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ON THE CONNECTION OF THE FIRST-ORDER FUNCTIONAL CALCULUS
WITH &, PROPOSITIONAL CALCULUS

JULIUSZ REICHBACH

A simply conclusion from papers [2]-[5] is that for each formula E we
may construct a n(E)-valued propositional calculus such that if E is not a
thesis, then E is false in this calculus by a finite interpretation of the
quantifiers; by means of a simply extending of the n(E) valued calculus to
8, propositional calculus we may prove in one the converse theorem. This
method we have used in [5] and have proved that it is possible to approxi-
mate the first-order functional calculus by many valued propositional
calculi.

An interest approximation of the first-order functional calculus by 8,
propositional calculus follows from [3] and [4]. We obtain it by means of
constructing of a correspondence between atomic formulas and sequences
of numbers 0 and 1 such that:

1. If the atomic formula is of =2 arguments, then the correspondents se-
quence is periodic/we shall give the period/.

2. The difference in this correspondence is in general on atomic formulas
of one argument whose we must consider an infinite number.

3. For some formulas, e.g. Za, Za, lla;... MayF where F is quantifier and
individual variable—-free, monadic formulas, ..., the 8, calculus may be
replaced by suitable n- or 2-valued propositional calculus; one follows
from a general theorem.

We shall use the notation of all mentioned papers and in particular:

(1) wvariables: (1° individual: x,, x,,... /or simply x/, (2°) apparent:
a,, ay,... /or simply a/,
(2) finite numbers of functional variables: fi,...,f;,f5,..., /5, .., 1,
. f7/f! of m-arguments, m =1,...,tandi=1,...q/
(3) logical constants: (negation), + (alternative), II(general quantifier),
(4) atomic expression: R, R,, R,, . ..; expressions: E, F, G, E,, F,,
G,...!

1. Expressions and formulas we define in the usual way; the expression in which an ap-
parent variable a belong to the scope of two quantifiers Ila is not a formula; if a does
not occur in E, then IIaE is not a formula.
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{sm} - the sequence s,,..., Su; {si, } - the sequence s; ,..., Sipms
w(E) - the number of different individual /p(E) - apparent/ variables
occurring in the expression E,

{iwee)} or {jwe)} - indices of all different variables occurring in the
expression E,

n(E) = max {W(E) ';',p(E)’ {i;w(E)} }s

E(u/z) - the expression resulting from E by substitution of » for each
occurrence of z in E /with knowing conditions/,

C(E) - the set of all significant parts of the formula E: HeC(E). =.2
H=E* or there exist F, G, H, such thatt (H=F) v (E=F') v
{(H=F)v H=G)n(E=F +G) v (3i){H =H;(x,'/a)} A (E=TaH, )
Of course, each significant part of the formula E is a formula.

Skt - the set of all formulas of the form Za,... Za; Ma;y,. .. Da,F®
where F is quantifierless expression containing no free variables,
Ma; is the sign of the wuniversal quantifier binding «; and
ZaiG = (Ia;jG")',j=1,...,k

S({im}) - the set of all atomic formulas R such that all indices of in-
dividual variables occurring in R belong to {i,},

M, M;, M, ... .- functions of allatomic formulas with values 0 and I;
T, Ty, T,,... - functions on S(1,..., k), for given k2, with values 0
and I/such functions we shall name ‘‘satisfiability functions of the
rank k£’’ or simply: functions of the rank &, if & is finite/; (A1} -the set
which has only one element M,

(K) - for every K; (31K) - there exists K such that; ({s,}) - for each
{Sm}; (3 {sm}) - there exists {s,} such that;

Z(F) =0, if F is a quantifierless formula,

Z (F + G) = max {Z(F), Z(G)},

T (laF) = {F(x/a)}, where x does not occur in F,

Z (TaF) =w(F) + 1, if = {F(x/a)} = C*

Z (ZaF) = Z{F(x/a)}, if x does not occur in F and Z{F(x/a)} #0.

K F is not defined above. then Z(F) = max{Z (G)}, for each GeC(E),

where if G = IaH, then Z(G) = w(H) + 1, Z(F') = T(F), Z(F+G) =
max {Z(F), 2(G)}.

(1°)
(2°)
(3
(#)

(16)

For example:

If EeSks and E = Za,...Za; Naja ... HaF, for some F, then Z(E) = i.
¥ E = {afy (@, %5, ..., %) +ff (%1, ., %0)), then 2(E) = m.

Z(E) =w(E) + p(E) =n(E). '

Z(E)=0 . =. E is an alternative of formulas of the form Ila,... g, F
where F is quantifier-free

Wy, Vy,... ~-numbers 0 and 1.

2. Dots separated more strongly than parentheses.

w

. It is Skolem’s normal form for theses.

4, We note’ that if = {F(x/a)}= 0, then Z{F(x;/a)}= 0, for eachi. In exactly given cases
Z(E) may be less than defined above.
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The formal proof E,,..,, E, of the formula E we define in the usual
way, see [3], [4], but to the proof of given theorems we also must assume
that for each i=1,..,m, E; is an alternative of significant parts of the

formula E and T(Ej) =... = Z(E,) = Z(E); the number m we name the length
of the formal proof. The thesis is the last element of a formal proof.
Of course:

L.0. If the length of a formal proof of E is m, then the length of some
formal proof of E(x/y) also is m.

L.1. For each formula E may be written a formula FeSk{ such that E is a
thesis if and only if F is a thesis and E' + F is a thesis/it is possible
to replace the assumption FeSki by: F is an alternative of formulas
belonging to Skt of the form Za;...Zay,-, Na, H where H is quanti-
fier-free/.

L.1. asserts the existence of Skolem’s normal form, [1], for theses.

In the following we shall interpret the signs ' and + as Boolean opera-
tions 71/complemention/ and + /addition/ respectively; therefore IT is in-
terpreted as an infinite Boolean multiplication. By this interpretation we
have extended the function M, see (13), on all formulas and therefore we
shall use the symbol M(E) for an arbitrary E.

It is known:

T.1. A formula E is a thesis if and only if for each M we have M(E) = 1.

Let M/s,,...,si/ be a function on S(I,...,2) such that for an arbi-
trary ReS(1,..,k) we have:

M/sy,. .. 54/ (R) = M{R(%s /%,). . (x5 /%) }.

Of course:

L2, Hi,..oyim =k, then:
M/SyyooySk/ /iy oyim/ = M/Si y .., Sipy /e

L.3. ¥ T,, T, are functions of the rank % and 7,,...,7; Vi41,...,%j)
Yit1s.++,¥m (m =k) is a sequence of different natural numbers =<4#,
then if T,/7,,...,7;/ =Ty/71,...,7;/, then there exists afunction
T° of the rank % such that:
TYV1senes iy Vigrseens ¥/ = TUViyeeey Viy Vigys e, 7/,
T°/1’1,..., Viy Vi.'.l,... P 7’”;/ = Tg/’rl,..., Vis 1’1'_'_1,..., 1’,,,/.

D.1. MeQg . =. for an arbitrary s,,..., s, Si,...,s}:
I M/syy...,Se/-= M/s},...,s}/, thens, =s},...,s; =s}.
Me@Q asserts that functions of the form M/s,, ..., s,/ are different;

examples may be easily given. It is clear that if MeR,, then MeRy ,
k=1,2,...

5. If M is defined. We may replace here 1,...,kby ¢, ,...,%,pR) -
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By an extension of a function M; we mean a function M which is equal
to M, on all formulas for which M, is defined.

L.4. Each function M, may be extended to MeR,/ therefore MeRy,

k=1,2,.../,
Proof: Let
(O) (xl "xa);a Cxl ;xa); (xz ,xa), e
be the sequence of all pairs of different individual variables and g}, g1,...,
g{f,, » ... an infinite sequence of functional variables of one argument which

do not occur in formulas for which M, is defined.

- Now, we assume that we consider all formulas which are built from
fi,...,ﬁ;,...,fl',...,f‘é and also from gi,&;,...,&,,... in the way
given above.

Let M(R) = M, (R), if M,(R) is defined and:

(10) if Ml/l/ = M1/2/: then M{gi(xl)} =1 and M{gi(x\;)} = 01 i =29 3’ s
(2°) if (x;, x;) is the m-th pair of the sequence (0), M,/i/ = M,/j/, then
M{g, (x;)} = 1 and M{g}, (x;)} = 0, for i # j.

Of course MeR, and M is an extension of M, .

Another extension of M, to function MeR, may be obtained from [2].

In the sequel we shall write M/{s;} instead of M/s,, ..., sp/; M/{s; }
instead of M/s;,,...,$;, /. '

D.2. TeM[R]. =. (3 {sp )(T = M/{sp}).

M[#] is the set of all functions of the form M/ {s;}.
We note that if M is defined as in the proof of L.4. then M[%] has the
following property:
(I) There exists only a finite number =27 tunctions belonging to M[%]
which differ on atomic formulas of =2 arguments and:

(1°) for each m and TeM[k] we have T{ga(x:)}=0, i=1,...,k or there
exists i<k such that T{g;, (x;)}=1 and T{g}, (x))} =0, for j#i and j k.
(2°) for each m there exist TeM[%] and i < % such that T{g}, (x,)} = 1.

By a modification of the proof of L.4. the reader may obtain other
properties of the considered M[%].

We shall also consider a Boolean algebra whose elements are infinite
sequences of numbers 0 and I and operations ' (complemention) and + (ad-
dition); the Boolean algebra determines an 8,-valued propositional calculus.

Let %2 be a natural number and @ a function of atomic formulas
ReS(1,...,k) whose values are infinite sequences of numbers 0 and I, such
a function @ we shall name a sequence function of the rank %2, and we shall
write briefly Q(%). :

The function Q(%) gives a table of infinite sequences of numbers, we
name it also @:
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Riyeoey Riyoouy, Ry - all elements of the set S(1,...,k).

0 eoWii ooe Wy Wi
2 1 coeWsz; o0e Way Wai
BE RS o) -
j 0 oooWji «o. Win wj;

Each line jof @ determines a function T;Q of the rank % such that T)(R;)
=wj, wherei=1,...,uandj=1,2,...

If we consider T;(Q) on S({jx}), then we shall say that we consider the
segment {j, } of the line j of Q.

D.3. Q =Q/ti,....ts/ . =.GTi(Q) = T(Q)/tr,y...,ta/ }°.
DA, Q/T,{im}.=. ANAUTHQ)/Hin}t = THin}).

Q/T, {im} asserts that T/{i,} is a segment of some line of Q in the
meaning of homomorphism; in this case we shall say briefly: T/{in} is a
segment of some line of Q.

D5 Q/Q°.=.(3)(ARNINT) {im DI =2 2m) 2 Q(j) & Q(R) A
(i1y v esbm <R)A(T°=T/1,...k/)—(Q/T{in}.=.Q/TS{in D}".

Q/Q° asserts that the relation Q/T, {i.} is invariant for each T, T°,

{im}(m =E) such that T° = T/1,...,k/.

D.6. @~ M[r].=.(T){TeM[r]. =. (35)(T = T{(Q))} .

D.6. asserts that M[%] is the set of all functions defined by lines of Q.
It is easy to show:

L.5. ¥ Q/T, {in}tand{ij} c fin}, i =m, then @/T, {i;} .
L6. EQ°(R),Q=Q%1,...,k, R/, then Q/Q°.
L.7. If M is a satisfiability function and @ ~ M[%], then {'1\71}/Q.

L.8. K M is a satisfiability function defined on formulas in which occur
only a finite number of functional variables, see(2), and @ ~M [#], then
there exists a function T of the rank <k2‘1‘k such that @ ~ T[%] and
{T}/Q (T is a segment of M).®

D.7. Q{r,k} .= . (r =) A QB A {im+D)(T){m<#) A (i1yenv,imy1 are
different numbers <) A Q/T, {im} A Q/T, i p 1= (ITNQ/T1, {tm 41}
A {ddn}t climah) 2 /T, {jnt = (T int =THin DD}

6. T;(Q") is the function defined by the line j of @° the meaning of D.3. is simply.

7. K for each line j of @ and each permutation ¢, ,...,# of numbers <k T;(Q)/{¢;}also
is a line of @, then {j, } may be replaced by {i, }.

8. We understand the word ““segment’’ in the meaning of homomorphism.
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Q{r, k} asserts that for each {in+1} of different number, m <r» = &
and all T of the rank %, if T/{i»} and T/%,, 4, are segments of some lines of
Q@ then there exists T, of the rank 2 such that T,/{i,+}isa segment of
some line of @ T,/{i,} = T/{im} and for each {j,_;} C {im}
if T/{m-1}» im+1 iS a segment of some line of @, then T)/{jim-1}, i pm41=
T/{‘jlm-l}o i,,, +1e

In other words, @ {7, %} asserts that for each {7, ,,} of different num-
bers B, m < v =<k, if {im } and i, 4+, are segments of some lines of @, then
there exists a line in such that {i, ;} is a segment of line » of @ and for
each {j,} C {imp}if {jm} is a segment of some line s, of @ for each {jin}
we only choose one s, and if every two of these segments of lines s, are
equal on equal sequences of numbers included in {j,}, then T,(Q)/{jn} =

Tsw (Q)/{jm}

L.9. I Q{r,k}, then:
({Em+ (D) {(m <7¥) A (i,,..., im are different numbers <&k) » Q/T,
{:,iim} AMQYT, tpm+, — (3T (T, {:iim al A (Ws DGy o0 s Js
are different numbers =< &) a Q/T, {js} — (Ty/{js} =T/{jisDD}.

This lemma follows from D.7. by using many times of L.3; we note that
if in D.7. or L.9. we have Q/T, {in+}, then T, = T.
Of course:

L.10. T MeR, and @ ~ M/[], then for each » = % we have @ {7, k}.

L.11. If M is a satisfiability function defined only on atomic formulas of one
argument and @ ~ M|[%], then for each » < & we have Ql[{r, %}.

L.12. & @ ~ M[k], then;

1. ¥ T is a function of the rank %, 4,j =< %, Q/T, i, /T, j then there
exists T, of the rank % such that’ Q/T,, 4, j and: T,/I,...,i-1,
i+1,...,k/=T/1,...,i-1,i+1,...,k, T\ /1,...,5-1, j+1,..., k/ -
T/1,...,5-1,§+1,...,k/. '

2. If 2 =2, then Q1{2, %}.

L.13. ¥.Q°{r,k}and @ = Q°/1,...,k, R/, then Q{r, k+1}.
D.8. T,Q/Ty, limt;i. = (T/fin}=T/tin}) » /T, {in}, i
D.9. HeA(E).=. (3{F})(E=Fi+...+Fi+H+F;+...+F)) a (F)(G)(HAF+G).

The meaning of D.8. and D.9. are clear.

Let V be the functional defined for an arbitrary function of the rank 2,
for each Q(%) and for an arbitrary formula E whose indices of individual
variables occurring in it are = k&, in the following way:

(ld) V{TyQ’ﬁjfmv(fo'--;xf'mv)} =1.8, T{f?(xrp--;x’m)} =1,

(2d) {T,Q, F'}=1.=.~V{T,Q, F} =1.=. V{T,Q, F} =0,

(3d) Y{T,Q, F+Gt =1.=. V{T,Q,F} =1 v V{T,Q,G} = 1,

(4d) V{T,Q,MaE}=1.52. () (T){ (¢ <) A T, / T, iwr) }5¢ — VT, Q, F(x:/a)}= 1}

9. If Q/T,%,j, then we assume T=T,. It may be proved the other properties of
Q~ Mlr].
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D.10. EePQ .=.(T){(B)({He A(E)} = Q/T, {twa)}) — VIT,Q,E} = 1}.
D.11. Ee P{r, B} .=. (Q){@{r,k} — (EeP(Q))} .
D.12.EeP.=, EeP{Z(E), n(E)}.

We explain the meaning of ones:

1. V{T, @, E} = 1 may be read: T satisfy E relatively to Q.

2. If M is a satisfiability function and @ ~ M[%], then T(Q) are segments of
M, the number 7 in (4d) is a name of an arbitrary individual variable and
in D.10 - D.12. we assume that we only consider segments of M‘; in D12,
we associate to each formula a pair of numbers.

3. Obviously, if E is quantifier-free, then: EeP . =. E is true.

L.14. Let E° results from E by replacing individual variables with indices
iy ,...,0uwE) correspondingly by individual variables j,,..., fuE ,
w(E) =w(E?)" and T/{iyE) } = T/ {jweEe)}. Then: V{(T,Q,E}=1.%=.
vi{T°, @, E°} =1

L.15. Let 2 = n(E), @(%), @/Q° and T® = T/1,...,k/; then: V{T,Q,E} =
1.= v{T° @° E} =1.

The proofs of L.14. and L.15. are inductive on the length of the formula
E and are analogic to the proofs of L.12. and L.14. respectively from [2].

L.16. It EcP{r, 2} and 2= ky, then EcP{r,ko}.
L.16. follows from the definitions, L.6, L.13. and L.15, see [3], [5].

T.2. I EeSkt, FeC(E), M{E} =0, @ ~ Ml[E], then: ]
(1) I M/{siyp}= T/{iwm}and M{F({s;,) D} = 0, then V{T, @, F}=0
(2) EeP(Q), EEP{2, k).
(38) If MeR, , then E€P.

Proof: First of all we notice that (2) follows from the assumptions, (1)
and L.12; however (3) follows from (2) and L.10.

The proof of (1) is inductive on the number of quantifiers occurring in
F and is analogous to 7.2. of [3].

T.3. I E is a thesis, then Ee P{ 3(E), &}, for each k= n(E).

The proof of T.3. is inductive on the length of the formalized proof of
the formula E; we use here L.0, L.2, L.3, L.5, L.9, L.14, L.16. and defini-
tions; the whole proof is analogous to the proof of 7.3. from [3].

T.4. A formula E is a thesis if and only if E'e P,
T.4. follows from T.I1-3, L.1, L.7, and L.15., see [3]. It is easy to see:

1. T.4. remains true if we shall only consider Q(%) with property (), p...,
where M[Z] is replaced by the set of all T,{QD and k2 =n(E); therefore @
has properties given on p. 73.

10. Then E results from E° by an inverse substitution.
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If EeSkt and E = Za,...Za; 1 @;+,...HapF, then E is a thesis if and
only if EeP {k,i}.

The classes P{1,%} and P{2,%} are decidable, & = 1, 2,... (follows from
L.12, T.3. and T.4.).

The monadic first-order functional calculus is decidable (follows from

L.11, T.3. and T.4.)}

From L.8. and L.I5. it also follows that in T4. we may assume that @

has only one line whose rank is = laZ‘i‘kt, where % =n(E).

The above consideration describes a method of decidabling of arbitrary

formulas; the examples we shall give in [6].

(]
[2]
(3]
[4]

(5]

(6]
[7]
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