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CONTRARIETY

STORRS McCALL

This paper is an attempt to make philosophical capital out of an
important difference between the Aristotelian logic of terms and the Stoic,
or ‘modern’, logic of propositions. This difference is, that although both
logics include and give formal recognition to the relation of contradiction,
only the former, and not the latter, takes account of the relation of contra-
riety. Here I do not refer to the relation of contrariety as extending
between terms (thus for example the terms ‘pleasure’ and ‘pain’, ‘black’
and ‘white’ denote contraries), but as extending between propositions.

The most common definition of contrariety is as follows: two proposi-
tions are contraries if they cannot both be true. For comparison, the
definition of contradiction states that two propositions are contradictories
if they can neither both be true nor both be false, and that of sub-
contrariety, that they cannot both be false. As examples from the
Aristotelian square of opposition, ‘All A is B’ and ‘No A is B’ are
contraries, while ‘All A is B’ and ‘Some A is not B’ are contradictories,
and ‘Some A is B’ and ‘Some A is not B’ are sub-contraries. In the
modernized Stoic logic, p and Np' are contradictories, but there is no
formal analogue for, nor logical role played by, the contrary of p. The fact
that there is not seems prima facie to be a consequence of Stoic logic’s
being a logic of unanalysed propositions, while Aristotelian logic is not.
Notwithstanding this seemingly irreconcilable difference between the two
logics, there may still be ways of introducing the notion of contrariety into
propositional logic. For example we might, analogously with Np, write Rp
for the contrary of p. This device is adopted by L. Goddard® in order to
give a satisfactory analysis of exclusive disjunction: he points out that what
makes disjunctions exclusive is not use of the exclusive ‘or’, but an
internal opposition between the disjuncts which we can express by saying
that they are contraries. The aim of this paper will be to investigate the

1. The logical notation of Yukasiewicz will be used throughout.

2. ‘The Exclusive ‘‘Or’’’*, Analysis 1960.
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formal properties of the notion of contrariety: that is, to provide means of
introducing the operator R into the logic of propositions.

1. Iniluitive notions. There are difficulties about the very expression Rp.
In the first place, it is not a truth-function of p. If p is true, then Rp is
false, but nothing about Rp follows from p’s falsehood. Secondly, there may
seem to be a vagueness about Rp which Np lacks. Thus if p denotes that X
is white, Np denotes that X is not white, but what does Rp denote ? That X
is black, grey, blue ? This question as to whether there is a unique contrary
of p will receive different answers in this paper, each of which will be
accommodated in the formal part of our investigation. Thirdly, it may be
thought that the concept of contrariety is essentially a velational one; that
it is really a function of two propositional variables rather than one. What
could it mean to say that p is contrary (Rp)? Must we not rather say that p
is contrary to something (Rpq)? This objection is not a strong one, since it
applies equally to the notion of contradiction. As is the case with Np, it is
sometimes very useful to have a way of denoting the contrary of p, in
addition to saying that p is contrary to something else. For example: ‘It is
not the case that p implies its own contrary’ (NCpRp). This paper will
explore the possibility of using R as a propositional function of one
variable, analogous to N.

Let us now examine some concrete examples of contrary propositions.
In the De interpretatione, where he is mainly interested in investigating
the various types of opposition.among propositions, Aristotle gives us
sufficient information to construct the following table:®

Man is just Man is not-just

Man is not not-just><Man is not just
Here the lines join contradictories. The two propositions at the top are
contraries. But are they true contraries? To answer this we must examine
Aristotle’s doctrine of contrariety more closely. In his inquiry into change
in the Physics, Aristotle points out that when something becomes white, it
does so only from being ‘not-white’, and furthermore not from any ‘not-
white’ (not, for example, from °‘musical’), but from black or some
intermediate colour (188a35 ff.). Change is, for Aristotle, from one
contrary to its twin within the same genus, although there may be many
intermediate states between the two. It is, however, the idea of contraries
as existing in pairs that interests us here. This idea implies that if ¢ is
the contrary of p, ¢ must be the sole contrary of p. In that case p would be
the sole contrary of g, in other words the contrary of the contrary of p. In
symbols, EpRRp. For clarity, let us speak of contraries which necessarily

exist in pairs as strong contraries, while those which need not be paired
will be weak contrvaries. For Aristotle, who regarded all the colours as

3. 19b19 ff. See also the Pviov Analytics, 51b36 ff. Aristotle’s own table has
contraries and sub-contraries diagonally opposed, rather than contradictories.
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intermediate to, and composed of, black and white,4 only the latter two
would be strong contraries.

There is evidence in Aristotle’s writings that he favoured the strong
over the weak concept of contrariety. In the fragment of his work On
Contraries which remains to us (Avist. Frag. ed. W. D. Ross p. 110) he
defines contraries as ‘the things which differ most from one another in the
same genus’. This seems to limit the number of mutually correlative
contraries to two. However in the Nicomachean Ethics, 1108b13, we read
that ‘the extreme states are contrary both to the intermediate state and to
each other’. But, further on, ‘the greatest contrariety is that of the
extremes to each other’ (1108b27), and ‘contraries are defined as the things
that are furthest from each other’.

The formalization of the notion of strong contrariety will be seen to
present the greater logical challenge. But even among weak contraries
interesting logical connexions hold. For example, the propositions ‘X is
white’ and ‘X is red’ would be weak contraries, and we may construct for
them a square of opposition analogous to the one above, with the addition of
arrows denoting implications:

X is \xihite ><X is rfd
X is not red X is not white.
From this square we may extract a principle fundamental to any theory of
contrariety, whether strong or weak, namely that the contrary of a proposi-
tion implies the negation of that proposition. In symbols, CRpNp. By
substitution, transposition and double negation we obtain from this law an
indefinitely large number of derivative laws, CRNpp, CpPNRp, CNpNRNp,

CRNRpRp, etc., all of which may be exhibited in an extended square of
opposition:®

ete.
RNRNpD. RNRp
RNp Rp
b Np
NRp NRNp
NRNRp 'NRNRNp
etc.

Do we see all these implications in concrete form, in ordinary speech?
Doubtless not, but we see the beginnings of them. Taking ‘John adores
Mary’ as the contrary (not the contradictory) of ‘John does not love

4, See the Metaphysics, 1057al17 ff., and J. P. Anton, Avistotle’s Theory of
Contrariety, p. 94.

5. In this and in subsequent tables, formulae occurring one above another in columns
will be understood to be joined by arrows of implication reading downwards.
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Mary’ (‘“John, you don’t love me’’. ‘‘Don’t be ridiculous. I adore you’’),
we get:

John adores Mary John hates Mary
John loves Mary><John does not love Mary
John does not hate Mary John does not adore Mary.

This table could be continued upward and downward as long as there
existed a supply of increasingly strong terms such as ‘worships’, ‘detests’,
etc. At the median line, the pair of contradictories ‘John loves Mary’ and
‘John does not love Mary’ separate columns of (weak) contraries above, and
columns of sub-contraries below. Thus ordinary language provides at least
the core of our indefinitely extended logical square.

2. Formalization of these notions. The two logical laws based on intuition,
CRpNp and EpRRp (the latter for strong contraries only), provide us with
sufficient material for exhibiting the ‘logic’ of the concept of contrariety in
various alternative formal axiomatic systems. The first thing that strikes
one is the analogy between the operator R and the modal operator LN, ‘it is
impossible that . . .. Under this interpretation the law CRpNp becomes the
familiar CLpp (‘if p is necessarily true, then p is true’), basic to all modal
logic. The extended square of contraries then becomes:

etc.
LLp, LLNp
Lp LNp
P Np
Mp: MNp
MMp WIMNp
ete.

This analogy between contrariety and impossibility suggests some already
existing modal system as a means of introducing the operator R. It may
not be wholly satisfactory, as we shall see, to introduce R in this way, but
at least any contrariety logic will be a modal logic in the sense of contain-
ing the law CRNpp. Let us, therefore, as a start, define the operator R as
follows:

Df. R: R = LN,

and attach this definition to the best-known group of modal systems, the
Lewis systems. It is characteristic of the Lewis systems that they all
contain theses of the form ‘it is necessary that...’. Therefore our
definition of R will give us corresponding theses of the form ‘it is contrary
for it not to be the case that. . .’. I we can stomach grammar of this sort
then nothing further will prevent us from accepting at least the early
Lewis systems as basic contrariety logic; if not, then we must look for
systems not containing theses of the form La.® In defence of the former

6. The X-modal system of Rukasiewicz, and Prior’s system Q, suggest themselves
here, but will not be dealt with in this paper.
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alternative we may note that the only propositions asserted as necessary in
the Lewis systems are already-demonstrated theses, including theses of
the propositional calculus. Hence it would be plausible to translate R in
the Lewis systems as ‘it is contrary to the logical rules of this system
that. . .’.

3. The system S2 with R added. We shall start with S2, which Lewis
eventually designated #he system of strict implication, as the basic Lewis
system to which to add our definition of R. This is not to deprecate the
weaker system S1 as a base, but simply takes account of the fact that
nothing radically new is added to the theory of contrariety in progressing
from S1 to S2. Something radically new, however, is added when we
progress from S2 to S3. For S2 contains an infinite number of non-
equivalent modalities while S3 does not.” By a ‘modality’ is meant a
sequence of monadic operators, i.e. a sequence containing only N’s, L’s,
M’s or, of course, R’s. Now our extended square of opposition contains an
infinite number of modalities of the form RN, RNRN, RNRNRN, . ..
(L, LL, LLL, .. .) alone, apart from other forms. Hence S3 cannot serve
as the formal system corresponding to our intuitions as reflected in that
square. As, however, all the implications contained in that square are to
be found in S2, we may take the latter system as providing a satisfactory
formalization of the notion of weak contrariety. '

When we come to strong contrariety, we note that S2’s infinite square
of opposition is quite consistent with the law EpRRp. This square requires
the irreducibility of infinite strings of RN’s, while strong contrariety
merely eliminates every pair RR. But neither S2, nor any stronger Lewis
system, can contain the reduction thesis EpRRp without destroying that
distinction between p and Lp which makes it a modal logic. This may be
most easily seen by noting that

RRp = LNLNp = LMp,
and that while the system S5 contains one half of the reduction theses
EpRRp, namely

(a) CpLMp,
no Lewis system contains

(o) CLMpp .

In fact we find in Prior, Formal Logic p. 207, an argument showing that
adding CLMpp to S2 will enable us to prove the thesis CpLp, destructive of
the distinction between necessity and actuality, or, in its alternative form
CNpRp, of the distinction between contrariety and contradiction. The proof
proceeds as follows, C denoting material implication and E' strict
equivalence:

7. McKinsey, ‘Proof that there are infinitely many modalities in Lewis’s system S2!',
The Journal of Symbolic Logic 1940. See Prior, Time and Modalily, appendix B,
for a summary discussion of modalities in Lewis systems.
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1, CLMpp

2. E'AMpMqMApq (thesis of S2)

3. LCpMp (thesis of S2)

4. LCLpMLp (3)

5. LANLpMLp (4 Df.C)

6. LAMNpMLD (5 Df. L, double negation)

7. LMANpLp (6,2 Replacement of strict equivalents)
8. ANpLp (1,7 Detachment for C)

9. CpLp (8 Df. C).

In view of this difficulty, it will be best to attempt a formalization of strong
contrariety by constructing a system of modal logic from scratch. In the
next section I examine what such a system, let us call it R5, would have to
look like, and in sections 5-6 I make a start at constructing it.

4. Requirvements for a logic RS of strong contraviety. Transposing
proposition (a) of the previous section we obtain:

CNLMpNp,
ie. CNLNLNpNp,
whence by substitution CNLNLNNpNND,
and double negation CNLNLpp,

i.e. (c) CMLpp;
and a similar argument yields from (b):
) cpMmLp.

Hence in any system of strong contrariety containing transposition, double
negation and a rule for the replacement of equivalents we shall find that the
three expressions p, LMp, and MLp are equivalent and replaceable by one
another. This provides a means of reducing strings of iterated modalities
different from that of the Lewis systems. The reduction theses of R5 may
be compared with those of S5 as follows:

In both R5 and S5: CpLMp
CMLpp,

In R5 but not S5: CLMpp
CoMLD,

In S5 but not R5: CMpLMp
CMLpLp.

Thus in S5 strings of L’s and M’s reduce to the last L or M, while in R5
the combinations LM and ML vanish. Concerning the relative degree of
intuitiveness of R5 and S5, in the former we have that if p is true, then it
is possible that p is necessary; in the latter, that if p is possible, then it is
necessary that p is possible. The reader will choose which he prefers:
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considered purely as a modal system, R5 provides at least an interesting
alternative to S5.°

In R5, however, we cannot reduce the number of nonequivalent
modalities to S5’s six, or indeed to any finite number. R5 must contain an
infinite number of non-equivalent modalities of the form p, Lp, LLp, . . .,
as may be seen by the fact that if we identified any two of them we would
have to identify them all. Writing L"p, #n =0, for the expression LL. .. Lp
containing n L’s, we would have, for some n and ¥ > 0, and assuming that
R5 allows for the replacement of equivalents,

CL™pL™*"p
hence by substitution CL"MpL™ " Mp
hence by reduction CL™ *pL™ ""p,
hence eventually CL°pL7p,

i.e. CpL'p,

and hence, by the law CL"pLp, derived from CLpp and the transitivity of
implication:

CpLp.

In other words, weak contrariety’s infinite square of opposition must be a
feature of the logic of strong contrariety. This fact provides us with a
significant piece of information concerning R5. It is known that a finite
matrix exists for all the Lewis systems which is adequate, in the sense that
it satisfies their axioms, but which fails to satisfy the formula CpLp. With
R5 this is not the case, as will be shown. No finite matrix allows for the
assignment of one of more than a finite number of different possible
sequences of truth-values to any formula. In particular this is true of
formulae containing only one variable; in the classical two-valued proposi-
tional calculus, for example, there are open to formulae of one variable
only the possible sequences TT, TF, FT and FF. Again, a three-valued
system will allow only 9 different sequences for formulae comprising one
variable and implication and negation functions alone (‘C-N-p formulae’).
We may express this by saying that a three-valued system allows for a
maximum of 9 ‘C-N-p modalities’ (in an extended sense of ‘modality’). Any
C-N-p formula will have a truth-value sequence identical with one of these
9, hence be equivalent to another formula of the same sequence (assuming
that the system contains the thesis Cpp), and hence be replaceable by that
formula (assuming that the system allows for the replacement of equiv-
alents).

8. Another interesting alternative to S5, again no less plausible, is provided by the
eight-modality system R8M, in which LMp and MLp are equivalent to each other
though not to p. See Storrs McCall, ‘A Modal logic with eight modalities’, in
Contributions to Logic and Methodology in honov of T. M. Bochefiski, Amsterdam
1965, pp. 84-90.
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To return to R5, we have seen that it must contain an infinite number
of modalities of the form p, Lp, LLp, . . . . If it does not, then CHpLp can be
be proved in it. Hence there can be no finite matrix, adequate for R5, which
does not at the same time satisfy CpLp, since such a matrix would satisfy
theses permitting reduction of the modalities p, Lp, LLp, ... to a finite
number. In the terminology of Harrop,® R5 lacks the finite model property
in that, in the case of one of its non-theorems, namely CpLp, there exists
no finite matrix which fails to satisfy it. It would be convenient, in
attempting to construct an infinite matrix adequate for R5 which rejects
CpLp, if we could confine ourselves to matrices for implication and
negation only. This is not difficult to arrange, in virtue of the fact that it is
possible to define necessity in terms of implication and negation. We find
in Lewis and Langford’s Symbolic Logic, theorem 18.14, the equivalence of
Lp and CNpp (C denoting strict implication) and with this definition of
necessity the law CLpp becomes CCNppp, the consequentia mivabilis of the
Scholastics. With this definition it is possible to regard modal logic as a
species of propositional logic, a species which asserts CCNppp and rejects
CHCNpp, the latter being a substitution of CpCgp, one of the paradoxes of
material implication. It is I think more natural to view the Lewis systems
S1-5 in this way: phrased in terms of (strict) implication, negation and
conjunction alone, and with L defined as above, they become progressively
larger proper parts of the classical calculus, and the distinction between
strict and material implication is no longer to be found within the Lewis
systems, but befween each of them and classical logic. We shall construct
R5 in this way, defining Rp to be CpNp (= LNp).

To summarize these requirements which we make of it, R5 must
contain as theses:

(@) CpNNp

(b) CNNpp

(c) CCNgNpCpq

(d) CCNppp (= CLpp, whence CRpNp)
(e) CPCCPNPNCPpNp (= CpLMp = CpRRD)

(f) CCCpPpNpNCPHPNpp (= CLMpp = CRRpD).

plus a rule for the replacement of equivalents. Finally, R5 must #of contain
a thesis:

CpCNpp (= CpLp = CNpRp).

Propositions (a)-(f) being all classical, it follows that what we seek is a
particular fragment of two-valued logic.

9. R. Harrop, ‘On the existence of finite models and decision procedures for proposi-
tional calculi’, Proc. Camb. Phil. Soc., 1958, pp. 1-13. See also Harrop’s paper,
‘Some structure results for propositional calculi’, The Journal of Symbolic Logic,
1965, p. 286, where he refers to the system R5. Harrop’s remark about R5 is not
quite accurate, since the axiomatic system presented below in section 6 lacks the
finite model property.
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5. A wmatrix for the system R5. As we saw in the previous section, proof
of the independence of CHpCNpp in R5 requires an infinite matrix. Such a
matrix will now be given, and certain propositions listed which it satisfies.
As will be seen, not all propositions satisfied by it will be acceptable in R5.
Field = The signed integers.

Designated Values = All values less than or equal to 1.

Implication and Negation Functions

Cpq = 1, b=q,b#-q
Cpqg =q+ 1, p=-q
Cpq = 1+ max (Ipl, |ql), ¢ > p, where |pl is the absolute value of p.
Np = -p.
The Central Part of the Matvix fov Implication
q
-3 -2 -1 0 1 2 3
-2 1 1 1 1 1 1
211 -1 1 1 1 1 4
1 1 o0 1 1 3 4
p o1 1 1 1 2 3 4
-1y1 1 1 2 2 3 4
211 1 3 3 38 3 4
=311 4 4 4 4 4 4

Functions with Designated Values

(@) CpNNp = Ch--p = Cpp =1
(b) CNNpp = C--pp = Cpp = 1
(c) CCNgNpCpq

Casel p# -4,p2¢q ()= C11=1

CaseIl p# -¢,4>p, lal>Ipl C(g+1)(g+1)=1

Case Il p# -q,9>p, Ipl>lql cllpl+ny (Ipl+1y= 1

CaseIV p=-¢ C(-p+1)(gq+1) = C(q+1)(g+1) = 1.
(d) CCNppp = C(p+1)p = 1
(e) CpPpCCpNpNCpNp = CpC(~p+1)(p=-1) = Cpp = 1
(f) CCCPpNpNCpNpp = CC(-p+1) (p-1)p =Cpp = 1
(g) CCpCpqChq

Casel p#-g,p=q,p>1 (@) = CCpll = Cl1= 1
Casell p#-¢,p>q,p=0 =C21=1
Caselll p# -q,p2q,p<-1 =c(lpl+n1=1

CCp(q+1)(g+1) = Clg+2)
(g+1) = 1

CaseIV p # -¢, ¢ >p, lgl> Ipl
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Case V p#-q,q0 >p, 1pl >lgl=ccplpl + 1y (Ipl +1)
=c(lpl+2) (Ipl+1) =1

Case VI p=-90>q, qg#-2 =CCp(q+1) (q+I)=Cl(qg+1) =1

Case VII p=-¢p>q, q#-2 =0

Case VI p=-q,9>p =C(q+2) (¢g+1) =1

Functions with Undesignated Values
CpoCNpp = Cp(p+1) =p+2,p >0
Functions with Designated Values not acceptable in F5

In addition to satisfying formulae (a)-(g), our matrix also satisfies
their negations. This follows from the fact that these formulae always take
the values I or 0, and -1 is designated. However these negations, which
are all non-classical, may be excluded from R5, in the axiomatic develop-
ment of that system, by not assuming any non-classical formulae as
axioms, or any non-classical rules. No non-classical formula can be
proved from classical axioms by classical rules, and hence none of the
negations of (a)-(g) can be.

The Rule of Modus Ponens

Our matrix satisfies the rule of modus ponens, which states that if
formulae X and CXY have designated values (‘are designated’), then Y is
designated:

FX, FCXY— FY.

I shall use x to denote the sequence of values assigned by our (denumer-
able) matrix to the formula X for all possible values of the variables of X.
The proof that the matrix satisfies the rule than follows upon noting that
CXY is designated if and only if ¥ =y. Hence if x < 1 theny <1, i.e.Y is
designated.

The Rule for the Replacement of Equivalents

Although we have no sign for conjunction in R5, so that we cannot
define equivalence in the usual way, we can show that our matrix satisfies a
rule providing in effect for the replacement of equivalents:

~CXY, -CYX, FF(X) = -F(Y)

where F(X) is a formula containing an occurrence of X. The proof that the
matrix satisfies this rule involves first of all the fact that if CXY and CYX
are both designated, then x =y. For suppose at one point that x>y. Then
we will have at that point, CYX > I, contrary to the hypothesis that CYX is
designated. Similarly if y > x. The proof of the rule of replaceability, as
stated syntactically above, then follows from a

Matrix rule of replaceability: If X and Y are formulae such that x =y,
F(X)and F(Y) have identical sequences of values.

To see that this matrix rule holds we observe that evaluation of any
formula F by appeal to the matrix consists in substituting matrix values
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for its sub-formulae F, F, ... F,. F will continue to take the same
values if a different sub-formula, G, having the same sequence of values
as Fj, 1sj <mn, be substituted for F;. This completes the proof of our
syntactic rule of replaceability, since if F(X) is designated, F(Y) will be.

The Rule of T'rvansitivity

The proposition asserting the transitivity of implication usually called
‘Syl’, namely

CCpqCCqrCpr,

is not satisfied by the matrix, since for example
CC34CC44C34 = C5C15 = C56 = 7.

However, we find that the corresponding rule ¢s satisfied:
+FCXY, -CYZ = FCXZ.

Proof: if FCXY, then x > v, and if FCYZ, then ¥ > 2. Hence x > 2,
ie. FCXZ.

6. R5 developed axiomatically. In this section I present certain formulae
and rules, and make certain deductions from them, without attempting to
prove that they provide a complete axiomatization of the system of
classically valid propositions satisfied by the matrix. The system is in
C and N.

Definitions

Axioms CCNgNpCpq
CCNppp
CpCCHPNpNCPHNp
CCCpNpNCpNpNNp

CCpCpqCpy,
where 4 is a trivial variant of formula (f) of the previous section.

Rules (1) Substitution
(2) MP: +X, FCXY~- +Y (Modus Ponens)
(3) RE: ~CXY, FCYX, - F(X) - FF(Y) (Replacement of

. Equivalents)
(4) TR: =CXY, -CYZ - + CXZ (Transitivity).

Deductions
6. CPNNp (3,4, Tr)
7. CNNpp (1,6, MP)
8. Cpp (6,7, TR)
9. CLNpCNNpNp (8,Df. L)
10. CRpCpNp (9,6,7, RE,Df. R)
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11. CCNNpNpLNp (8,Df. L)

12. CCpNpRp (11,6,7, RE,Df. R)
13. CpRRp (3,10,12, RE)

14. CpLMp (13, Df. R, Df. M)

15. CRRpp (4,6,7,RE, 10,12, RE)
16. CLMpp (15,Df. R, Df. M)

17. CLpp (2,Df. L)

18. CRpNp (17,Df. R)

So far, in proving all the strong contrariety theses we set out to prove,
we have made no use of 5. We may, however, use its substitution
CCpCpNpCpNp to define further contrariety operators, of increasing
strength, in the following way:

Df. R': R'p = CpRp
Df. R": R"p = CpR'p etc.

By 5, R'p implies Rp, but CRpR'p (= CCHNpCPpCpNp) is rejected by the
matrix. We have:

for p<0 forp >0
Np = |pl =-p
Rp=CpNp = |pl+ 1 =1
R'p =CpRp = |pl+2 =1
R"p =CpR'p=|pl+3 =1
ete.

Thus we have, in addition to the infinite string of irreducible modalities
ps Lp, LLp, LLLp, . . . , each of which is implied by the next in line to it,
another similar string Np, Rp,R'p,R" p, . ... Of these operators, only R
obeys the law of double contrariety;R'R'p(= CCpCpNpCCHpCpNpNCpCpNp)
not having the same matrix value as p.

Makeverve University College,
Kawmpala, Uganda.





