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ADDENDUM TO MY ARTICLE

"PROOF OF SOME THEOREMS ON RECURSIVELY

ENUMERABLE SETS*

TH. SKOLEM

In the mentioned previous paper I proved the theorem that every re-
cursively enumerable set could already be enumerated by a lower elementary
function (see Df. 1 on p. 65 in [3]). On pp. 71-72 in the same paper I gave
a hint of another possible proof of this statement. I have found later a ver-
sion of this second proof which is particularly simple and which I should
like to present here.

It follows from a result of E. L. Post that it will be sufficient to prove
that every canonical set in a normal system (see [ l ] , p. 287 and [2], p. 170)
can be lower elementary enumerated. This can be done as follows. In a
normal language we are dealing with strings of the two symbols 1 and b.
One axiom is given, say the string γ. Further there are say m rules of pro-
duction of the form

σi,ra^aσ2,r> r = ]> >m

where Oί is an arbitrary string, the σχ r, σ2 f given strings. To any string β
with n symbols we now let correspond the integer

Po° PS' P n n >

where €γ - 1 or 2 according as the r symbol in β is 1 or b, with pQ, p^,
p2, . . . being the sequence of natural primes. Obviously this yields a one
to one correspondence g between the strings and the subset of the natural
numbers consisting of the cubefree integers.

Let a correspond to the axiom γ. Further let us consider a production
rule

σχ a -> a σ2 ,

while aγ and a2 correspond to σx and σ2 respectively, say

Ί-PΪPΪ- PΪ- <*~PΪPΪ...P?
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Then the x corresponding to σx αwill for any a possess the form

x = a^, where z = p J*1. . . pn

 n corresponds to a .

Further, the y corresponding toασ 2 will be

y = uv ,

where

« = ̂  Pile-, . " = ? l l c Pn-c+d •

Now u is a lower elementary function of z. Indeed n is such a function
of z, because n-c is the number of different primefactors of z and c a given
constant. The number of different primefactors of z is namely

z

X U ) = Σ ) ( ί - P ( r ) ) d ( r , z ) ,

where P(r) is the l.el. function which is 0 or 1 according as r is a prime
or not, while d(r,s) is 1 or 0 according as r divides s or not (see the pre-
vious paper p. 67). Then it is seen that

z z n

u=Σs{l- Σ ι ( s , ί ) ) ( ί - Σ δ(e(s, r-c- l),e(z, r))) .
s=o t—n—c r=c+ι

Further f is obviously a l.el. function of rc and therefore of z. Finally

z - — . Thus y is a lower elementary function of x.

To each of the m rules of production

σ ι r a = α σ 2 r

we obtain in this way a lower elementary function / such that y = I (x) cor-
responds totfer r as often as x corresponds to σ1 f0i. Then it is clear that
the set S of numbers corresponding to the set of strings generated from γ by
use of the production rules will consist of α and the numbers we get by re-
peated insertions of already obtained numbers into the functions lf, that is

a, Zt ( β ) , . . . , l m {a), ljχ (a), /1Z1 (a),..., IJX (a), / , / , ( « ) , . . . , l j t ( « ) , ! . . .

However, this set S will be just the values of the following function φ:

m

φ(0)= a,' φ(n+ 2)=Σz rtyΓi|)δ(rm(«+ 1, m\ r) ,

where rm (x, ra) is the least positive remainder of x divided by m. This is a
recursive definition of φ of the kind considered in Theorem 1 in my pre-
vious paper. Thus according to this theorem the set S can be enumerated
by some lower elementary function.
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Lemma. The intersection of two l.el. enumerable sets Sλ and S2 is l.el.
enumerable if it is not empty.

Proof: Let Sx and S2 be the set of values of the l.el. functions f1 (t) and
f2(t) respectively and let c belong to St π S2 so that for certain cχ an[d ca

fι(cί)^f1(c1) = c.

Then the l.el. function

g <*, y) = ίx (*) δ (/, (*), ft (y)) + c 8 (/t (*), /, (y))

takes the value fx(x) for every x, y such that /x(x) = f2 (y) and otherwise

the value c. Therefore it is clear that g(t}(z), r^'(z)) which is a l.el.
function of z takes for z = 0, 2, 2, . . . successively all the values of ft(x)
which are also values of /2 (y).

Now let q (n) be the n squarefree number, that is an integer not di-
visible by the square of any number > 1. It is seen at once that the l.el.
function

α

κ(a) = Σd((r+ 2)\ α)

is 0 or > 0 according as α is squarefree or not. Since every prime is square-
free, we have

q W ^ P n < ( « + D 2 , (l.cp. 67)

whence
(*+i)a /r-i \

q(n)= Σ r ( ί - / c ( r ) ) δ ( Σ ( l-κ(s ) )» 72 - I 1

so that q (ή) is l.el. Since both S and the set K of squarefree numbers are
l.el. enum., we have according to the lemma that S π K is l.el. enum., if
it is not empty. Now according to Post every recursively enumerable set
of integers may be obtained as the integers represented by the strings, of
symbols 1 only, existing in one of the diverse normal languages. The in-
tegers corresponding by ^ to these strings are just the elements of S Π K
when 5" by ^ corresponds to the strings altogether in the normal system.
The elements of S Π K are the diverse values of the l.el. function ψ(t) say.
Now if N corresponds to the string with n symbols 2, n is the number of
different primes dividing N, that is

n = X(N).

Since the integers N are the diverse values ofψ(t), we obtain, putting

n=Xψ(t) ,

al l n represented by the s t r ings built up of s y m b o l s 1 on ly in our arbitrarily

c h o s e n normal s y s t e m by putt ing s u c c e s s i v e l y t = 0, 2, 2, . . . . i n t o the
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Lei. function Xψ(t). Thus we have got a second proof of our theorem,
that every recursively enumerable set is already lower elementary enumer-
able.
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