THREE-VALUED PROPOSITIONAL FRAGMENTS WITH CLASSICAL IMPLICATION

IVO THOMAS

In [1] V. Vučković discussed a generalized system of recursive arithmetic, for which also see [2], in which he found he could obtain the representing equations of a three-valued propositional logic containing classical implication, a weak negation and two systems of conjunction-alternation. He suggested a third system as the union of these two, retaining the weak negation, in fact the system A discussed in [3], but later realised that the model of such a union was unobtainable in the arithmetic. We show that any complete axioms for his matrices

С	0	1	2	N_1	N_2
*0	0	1	2	<i>`1</i>	1
1	0	0	0	0	1
2	0	0	0	1	0

and an arbitrary three-valued function $\phi(x_1, \ldots, x_n)$ become two-valued or inconsistent when any unprovable formula is added to the axioms. (N_2 was not primitive in the original but defined as $KNN\alpha C\alpha N\alpha$.) Thus the system has more possibilities of extension, by new cases of ϕ , than was originally envisaged, but fewer in terms of already axiomatized ϕ .

In the statement of the axioms i, j take values 1 or 2. The rules are detachment and substitution.

1. CCCpqrCCrpCsp2_j. CpN_1N_jp 3_{i,j}. $CN_ipN_1N_jp$ $(i \neq j)$ 4_i. CN_ipCpq 5_i. $CpCN_iqN_iCpq$ 6. CCN_2ppCCN_1ppp 7. $Cx_1'Cx_2'....Cx_n'\phi(x_1, x_2, ..., x_n)'$ $(n \geq 0)$

7 prescribes the writing of 3^n axioms in correspondence with the 3^n lines of the truth-table of ϕ . In each, α' is α or $N_1\alpha$ or $N_2\alpha$ according as α has the value 0,1,2 in the corresponding line of the table.

Received March 11, 1965

We prove two theses, utilizing the fact that 1 is complete for classical C.

 8. CCCprCCqrrCCpsCCqsCCrss [C 8 p/N₂p, q/N₁p, r/p,s/q = C6 - 9
 9. CCN₂pqCCN₁ pqCCpqq

Lemma. If x_1, \ldots, x_m are all the variables in α , then all formulas $Cx'_1 \ldots Cx'_m \alpha'$ are provable.

The proof is by induction on the structure of α . Inferences holding in virtue of implication are referred to as *C*.

Case 1 (basis). α is a variable. Then α is one of x_1, \ldots, x_n and the lemma holds by *C*.

For the remaining cases we make the induction hypothesis that the lemma holds for $\beta, \gamma, \alpha_1, \ldots, \alpha_n$. To show that the lemma holds in Cases 2 and 3 we need only remark that $C\beta'\alpha'$ is a substitution in an axiom, Cpp, or CpCqp, whence the result follows from the induction hypothesis and C.

Case 2. $\alpha = N_j \beta$ 2.1 $\beta = 0$. Then $\beta' = \beta, \alpha' = N_1 \alpha = N_1 N_j \beta$. (Use 2_j). 2.2 $\beta > 0$. Then $\beta' = N_i \beta$; $\alpha' = \alpha = N_i \beta$ or $\alpha' = N_1 \alpha = N_1 N_j \beta$ according as i = j or not. (Use C or $3_{i,j}$). Case 3. $\alpha = C\beta\gamma$ 3.1 $\gamma = 0$. Then $\gamma' = \gamma, \alpha' = \alpha = C\beta\gamma$. (Use C). 3.2 $\beta > 0$. $\beta' = N_i \beta$, $\alpha' = \alpha = C\beta\gamma$. (Use 4_i) 3.3 $\beta = 0, \gamma > 0$. Then $\beta' = \beta, \gamma' = N_i \gamma, \alpha' = N_i \alpha = N_i C\beta\gamma$. (Use 5_i). Case 4. $\alpha = \phi(\alpha_1, \dots, \alpha_n)$ Substitution in 7 gives $C\alpha_1' \dots C\alpha_n' \phi(\alpha_1, \dots, \alpha_n)'$ whence the lemma follows by C and the induction hypothesis.

The lemma is proved.

Theorem I. If α takes the value 0 for all valuations of its variables, then α is provable.

Proof. Representing the formulas of the lemma by $Cx_1^{\dagger}CX_{n-1}^{\dagger}\alpha^{\dagger}$ provable under the hypothesis of the theorem are

$$Cx_1CX'_{n-1}\alpha$$
, $CN_1x_1CX'_{n-1}\alpha$, $CN_2x_1CX'_{n-1}\alpha$,

which by 9 and C give $CX'_{n-1}\alpha$. Eliminating all antecedents in this way we obtain α .

Theorem II. If any unprovable formula in C, N_i , and already axiomatized ϕ is added to the axioms, the system becomes either two-valued or inconsistent.

Proof. We may assume that any such formula α has at least three variables and that in any valuation which rejects it there are variables valued 0,1,2; since for all α , there is a formula β , viz. $C\pi_0CC\pi_1\pi_1CC\pi_2\pi_2\alpha$ in which π_0, π_1, π_2 are not in α , such that β is inferentially equivalent to α , and for every valuation of α there is a valuation of β with $\pi_0/0, \pi_1/1, \pi_2/2$ Let α , then, be $\Psi(p_1, \ldots, p_\ell, q_2, \ldots, q_m, r_1, \ldots, r_n)$ rejected for the

valuations $p_i/0$, $q_j/1$, $r_k/2$. Putting p for all variables valued 2 in this valuation, $N_1 C p \bar{p}$ for those valued 1, C p p for those valued 0, we obtain a thesis

(1) $\Psi^{*}(p)$

and so, by C,

- (2) $CN_2 p \Psi^{*}(p)$.
- By the lemma we have

(3) $CN_2 p N_1 \Psi^{*}(p)$ or $CN_2 p N_2 \Psi^{*}(p)$

hence from (2), (3), 4_i and C,

(4) $CN_2 pq$.

Detaching (4) q/p from 6 gives

(5) CCN_1ppp

which with 1 and 4_1 bases two-valued C, N_1 . N_2 is the constant false functor. As for the ϕ -axioms, if there are any with an N_2 -consequent but without an N_2 -antecedent these evidently give inconsistency via (4). If all without N_2 -antecedents lack an N_2 -consequent they give a complete twovalued definition of ϕ . Those with N_2 -antecedents but without an N_2 -consequent are trivial consequences of (4) and C.

Conclusion. If the range of i,j in the axioms is allowed to be $1, \ldots, m-1$, and 6 is extended to $CCN_{m-1}ppCCN_{m-2}pp\ldots CCN_1ppp$, the system is complete for tautologies in m-values and has m-1 distinct weak negations, such that $N_i \alpha = 0$ when $\alpha = i$ and otherwise $N_i \alpha = 1$. But when m > 3 we lose at once the degree of completeness. In four values we can add the unprovable $CN_3pN_1N_2q$ without becoming m-n valued or inconsistent, unless new constants have been introduced by the ϕ -axioms. For this formula is rejected just if p is valued 3 and q is valued 2.

BIBLIOGRAPHY

- V. Vučković: Rekursivni modeli nekih neklasičnih izkaznih računa (Recursive models of some unclassical propositional calculi). In Serbian. *Filosofija*, v. 4 (1960), 69-84.
- [2] V. Vučković: Recursive models for three-valued propositional calculi with classical implication. Notre Dame Journal of Formal Logic, v. VIII (1967), pp. 148-153.
- B. Sobociński: On the propositional system A of Vučković and its extension.
 I. Notre Dame Journal of Formal Logic, v. 5 (1964), 141-153.

University of Notre Dame, Notre Dame, Indiana