
9

Notre Dame Journal of Formal Logic
Volume VIII, Numbers 1 and 2, April 1967

FORMAL NONASSOCIATIVE NUMBER THEORY

DOROTHY BOLLMAN

1. Introduction. The logarithπietic, first studied by I.M.H. Etherington

(see, for example, [2]), of a nonassociative algebra has been found to bear

some resemblance to the arithmetic of natural numbers. In [1], Evans has

characterized this logarithmetic (i.e. the arithmetic of the indices of

powers of the general element in a nonassociative algebra) by a set of

axioms analogous to Peano's axioms and calls the resulting system "non-

associative number theory."

In this paper, we shall formalize these "Peano-like" axioms and

develop some of the properties of nonassociative number theory as

theorems of the formal theory. In the last section it will be shown that

formal nonassociative number theory, N, is both essentially undecidable

and incomplete. This is accomplished by showing that N contains an es-

sentially undecidable subtheory.

Few of the proofs of the theorems of N have all of the steps given.

However, with the metamathematical remarks given, it should be an easy

matter for the interested reader to supply complete proofs.

2. An axiom system for nonassociative number theory. We define N

(formal nonassociative number theory) to be the first-order theory whose

only individual constant is aυ whose only predicate letter is A\\ and whose

only function letters are f\ f% and f3. We write 1 for a^ xλ = x2 for

Λl(pcl9x2), Xι + %2 for flix^x*), Xi Xz for fl(x1}x2), and x*2 for f£(xi,x2). The

proper axioms of N are the following:

(Nl) x1 = x2 z> (xx = x3 -3x2 = #3)

(N2) xx = x2 D (xλ + x3 = x2 + x3)

(N3) Xί = x2 D (x3 + χ1 = x3 + x2)

(N4) xι + x2 Φ 1

(N5) x1 + x2 = x3 + x4 -D {xι = x3 A x2 = x4)

(N6) * j. 1 = x1

(N7) xλ (x2 + x3) = xx x2 + AΓI x3

(N8) χ\ = X l

(N9) xϊ*+x3 = xΐ* . χ*3

(N10) (Nonassociative Induction):
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For any wf (2/ of N,

Y-O/(l) D ((xi)(x 2)(#(*i) A *Z(*a) ^Cl{xι + x2)) Ί (xi)CHpcx))

By using generalization and the "particularization rule," {x)(Z{x)\-d{t\

where t is free for x in&ix), one can easily prove the

Lemma. For any terms t, s, r and u of N, the following wfs are theorems

ofH.

(Nl<) t = r^(t=s^r = s)
(N20 t = r D(t + s = r + s)

(N3 !) t = r^>(s+t = s+r)

(N4 !) t +r Φ 1

(N5 f) t+r=s+WD(t = s Λ r = u)

(N60 t I = t

(N7T) ί ( r + s ) = ί r + ί s

(N8 ) ί 1 = ^

(N9 ) ί r + s = r ίs

3. N as a first-order theory with equality.

Proposition 1. If t, r, and s are terms of N then the following wfs are

theorems of N.

(a) t = t

(b) t = r Dr=t

(c) ί = rD(r=sDί = s)

(d) r=t^){s = t^>r=s)

(e) i ί = t

(f) ί = r D ^ 5 = r s

(g) t = O s £ = 5 r

(h) t = r D ί s = r s

(i) ί = rDs ' = sr

(j) f * i D(£x1)(£xa)(ί = ̂ i+*2)

Proof:

(a) Use (N10 and (N6T).

(b) Use (N10 and part (a).

(c) Use (N10 and part (b).

(d) Use parts (c) and (b).

(e) Apply (N10) to the wf d{xx): 1 χx = xx.

(f) Apply (N10) to the wf &(xz)\ Xι = x2 ΏXi X3 = X2 # ̂ s

(g) This can be proved by several applications of (N10).

An outline of the proof is as follows. Apply (N10) to the wf^-(#2)
:

1 = x2 DΛΓ3 1 = xz x2 and thus prove

M*2)(i = X2 0x3 1 = X3 ' X2)

Denote by Mxx) the wf

(x2)(xι = x2 ^>Xz *i = Xs ' ̂ 2)
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Then prove that

tf(xi)> Mx*), Xι + X4 = X5 + Xβ v-%z(xi + X4) = *s(* 5 + *β)

Then

#(*i)* ^(^4) l~^5 + *e)

where d>( 2̂) is the wf

ΛΓi + #4 = #2 3 #3 (pCL + ΛΓ4) = #3 # 2

By (N4) and a tautology,

Hence by tautologies and (N10),

Hence

and by (N10),

Hxi)#(xi)
(h) Apply (N10) to the wf Oiρcz): Xι = x2^>x*3 = ̂ ί 3

(i) The proof is similar to that of part (h). This time denote by #(#1) the
wf (#2)(#i = # 2 D # 3 1 = X32) and denote by 0(# 2)the wf ΛΓX + Λ;4 = x2 DΛΓS1 +-4= xξ2.
(j) Apply (N10) to the wf a(x3): x3 Φ 1 D (E Xι){Έ x2)(xs = Xi + #2)

Proposition 2. N zs a first-order theory with equality, i.e.

h Xi = Xi

and

where ^(ΛΓJ,ΛΓI) is any wf and <#(*;uX2) is the result of replacing some, but not
necessarily all, free occurrences of X\ by x* with the proviso that x2 is
free for the occurrences of xλ which it replaces.

Proof: This follows from Proposition 1, parts (a), (b), (c), (d), (f), (g), (h),
and (i), (N2), (N3), and Proposition 2.26 of [3].

4. Some theorems of N.

Proposition 3. For any terms r, s, and t of N the following wfs are
theorems ofU.

(a) tΦ rz>t + r Φ r + t
(b) tΦ t + r
(c) t + (r + s) Φ (t + r) + s

(d) (E ΛΓI)(E x2)(xi x2 Φ x2 Xι)

(e) t (r 5) = (ί r) s
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Proof:

(a) By (N5)

\-X1+X2 = X2 + X1'Z)Xl = X2

Hence by a tautology,

\~Xχ Φ X2 ~DXl + %2 Φ %2 + Xl

( b ) A p p l y ( N 1 0 ) t o t h e wf Cϋ(xx): (ρc2)(pc! ΦXι+ x 2 )

( c ) B y ( N 5 )

\-Xι + (x2 + X3) = (Xi + X2) + X3 ^>Xi = Xi + X2

Hence

h-XL Φ Xx + X2 DΛΓi + (x2 + X3) Φ (Xi + X2) + X3

and by part (b) and Modus Ponens,

\~Xi + (x2 + #3) Φ (Xi + X2) + X3

(d) Prove that

H ( ( i + 1) + 1)(1 + 1)= (1 + 1)(1 + I ) D l + 1 = 1

Hence

\-l + 1 Φ 1 D ( ( i + 1) + 1)(1 + 1)Φ (1 + 1 ) ( ( i + 1) + i )

T h e n b y (N4) a n d M o d u s P o n e n s ,

H ( ( I + i ) + I ) ( i + i ) ^ ( i + ! ) ( ( ! +1) + 1)

a n d h e n c e

h-(E ΛΓi)(E x2)(xι - X2 Φ X2 #1)

(e) Apply (N10) to the wf β>(pc9): Xi (x2 ^3) = (#1 #2) * 3

Hence addition in N is noncommutative and anti-associative and

multiplication in N is noncommutative and associative. The following

proposition shows that both the right and left cancellation laws hold.

Proposition 4. For any terms t, r} and s, the following wfs are theorems

ofH.

(a) t ' r = s ' r ~Dt = s

(b) t-r=l-D(t = lΛr=l)

( c ) tΦ 1-Dtr Φl

(d) (tr = t At Φ J ) r > r s l

(e) ί r = ί s r > r = s

Proof:

(a) Apply (N10) to the wf (Z{x2Y xλ x2

= x$ ' X2^>Xi = *3

(b) Apply (N10) to the wf ύϋ{x2Y Xi Xz = 1 3 (xi = 1 Λ X2 = 1).

(c) Using part (b) along with (N8) and (N9), apply (N10) to the wf (Z(x2):

XiΦl -DxpΦ I .
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(d) Apply (N10) to the wf O^(xλ): x± Φ 1 z> (E x3)(x£ = xf+1) to prove

Then use parts (a) and (c) to prove

\-(Xi Φ 1 Λ X*1 = # 2 ) 3 * 2 = 1'

Then by a tautology,

\-{xx

2

ι = ^ Λ ^ 2 = i ) D ^ I = i .

(e) Apply (N10) to the wf #(%3): (*ί2)*3 = xΐ2 '*3 to prove

M* 3 )(« 2 )* 3 = *i2**3)
Then

and hence

^1 = ΛΓi X3 H(i + i ) ^ = ((i + i)^) X 3

By (N4) and part (c),

Hi +l)XlΦ 1

Hence by part (d)

x1 = Xί ° x3 \-xs = 1

and thus

M*(i),

where #(ΛΓ2) is the wf (^3)^! ΛΓ2 = ̂ 1 Xs ^ ^2 = ̂ 3). Then

Hence by (N4) and a tautology,

#1 (#2 + X4) = Xi ' #3 1-^3 Φ 1

Then using proposition 1, part (j), prove that

tffrt), MxΛ ^-#(*2 + xA)

Hence by (N10),

Hχ2) tf(χ2)

5. Essential undecidability and incompleteness of N. Following the
methods of [4], we shall establish that N is essentially undecidable and
incomplete by showing that N contains an essentially undecidable subtheory.

Let Q be the first-order theory whose only individual constant is aυ

whose only predicate letter is A2

U and whose only function letters are f\ and
/ 2 . As usual, we write 1 for ah xλ = x 2 for Al(x1)x2), XI + #2 for /?(#i,#2)> and
xγ Λ;2 for /2(#i>#2) The nonlogical axioms of Q are the following.
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(Ql) xx = x1

(Q2) Xχ = X2~DX2 = xλ

(Q3) Xι = X2 D (#2 = *3 D^i = # 3 )

(Q4) ffx = # 2 D (Xi + X3 = X2 + X3 Λ X3 + Xi = X3 + #2)

(Q5) Xχ = x2~D (xx - xs = x2 ' X3 A X3 ' Xi = X3 ' Xz)

(Q6) x1 + 1 = x2 + 1 D^i = x2

(Q7) i 9t ΛΓX + 1

(Q8) # x * i D f E ^ i ^ ^ + J)

(Q9) Xχ + (x2 + 1)= {xx + x 2 ) + 1

(Q10) xx i = #χ

(Qll) xλ- (x2 + 1) = xλ x2+Xχ

It can be shown (see [4], p. 67) that Q ("Robinson's system") is

essentially undecidable.

Denote by xx = x2 the following wf of N: (x)(xXl = x*2) and denote by

xx £ χ2 the wf - O0(xxi = xX2)>

For each wf ^-of Q, let (Z* be the wf of N obtained from ^ b y replacing

each occurrence of = by =. Let Nτ be the first-order theory whose

"nonlogical" symbols are those of N, and whose axioms are the set of

wfs U\ where ύθ is an axiom of Q.

Lemma. W is a subtheory of N.

Proof: Each axiom of Nτ is a theorem of N:

(i) h^i^^i

This follows from Proposition 1, part (a).

(ii) \-Xχ = x2 D x2 = Xx

This follows from Proposition 1, part (b).

(iii) γ-Xι = x2 D (x2 = x3 D Xx = X3)

This follows from Proposition 1, part (c).

( ί v ) Y - X χ = X2 ~D (Xx + X 3 = X2 + X 3 A X3 + X χ = X3 + X 2 )

This follows from Proposition 1, parts (f) and (g) and (N9).

(v) \~Xχ = X2 ~D (Xx X3 = X2 X3 A X3 . Xx ̂  X3 X2)

From the proof of Proposition 4, part (e),

\-(xi)(x2)((xXl)X2 = xXί'X2).

Then \-Xχ = x2 r> (ΛΓ! β Λ:3 = x2 'X3) follows from Proposition 1, part (h).

Furthermore,

Xx =X2 h-(χX3p= (XX3)X*

and hence

Xi = Xz \ ~ X 3 * X χ = X 3 ' X2

The desired result then follows by a tautology.
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(vi) \-Xι + 1 = x2 + 1 ^> Xi = x2

This follows from (N9) and Proposition 4, part (a).

(vii) Hz ψ x +i

By (N4), Proposition 4, part (d), and a tautology,

Hi + lf* U + 1 ) X 1 + 1

Hence

(viii) Y-Xι£l D (Ex2)(x1 = x2 + l)

Since Hi = I,

Hi ^ i D (E x2){l = ^2 + ̂ ) by a tautology

and Modus Ponens. Let # ( # 0 denote Xi¥ 1 Ό(Έ xz)(xL^ xz +1). Then
prove

ΛΓ3 « 1 ! - # ( # ! + ΛΓ3)

and

Then by a tautology,

and the desired result follows from (N10).

(ix) H#i + (Λ:2 + 1) = U i + x2) + 1

This follows from (N9) and Proposition 3, part (e).

(x) H*i 1 = Xι

This follows from (Nβ) and Proposition 1, part (i).

(xi) i-* ! (x2 + I) = ^i ^2 + Xι

This follows from (N7), (N6), and Proposition 1, part (i).

Proposition 4. If N is consistent then N is (a) essentially undecidable
(b) incomplete.

Proof:

(a) We first note that Nf is undecidable since a decision procedure for Nf

would yield a decision procedure for Q. Furthermore, Nf is essentially
undecidable. For suppose that T is a consistent decidable extension of N f .
Let Q ! be the first-order theory whose symbols are those of Q and such
that |-Q, fl/ if and only if Y^d/\ Clearly, CΓ is consistent and decidable.
Furthermore, j - ^ ̂ = Φ | - ^ , ^zφ[j^=^ j - ^ f 0/ and hence CΓ is a consistent
decidable extension of Q, which contradicts the essential undecidability
of Q.
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By the lemma, N! is a subtheory of N and so by Theorem 3, p. 16 of [4],
N is essentially undecidable.
(b) Clearly, N is recursively axiomatizable and since N is also essentially
undecidable, N is incomplete by Theorem 1, p. 14 of [4],
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