(b+a) & \mathrm{S} \\
b+a & =a+b & \mathrm{~S} \\
a-S b & =P(a=b) & \mathbf{E}_{2}
\end{array}
$$

We can now prove the key equation.
Theorem $a+(b \leq a)=b+(a \leq b)$
Proof Let $f(a, b) \equiv a+(b \div a)$
then $\quad f(a, b)=f(P a, P b)+\alpha(a+b)$
F

$$
f(a \doteq n, b \div n)+\phi(n, a, b)=f(a \leq S n, b \div S n)+\phi(S n, a, b)
$$

where $\quad \phi(0, a, b)=0$
and $\quad \phi(S n, a, b)=\alpha((a \pm n)+(b \div n))+\phi(n, a, b)$
since $\quad(a+\alpha b)+c=a+(\alpha b+c) \quad$ F
$\therefore \quad f(a, b)=(a \leq b)+\phi(b, a, b)$
Similarly $\quad b+(a \div b)=(a \div b)+\phi(b, a, b)$
and so $\quad a+(b \div a)=b+(a \div b) \quad$ Q.E.D.

$$
\begin{aligned}
(a+c)=(b+c) & =a \div b \\
(a+c) \div c & =a \\
c=(b+c) & =0 \\
|a+c, b+c| & =|a, b|
\end{aligned}
$$

E

$$
A+B=0 \vdash A=0, \quad \text { since } A=(A+B) \div B
$$

$$
|A, B|=0 \vdash A=B, \quad \text { since } A=A+(B \div A)=B+(A \div B)=B
$$

$$
A=B \vdash|A, B|=0, \quad \text { since } A \div B=0=B \cup A
$$

$f 0=g 0, f S x=f x+A, g S x=g x+A \vdash f x=g x$
follows by \mathbf{E}_{1}, since $|f S x, g S x|=|f x, g x|$.

$$
\begin{array}{rlrl}
A=B & \vdash A c=B c & \mathrm{P} \\
a+(b+c) & =(a+b)+c & \mathrm{P} \\
0 \cdot a & =0 & \mathrm{P} \\
S b \cdot a & =b \cdot a+a & \mathrm{P} \\
a \cdot b & =b \cdot a & \mathrm{P} \\
a \cdot(b+c) & =a b+a c & \mathrm{P}
\end{array}
$$

We can now apply replacement to any function formed by substitution from $S,+$, ., and - .

$$
\begin{aligned}
c(a: b) & =c a \leq c b \\
c|a, b| & =|c a, c b|
\end{aligned}
$$

E_{2}

Deduction Theorem If $A=B \vdash C=D$ with no substitution or recursion in the variables of the hypothesis, then $A=B \rightarrow C=D$.
Proof We multiply the proof throughout by $R \equiv 1-|A, B|$ in order to obtain a proof of $A=B \rightarrow C=D$.

$$
R A=R B, \text { since }|R A, R B|=R|A, B|=0
$$

and the rules of inference remain valid.
E.g. $R A=R B \vdash R(A \div c)=R(B \div c)$

$$
R f 0=R g 0, R f S x=R S f x, R g S x=R S g x \vdash R f x=R g x
$$

P
since $R f S x=R f x+R$, and $R g S x=R g x+R$.
Q.E.D.

Induction Theorem $p 0=0,(1-p n) p S n=0 \vdash p n=0$
Proof Let $q 0=1$ and $q S n=q n(1 \div p n)$,
then $\quad q S S n=q n(1 \div p n)(1 \div p S n)=q S n$
and so $\quad q S n=1$.
E_{1}
Q.E.D.
$\therefore \quad p n=q S n . p n=0$
Double Induction Theorem $p(m, 0)=0=p(0, n),(1-p(m, n)) p(S m, S n)=0$ $\vdash p(m, n)=0$
Proof Let $q(m, 0)=1=q(0, n)$ and $q(S m, S n)=q(m, n)(1 \div p(m, n))$,
then $\quad q(S S m, S S n)=q(m, n)(1-p(m, n))(1-p(S m, S n))=q(S m, S n)$
and so $\quad q(S m, S n)=1$.
E_{2}
$\therefore \quad p(m, n)=q(S m, S n) . p(m, n)=0$
Q.E.D.

Robinson has shown in [3] that all primitive recursive functions are generated from $0, x, S x, x+y$, and $x \leq y$ by substitution and the recursion without parameter

$$
\begin{aligned}
f 0 & =0 \\
f S x & =g(x, f x)
\end{aligned}
$$

The substitution theorem, follows since it obviously persists under substitution and the following theorem shows it persists under the above recursion.

Theorem $a=b \rightarrow(c=d \rightarrow g(a, c)=g(b, d)) \vdash a=b \rightarrow f a=f b$
Proof by double induction

$$
\begin{align*}
a=0 & \rightarrow f a=f 0 \\
0=b & \rightarrow f 0=f b \\
(a=b \rightarrow f a=f b) & \rightarrow(S a=S b \rightarrow f S a=f S b)
\end{align*}
$$

follows by the deduction theorem from
$S a=S b, a=b \rightarrow f a=f b \vdash g(a, f a)=g(b, f b) \vdash f S a=f S b$
which is true since $S a=S b \rightarrow a=b$ and $a=b \rightarrow(f a=f b \rightarrow g(a, f a)=f(b, f b))$ by hypothesis.
Q.E.D.
§3. Alternative Systems. First we note that we deduced the key equation by applying F only to functions formed by substitution from $S,+$, and - and so we need assume F only in these cases and then derive the general case as Goodstein does in \Re_{1}.

If we assume $a+b=b+a$ then we may discard S, since we may prove P as before and deduce S.

If we assume $a \leq S b=P(a \doteq b)$ then we need only assume the homogeneous case of E_{2}.

$$
f(m, 0)=0=f(0, n), f(S m, S n)=f(m, n) \vdash f(m, n)=0
$$

since we may prove $|A, B|=0 \Longleftrightarrow A=B$ as before and deduce E_{2}.
If we assume the key equation then the only uniqueness rules we need assume are

$$
f 0=0, f S x=f x \vdash f x=0
$$

and

$$
f(m, 0)=0=f(0, n), f(S m, S n)=f(m, n) \vdash f(m, n)=0
$$

since we may prove E_{1} and $|A, B|=0 \Longleftrightarrow A=B$ as Goodstein does in \Re_{1} and deduce E_{2} and S by considering $|f x, g x|$. I suspect that any finite number of instances of replacement are inadequate to derive recursive arithmetic without a double recursive uniqueness rule.

REFERENCES

[1] Goodstein, R. L., Logic-free formalisation of recursive arithmetic, Mathematica Scandinavia, v. 2, 1954, pp. 247-61.
[2] Lee, R. D., The substitution schema in recursive arithmetic, Notre Dame Journal of Formal Logic, v. VI, 1965, pp. 193-200.
[3] Robinson, R. M., Primitive recursive functions, Bulletin of the American Mathematical Society, v. 53, 1947, pp. 925-42.

University of Leicester
Leicester, England

