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ALGEBRAIC INDEPENDENCE IN AN INFINITE
STEINER TRIPLE SYSTEM

ABRAHAM GOETZ

In a recent note [1] W. J. Frascella has given an effective construction
of a Steiner triple system on a set of the power of the continuum. With
every Steiner triple system an idempotent binary operation is associated
in a natural way. The triple system can be regarded as an algebra, and one
can consider the algebraic independence in the sense of Marczewski [2]
on it.

Frascella's triple system gives rise to an algebra in which every two
elements are independent, while every three of them are dependent. Thus
the numerical characteristics t and i* introduced by Marczewski in [3] for
finite algebras are both equal 2 here. Th.e purpose of the present paper is
to prove these facts.

1. A Steiner triple system on a set S is a class of three-element sets
(called Steiner triples) such that every pair of elements of S belongs to
exactly one Steiner triple. A given Steiner triple system on S determines a
binary operation on S such that

(1) x o x = x ,

and for x Ψ y9 x ° y is the third element of the triple determined by x and y.
Hence the binary operation " o " has the following additional properties

(2) x oy = y o x ,

(3) χo(χ o y) = y , yo (x o y) = x ,
(4) if x + y then x ψ x o y ψ y .

2. Consider the algebra <S,o> with the single fundamental operation

Proposition. Every algebraic binary operation i{x,y) of the algebra

<S,° > is either x o y or one of the trivial operations eί(x,y)= x, el(x,y) = y.

Proof. The binary operation f(x,y) can be expressed as a word
consisting of the letters x, yy the symbol o and brackets. The number of
letters in the word is called its length. An operation which can be
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expressed by a word of length one is one of the trivial operations. Suppose
now that the proposition holds for operations expressible by words of length
< n, and let f (x,y) be expressed by a word of length n > 1. Then we have
f (%>y) = u(#,3>) ° vfoy) where u(#,3>) and v(#,;y)are operations expressed by
words of length < w. Hence there are the following possibilities:

(1) u(x,y) = x o y , (2) u(x9y) = x , (3) u(#,;y) = y ,

(4) v(#,3>) = # oy , (5) v(Λf,y) = x , (6) v(#,;y) = y .

Combining (1) and (3) or (2) and (6) or (3) and (4) and using formulae
(1) - (3) we obtain i{x,y) = x °y. In the remaining 6 cases we get one of the
trivial operations.

Thus the proposition is proved by induction on the length of the word
which expresses it. As a corollary we have, in view of (4), the following:

Theorem 1. In the algebra associated with a Steiner triple system
every set of two elements is independent.

3. We now prove two lemmas which are valid in any algebra
associated with a Steiner triple system, and which will be used in section 5.

Lemma 1. Three distinct elements a, b, c, e S are dependent if and
only if the elements a, a ° b, a o c are dependent.

Proof. Note first that the elements a, a © b, a o c are distinct:
a o b Φ ak ao c by (4); a ° δ Φ a° c, since otherwise the two elements a and
a °b would belong to two different Steiner triples.

Further, since b = (a oδ) oa and c - {a °c) °α, it suffices to prove only
one implication. If α, 6, c are dependent then there are two different binary
algebraic operations f (x,y,z), $(x9y,z) such that

1(a,b,c) = g(a,b,c) .

Consider the operations

1*(x*y,z) = f (x, x ° y, x ° z) ,
g*(x,y,z) = g(x,χoy,χo z) .

We have

1(x,y,z) = f*(#, x °y, x ° z) ,
9&fy,z) = g*(x, x oy, x o z) .

Hence the operations f * and g* must be different if f and g are. But

f*(α, a o b, a° c) = f(α, b,c) = g(a,b,c) = g*(β, a° b, a° c) ,

thus a, a°b9 a° c are dependent.

Lemma 2. If the elements α, b, c are distinct and do not form a
Steiner triple, then a, b, c,are dependent if and only if a, a ° b, c are
dependent.

Proof. The elements α, a ° 6, c are different because of the assumption
that they do not form a Steiner triple. The proof is analogous to that of
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Lemma 1. We use the operations

i**(x,y,z) = 1(x,x°y,z) ,

g**(x,y,z) = g(x, x oy, z)

instead of f * and g* in this case.
4. Let us now describe the algebra <A,o > associated with the Steiner

triple system constructed by Frascella. The set A is the union of three
copies of the real line. The elements of A will be represented as pairs
x = (ξ,0, where ξ is a real number and i = 0,1 or 2. We shall call ξ the
coordinate of x9 and i - the level of x. Addition, when applies to levels,
will be understood as addition modulo 3.

The fundamental operation " o" is commutative and idempotent. With
this in mind, it is fully described by the following formulae:
For distinct elements on the same level

(5) (ξ,Oo(n,i)= ( i | ^ , £ + i ) .

For elements on two different levels

(6) <ξ,0 o fa,t+l) = (2f7-ξ,ί) if ξ±τj ,
(7) ( M ) ° ( ξ , i + D = (ξ,ί+2) ,

4. Now consider the following two ternary operations in the algebra
<A,°>

i{x,y,z) = y o {[χo(yoz)] o [zo(yoχ)]} ,

g(x,y,z) = y o Uo^os)]} o {;y°U°(;y°#)]}

Lemma 3. Tfte operations i and g are different algebraic operations.

Proof. A substitution

* = (-4,o) , y = (8, o) , * = (o, i)

gives f = (8, 2) , g = (-55, 2) , hence f * g .

Lemma 4. Let a < β < γ be real numbers and let a =(α, i), b = (β, i),
c - (>>*'), be three elements on the same level i. Then

i{a,b,c) =φ,b,c).

Proof: By (5)
/β+γ \ /α+β \

b° c = \-γ- , i + 1J , b o a= ^ - y , / + ίj

and

«<-γL<β< ~Γ<r •

Hence, by (6)

α°(δ°c) = (β + y-α,i) ,

c°(δ°α) = (|3+α-y,t) .
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Further, by (5)

[ao(boC)]°[c°(b°a)]= (β,i + ϊ) ,

and by (7)

f(α,5,c)= GM + 2)

On the other hand, by (5)

{bo[aoφoc)]}= (β + ̂  ,ί + l) ,

{bo[coφoa)]}= (β + ̂ γ-,i + l) ,

and again by (5)

g(α,δ,c)= (β,i + 2) .

Lemmas 3 and 4 imply at once the

Corollary. Any three elements on the same level are dependent.

5. We are now ready to prove

Theorem 2. Every set of three elements of the algebra <A,°>is de-
pendent.

Proof. If the elements a, b, c form a Steiner triple they are obviously
dependent since, in this case,

c = a°b

If they do not form a Steiner triple we shall consider the following
cases.

1. All three elements α, b9 c are on the same level. Then they are
dependent by the corollary of the preceding section.

2. a and c are on level i , δ on level i+1. We can assume without loss
of generality that the coordinates of a and b are different. But then
<z, a°b,c are different elements on the level i. Lemma 2 reduces the proof
to case 1.

3. a is on level i, b and c on level i + 1 and all coordinates are
different. Then a, a ob, a °c are three elements on level i, and the proof
is reduced to case 1 by lemma 1.

4. b is on level i, a and c on level i+1 and the coordinates of a and b
coincide. Then a°b is on level z + 2, and we have the two elements a and c
on level i+1 and «°δ on level i + 2. By lemma 2 this reduces to case 2
with i +1 instead of i.

5. Finally, if a,b,c are on three different levels, then a, a ° b,c are
on two levels only, and therefore lemma 2 reduces the proof to one of the
previous cases.
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