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A THEOREM ON HARTOGS' ALEPHS

BOLES*.AW SOBOCINSKI

If m is a cardinal number which is not finite, we denote by &(m) the
least aleph such that it is not <_m. Such alephs are called Hartogs* alephs.
It is well-known, that in the set theory the following five theorems concern-
ing the properties of N(m):

21. // m is a cardinal number which is not finite, then there exists
K(m).

33. // m = N , i.e., m is an aleph, then tf (m) = ̂ α + J

E. // m and n are cardinal numbers such that n < tf (m), then n < m.

®. // m is a cardinal number which is not finite, then m < m + N(m).

®. // m is a cardinal number which is not finite, then there is no cardi-
nal $ such that m < )p < tf (m).

are provable without the aid of the axiom of choice.

The aim of this note is to show a fact, which as far as I know has not
been noticed, that a formula in some respect analogous to S, viz.:

A // m. is a cardinal number which is not finite, then there is no cardi-
nal $ such that N(m) < £ < m + K(m).

is equivalent to the axiom of choice.

It is obvious that the axiom of choice implies A, since it follows from
the said axiom that an arbitrary cardinal number m which is not finite is an
aleph, say H α . Hence, by S, N (m) = &α + J and, therefore, the consequence
of A is true.

The proof that A implies the axiom of choice requires that the follow-
ing lemma:

L For any cardinal numbers m and n, if m < n and n = rt. , then either
fli is an aleph or m is finite,

is a consequence of A.
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Proof: Assume the conditions of L, viz. that m and n are arbitrary
cardinal numbers and

(1) m < n and (2) rt= n2

If n = 19 then m must be 0 and L is true. If nψ 2, then (2) implies
that n is transfinite cardinal* and, therefore, n is also not finite. Hence,
by ?I, there is N (n). Therefore, (1) and the elementary laws of set theory
give:

(3) » (n) < m + « ( n ) < n + «(n)

The first case of (3), viz. tf (n) = m + N (n), implies that tt(τt) > m,
i.e. that either m is an aleph or m is finite. Thus, for this case L is
proved.

By virtue of A the second case of (3), viz. N(n) < m + N(n) < τt +
N (n), is excluded. Hence, it remains to investigate the third case of (3),
viz.

(4) m+ tf(τt)= τt + K(τt)

The known theorem, which says that:

Tl 7/ m, £> and q are cardinal numbers such that m + £> = m + q, then
there exist cardinal numbers Tt, jô  and q- such that )p = Tl + )θ-;
q = n + q̂ ; m+ jô  = m = m + <\y

and which is provable without the aid of the axiom of choice, allows us to
deduce from (4), that there are cardinal numbers \), a and h such that

(5) n= fe+-α; (6) m = £ + b ; (7) K(π)+ α-Kίn)

Hence, by (5) and (7),

(8) α < n and (9) α < t f ( n )

and, therefore, we can conclude from (8) and (9) that

(10) either α is an aleph <_τt or a is a finite cardinal < tt.

Since, by (2), n is a transfinite cardinal, both cases of (10) show that
n = rt + α, which by virtue of (5) gives

(11) n+ α= fc + α

If α is finite, then by virtue of the known theorem, which says that:

T2. For any cardinal numbers Tt, )ρ and q, if Tt is finite and $ + Tt =
q + Tt, then )p = • q.

and which is provable without the aid of the axiom of choice, it follows
from (11) that n = )p. Hence, by (6), m = n + b > n which contradicts (1).
Therefore, the second case of (10), i.e. that α is a finite cardinal <̂  Tt, is
impossible and, therefore, we can establish that:
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(12) α is an aleph < Π

Since we have (2), (5) and (12), the following deduction yields:

]o+ α = n = n 2 = (£ + α) 2 = \>2 + 2£α + α 2 > £>α = £>(2 + α) = )p + )oα> £> + α

which gives at once:

(13) £ + α = Joα

Since, by (12), α is an aleph, the formula (13), as is well-known,6

implies without the aid of the axiom of choice that

(14) either $ > a or a > $

But, the first case of (14) is impossible, since if α is an aleph and
]0 > α, then )p = )β + α. 7 Hence, by (5), n = )p and, therefore, by (6), m =
n + b > n which contradicts (1). Therefore, the second case of (14) yields,
viz. that α> ]θ, which, by (12), shows that

(15) α = £ + α

Hence, due to (15), (5) and (1) we obtain α = )o + α = n > m which, by
(12), shows that

either m z\s β?2 aleph or m zs finite.

Thus, lemma L follows from A.
It is easy to prove that L in turn implies the axiom of choice. For this

end assume that m is an arbitrary cardinal number which is not finite, and
put n = tf om. Hence

(16) n is not finite; (17) n = ^ o m = 2«0m = 2n; (18) 2 n = 2 2 n = ( 2 n ) 2

Since the formula n < 2 n is generally true, an application of it, (18)
and (16) to L gives at once: n is an aleph. Therefore, since n = tfom > m?
our arbitrary cardinal number m which is not finite must be an aleph too.
Hence, formula L implies the axiom of choice.

Thus, it was proved that each of the formulas A and L is equivalent
to the axiom of choice. Concerning theorem A it is worth while to note
that Sierpirίski has proved without the use of the axiom of choice the fol-
lowing theorem:

T§. For any cardinal number m which is not finite, the difference

[m 4- &(™)] - ;N (m) does not exist.

In the first glance it appears that formula ^ is stronger than A. In
fact, it is just the opposite.

NOTES

1. In [ l], Hartogs proved 21, S and S. Theorems 35 and S are due to Tarski.

Cf. [2], p. 311, [7], pp. 28-30, and [3], pp. 407-409 and 413-414.
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2. The proofs which are given below are established within the general
set theory, i.e. the set theory from which the axiom of choice and all
its consequences otherwise improvable have been removed. It is well-
known that if we base a so defined general set theory on an axiomatic
system in which the notions of cardinal and ordinal numbers cannot be
defined, we have to introduce these concepts into the system by means
of special axioms.

3. I.e. that π >'a 0.

4. This theorem was announced without proof by Tarski in [2], p. 301,
theorem 6 Sierpiiίski gave a proof in [4], p. 116. Cf. also [3], p. 161.

5. This theorem is due to Sierpinski, cf. [3], p. 168, corollary.

6. C/., e.g., [6], p. 148, lemme 1.

7. C/., e.g., [3], p. 413.

8. C/., [5], p. 8. Concerning the definition of the difference of two cardi-
nal numbers, cf. [2], p. 306, position 47, and [3], p. 159.
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