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ON THE CONNECTION OF THE FIRST-ORDER FUNCTIONAL CALCULUS
WITH Ko PROPOSITIONAL CALCULUS

JULIUSZ REICHBACH

A simply conclusion from papers [2]-[δ] is that for each formula E we
may construct a n(£)-valued propositional calculus such that if E is not a
thesis, then E is false in this calculus by a finite interpretation of the
quantifiers; by means of a simply extending of the n(E) valued calculus to
tf o propositional calculus we may prove in one the converse theorem. This
method we have used in [5] and have proved that it is possible to approxi-
mate the first-order functional calculus by many valued propositional
calculi.

An interest approximation of the first-order functional calculus by X 0

propositional calculus follows from [3] and [4], We obtain it by means of
constructing of a correspondence between atomic formulas and sequences
of numbers 0 and 1 such that:

1. If the atomic formula is of — 2 arguments, then the correspondents se-
quence is periodic/we shall give the period/.

2. The difference in this correspondence is in general on atomic formulas
of one argument whose we must consider an infinite number.

3. For some formulas, e.g. Σax Σa2 Ua3.. . Ito&F where F is quantifier and
individual variable—free, monadic formulas, . . . , the No calculus may be
replaced by suitable n- or 2-valued propositional calculus; one follows
from a general theorem.

We shall use the notation of all mentioned papers and in particular:
(1) variables: (1°) individual: xl9 x29. . /or simply x/9 (2°) apparent:

ax, a2,. . . /or simply a/,
(2) finite numbers of functional variables: /}, . . . ,f\,f\,... , / | , .. .,/ί ,

• 5 f\ / f™ oί m-arguments, m = 1,.. ., t and i = _?,. .. q/
(3) logical constants: (negation), + (alternative), Π(general quantifier),
(4) atomic expression: R, Rx, R2, . . . expressions: E, F, G, Ex, Fx,

1. Expressions and formulas we define in the usual way; the expression in which an ap-
parent variable a belong to the scope of two quantifiers Πα is not a formula; if a does
not occur in E, then UaE is not a formula.
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(5) {sm } - the sequence sl9..., sm {sim } - the sequence s ^ , . . . , s//w,
(6) w(F) - the number of different individual /p(E) - apparent/ variables

occurring in the expression F,

(7) {\i\w(E)} or {j\w(E)} - indices of all different variables occurring in the
expression F,

(8) n(E) = max {w(E) +p(E), {i^{E)} },
(9) E(u/z) - the expression resulting from E by substitution of u for each

occurrence of z in E /with knowing conditions/,
(10) C(E) - the set of all significant parts of the formula E: HeC(E).= *

# = F* or there exist F, G, Hι such that: (H = F) v (E = F f) v
{(# = F) v (j£Γ = G)}|Λ (E=F +G) v (3i) {H = #x(^-/β)} Λ (E = Π α ^ )
Of course, each significant part of the formula E is a formula.

(11) S&£ - the set of all formulas of the form Σ α 1 # . . Σ<zt Π α ί + 1 . . . TlakF3,
where F is quantifier less expression containing no free variables,
Uaij is the sign of the universal quantifier binding α ; and

(12) S{{im}) - the set of all atomic formulas R such that all indices of in-
dividual variables occurring in R belong to \ίm} ,

(13) M, Mi, M 2 , . . . .- functions of all atomic formulas with values 0 and I;
T> T1, Γ 2 , . . . - functions on S(2, . . . , k)9 for given k, with values 0
and I /such functions we shall name "satisfiability functions of the
rank k" or simply: functions of the rank k, if k is finite/; {M}-the set
which has only one element M,

(14) (fC) - for every K\ (IK) - there exists K such that; ({sm}) - for each
{s\m }; (;3 {Sfo }) - there exists {sm } such that;

(15) Σ (IF) = 0, ft'F is a quantifierless formula,
Σ (IF ̂  G) = max {Σ (F), Σ (G) 1,
Σ (ΠαF) = Σ §F(x/\a)}, where x does not occur in F,
Σ (ΣIΛJP) = zc (F) + i , if Σ {^(AT/^)} = C4

Σ (ΣβF) = Σ {F(x/a)}, ίix does not occur in F and Σ{F(Λr/α)} ί 0.
n F is not defined above, then Σ(F) = max{Σ (G)}, for each GeC{E),

where if G = Π«F, then Σ(G) = w(H) + 2, Σ(F f) = Σ(F), Σ (F + G) =
max{Σ(F),Σ(G)}.

For example:

(1°) U EeSks and E = Σaλ.. .Σά t IΓ« ί + 1 . . . Πα^F, for some F, then Σ(F) = ί.
(2°) If F = {Πlα/Γ (^,^ 2 , . . . , ^ ) +/f ( ^ , . . . , Xr)r , then Σ(F) = m.
(3°) Σ(F) <^(F) + p{E) ^n(E).
(4°) Σ(F) =(9 . =. E is an alternative of formulas of the form Tla^... Tiaw F

where F is quantifier-free
(16) wt, υx,... -numbers 0 and 2.

2. Dots separated more strongly than parentheses.
3. It is Skolem's normal form for theses.
4. We note that if Σ {F(x/a)} = 0, then Σ{F(#t /α)} = 0, for each i. In exactly given cases

Σ(E) may be less than defined above.
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The formal proof Ex,..,, Em of the formula E we define in the usual
way, see [3], [4], but to the proof of given theorems we also must assume
that for each i = 19. . ,ra, Ei is an alternative of significant parts of the
formula E and Σ(Eϊ) = . . . = Σ(Em) = Σ(E); the number m we name the length
of the formal proof. The thesis is the last element of a formal proof.

Of course:

L.O. If the length of a formal proof of E is m, then the length of some
formal proof of E(x/y) also is m.

L.I. For each formula E may be written a formula FeSkt such that E is a
thesis if and only if F is a thesis and E* + F is a thesis/it is possible
to replace the assumption FeSkt by: F is an alternative of formulas
belonging to Skt of the f o r m Σ α l t . . Σα, w r l Iiam H where His quanti-
fier-free/.

L.I. asserts the existence of Skolem's normal form, [l], for theses.
In the following we shall interpret the signs f and + as Boolean opera-

tions Ί/complemention/ and 4- /addition/ respectively; therefore Π is in-
terpreted as an infinite Boolean multiplication. By this interpretation we
have extended the function M, see (13), on all formulas and therefore we
shall use the symbol M(E) for an arbitrary E.

It is known:

T.I. A formula E is a thesis if and only if for each Mwe have M(E)= I.

Let M/s1,..., Sk/ be a function on S(l9..., k) such that for an arbi-
trary ReS(l9.., k) we have:

M/s, 9...9sk/(R)= M,{R(x*/Xi). (Xfi/Xh) }5

Of course:

L.2. If iΛ,..., ίm ^ k, then:

M/s1,..., SkZ/it ,...,im/ = M/siι,..., sim / .

L.3. If Tl9 T2 are functions of the rank k and rl9... , r f r , + 1 , . . . , r ; j,
*7+i > > r»/ (m ^k) is a sequence of different natural numbers ^ ̂
then if T^/r^,..., r, / = T2/rl9..., r, /, then there exists afunction
T° of the rank k such that:

Γo/r!,..., γx, ri+1 , . . . , Tj/ = Γj/ri,..., γif r i + 1 , . . . , r; / ,

T ° / r i , . . . , r f , r ; + ! , . . . , r » / = T2/YI,..., ri9 rj+19...9 γm/.

D.I. MeQk . = . for an arbitrary s x , . . ., sk, s i , . . . , sι

k;

If M/s1,.. ., Sk/' = M/s\,..., 4 / , then s x = s \ , . . . , sk = s\->
MeQk asserts that functions of the form M/sγ,.. ., sk/ are different;

examples may be easily given. It is clear that if MeRl9 then MeR^ ,
k = l,29...

5. If M is defined. We may replace here I , . . . , k by i1 , . . . , IW(R)
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By an extension of a function M1 we mean a function M which is equal
to Mx on all formulas for which M1 is defined.

LA. Each function Mx may be extended to MeR1/ therefore MeR^,
k = l,2,.../9

Proof: Let

(0) (*i,fo\ (*ifXa), (*2 Λ )>

be the sequence of all pairs of different individual variables andg*{, g\,...,
g^m\,... an infinite sequence of functional variables of one argument which
do not occur in formulas for which Mx is defined.

Now, we assume that we consider all formulas which are built from
/}, . . ^ , . . . , / ί , . . . , / ^ and also from g\, gλ

2,... 9g
ι

m , . . . in the way
given above.

Let M{R) = M1(R), if Mλ(R) is defined and:

(1°) if Mjϊ/ = Mj2/, then M{gUxi)} = 1 and M{^i(^)} = 0, i =2,3,...
(2°) if (%i, Xj) is the m-th pair of the sequence (0), M1/ϊ/ = Mι/j/, then

M{gl (xd} =1 and M{^(*y)} =0, for i ί j .

Of course MeR^ and M is an extension of M1.
Another extension of Mx to function MeR1 may be obtained from [2 ].
In the sequel we shall write M/{sk} instead of M/sx,.. ., s&/; M/'{sιm }

instead of M/sιil,..., sim /.

D.2. TeMtit]- = (.3{^"})(T=ftf/{s>}).

M[>] is the set of all functions of the form M/ {sk}.
We note that if M is defined as in the proof of LA. then M[k] has the

following property:
(1) There exists only a finite number <2qtk functions belonging toM[&]

which differ on atomic formulas of —2 arguments and:

(1°) for each m and TeM[k] we have T{gw(xϊ)} = 0, i = 1,... ,k or there
exists i^k such that T { ^ (#*)}= 1 and T { ^ (xj)} =0, for j ^ z and .; <^.

(2°) for each m there exist TeMffe] and i ^k such that T{g\n{xί)} = I .

By a modification of the proof of LA. the reader may obtain other
properties of the considered M[k].

We shall also consider a Boolean algebra whose elements are infinite
sequences of numbers 0 and 1 and operations Ί (complemention) and -i- (ad-
dition); the Boolean algebra determines a n ^ 0 " v a l u e < ^ propositional calculus.

Let H e a natural number and Q a function of atomic formulas
Re\S(l,... ,k) whose values are infinite sequences of numbers 0 and 1, such
a function Q we shall name a sequence function of the rank k, and we shall
write briefly Q(k).

The function Q(k) gives a table of infinite sequences of numbers, we
name it also Q:
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Ri,o ., Ri,. o . , Ru - all elements of the set S(l,... , k ) .

1 0 . . . w u . . . wu / M / I , \

2 1 ,o.w2i . . . w2u I w2i \

: : : : : : : : : : Q{Ri) = :
j 0 . . . wμ . . . wju \ wμ 1

Each line j of Q determines a function TjQ of the rank k such that Tj(Ri)
= Wji, where i = 1,... ,u and j = 1,2,...

If we consider T/(Q) on S({jlm}), then we shall say that we consider the
segment {jίm } of the line j of Q.

Z).3. Q° = Q A i , . . . , ^ / . Ξ . U ) { Γ / ( Q ° ) = Γ y ( Q ) / ί 1 , . . . , ί A / } β .

Z).4. Q/Γ, { ϊ*} . =. (3 ιj)(3θ.})(^(Q)/{;m} =T/{fβ}).

Q/T, {i{m} asserts that T/{im] is a segment of some line of Q in the
meaning of homomorphism; in this case we shall say briefly: T/{ϊm] is a
segment of some line of Q.

D.5. Q/Q° . =.(lJ)(lk)(T)(T°)({im}){(j^k>m) A Q(j) A Q°(^) A

(ii, . . , im ^k) A (Γ° = T/Z,. ..k/)^(Q/T, {im}. Ξ . Qβ/T? {f «})}7.

Q/Q° asserts that the relation Q/T, {^} is invariant for each Tlf T°,

{*« } (m ^ k) s u c h t h a t T° = T/l, ...,k/.

D.6. Q - M[k] . = . (T){TeM[k] . =. (3 j)(T = Γy(Q))} .

D.6. asserts that M[k\ is the set of all functions defined by lines of Q.
It is easy to show:

L.5, n Q/T, {im } and {*,•} c {im }, j < m, then Q/Γ, {z, } .

L.6. ttQ°{k), Q =Q°/l,...,k,k/, theπQ/Q°.

L.7o If M is a satisfiability function and Q ~ M[k]f then {M}/Q.

L08. If M is a satisfiability function defined on formulas in which occur
only a finite number of functional variables, see (2), and Q~M[k% then
there exists a function T of the rank <k0itkt such that Q ~ T:|>il and
{T}/Q (T is a segment of M).8

i).7. Q{r,&}. =. (r ̂ ^) A Q(fe) A {{im +}){T){(m<r) A ( Z Ί , . . . , im + 1 are
different numbers < ^ ) A Q/T, {im} A Q/T, Z « + I - * ( 3Ti)(Q/Γi, {ιm+i}
A(0,}) {({;,} c {im+1}) A Q/T, { j . l- ίTyί^} = τ/{jm})})}.

6. T/(Q°) is the function defined by the line j of Q°; the meaning of D.3. is simply.
7. K for each line j of Q and each permutation tι , . . . , tk of numbers f̂c T7 (Q)/{ίfe}also

is a line of Q, then {/„ } may be replaced by {im } .
8. We understand the word "segment" in the meaning of homomorphism.
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Q{r,\k} asserts that for each {i\m+i} of different number, m < r ^ k
and alll T of the rank k, if T/{im} and T/ϊ]m + 1 are segments of some lines of
Q then there exists 7\ of the rank k such that Ti/{ew+.i}isa segment of
some line of Q Γχ/{iiJif } = T/{ϊ* } and for each {jm^} c {*,„,}
if T/{\jlM^}9 im+i is a segment of some line of Q, then Ti/ijm-λ}9 im^=

T/Uι«-ih'*V+i
In other words, Q {r, &} asserts that for each {im+i} of different num-

bers k, m< r ^k, if {im } and im+ι are segments of some lines of Q, then
there exists a line ίw such that {im +1} is a segment of line n of Q and for
each ijm] c {iOT+i} if {jjm} is a segment of some line sm of Q for each {jlm}
we only choose one sm and if every two of these segments of lines sm are
equal on equal sequences of numbers included in {jlm}, then Tn(Q)/{j,m] =
Tsu(Q)/{jm}.

L.9. K Q{r,k} , then:
({im+i})(T){(m < r) Λ ( ί l f . . . , f* are different numbers ^k) Λ Q/T,

{iή.} Λ ti(J/T, tf,»+1-- O TJ (Q/Γi, {<b+1} A ({j!s}) {Or, , J ,
are different numbers ^ k) Λ Q/T, {j s} — (Tj{js] = Γ/{j.s})})}.

This lemma follows from D.7* by using many times of L.3\ we note that
if in D.7. or L.9. we have Q/T, {iw+i}, then Tx = T.

Of course:

L.10. If MeRi and Q ~ M[k\ then for each r ̂  fe we have Q{r,k}.

L.ll. If M is a satisfiability function defined only on atomic formulas of one
argument and Q ~ M[&], then for each r ^ k we have Q[{r, k}.

L.12. If Q ~Λf[fe], then;
1. If T is a function of the rank k, i, j ^ k, Q/T, i, Q/T, j then there

exists Tx of the rank k such that9 Q/T\, i, j and: T1/l,... ,z-i,
f+2,.. . . , * / = T / 2 , . . . ,._<-!, f + I , . . . ,ft, Γ χ / 1 , . . . , M , i+J, . . . , * / -
T/ji9...,j-l9j+l,...,k/.

2. lϊk^2, then Q{£,£}.

L.13..ff;Q°{r,fe} and Q = Q°/i,...,fe, Jfe/, then Q{r,^+1}.

D.8. Γ,Q/Γ!, {f«}; < . =. (T/{im} = Tj{im}) A Q/T X , {im }, f.

D.9. i7eA(£). =. (3 {Fj}) (E = Fi + ... +F1+H+Fi+1 + ... +Fj) Λ (F)(G){HΪF+G).

The meaning of D.8. and £.9. are clear.
Let V be the functional defined for an arbitrary function of the rank k,

for each Q(k) and for an arbitrary formula E whose indices of individual
variables occurring in it are ̂  k, in the following way:

(ld)V{T,Q,f!f-(x.r1,...,Xru)} =1.=. Tirfixrι,..,xτu)} = 1,
(2d) V{T,Q, F'} = 1 .=.~V{T,Q,F} = 1.=O V{T,Q, F} = 0,
( 3 d ) 4 r r ^ τ F + G } = i . = . V{T,Q,F} = 1 v V{T,Q,C} = 1,
(4d) F{Γ,Q,Πα^} = 2.s.(i)(Γ 1){(ί^*) A T,Q/Tl9{ίw(P)};i -V{T,Q,T[x:i/a)}=ll

9. KQ/Γ, i,.;, then we assume T = 7\. It may be proved the other properties of
Q ~ M[k].
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D.10. EePQ . = o(T){(IΪ)({HeA(E)}-*Q/T, {iw(a)}) - V{T,Q,EJ = l} .

D.ll. EeP{r,k} . =. (Q){Q{r,k} - (EeP(Q))} .

D.12. EeP. = . EeP{Σ(E), n{E)} .

We explain the meaning of ones:

1. V{T, Q, E} = 1 may be read: T satisfy E relatively to Q.
2. H M i s a satisfiability function and Q ~ M[k% then Tj(Q) are segments of

M, the number i in (4d) is a name of an arbitrary individual variable and
in D.10 - D.12. we assume that we only consider segments of M; in D.12.
we associate to each formula a pair of numbers.

3. Obviously, if E is quantifier-free, then: EeP . = . E is true.

L.14. Let E° results from E by replacing individual variables with indices
i i , . . . , ίw(E) correspondingly by individual variables j x , . . . , J\W(E°) ,
w(E)=w(Eη10RMT/{iw(E)}=τy{jw(E^. Then: V[T, Q, £} = 1. = .
7{T°, Q, E°} = i

L.i5. Let ^ > n(E) , Q°(^), Q/QO and T° = T/l,...9k/; then: F{τ,Q,^} =
i . ^ i/{T°, Q°, E} = i .

The proofs of L.14. and L.i5. are inductive on the length of the formula
E and are analogic to the proofs of L.12. and L.14. respectively from [2].

L.16. If EeP{r, k] and k^ k0, then EeP{r9k^}.

L.16. follows from the definitions, L.6, L.13. and L.15[ see [3], [δ].

T.£. If .Ee^ί, FeC(E), M{E] = 0, Q ~ M[k% then:
(1) If M/{siw(P)] = T/t^OT J and Nttf{{siw(F) })} = 0, then V{Ί\ Q\F}=0
(2) EeP(Q), EeP{2, fe|}.
(3) If MCJRΊ , then EeP.

Proof: First of all we notice that (2) follows from the assumptions, (1)
and L.12; however (3) follows from (2) and L.10.

The proof of (1) is inductive on the number of quantifiers occurring in
F and is analogous to T.2. of [3].

T.3. If E is a thesis, then EeP{ Σ(Ej, k}, for each k^ n{E).

The proof of T.3. is inductive on the length of the formalized proof of
the formula E; we use here L.0, L.2> L.3, L.5, L.9, L.14, L.16. and defini-
tions; the whole proof is analogous to the proof of T.3. from [3].

T.4. A formula E is a thesis if and only if EeP.

T.4. follows from T.l-3, L.I, L.7, and L.15\9 see [3]. It is easy to see:

1. T.4. remains true if we shall only consider Q(k) with property (I), p...,
where M[k] is replaced by the set of all Tj(Q) and k =n(E)^ therefore Q
has properties given on p. 73.

10. Then E results from E° by an inverse substitution.
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2. K EeSkt and E = Σat... Σα, Π α 1 + 1 . . . ΠtffejF, then E is a thesis if and
only if EeP\\k, i}.

3. The classes P{lfk] and P{2, k} are decidable, & = 2, 2 , . . . (follows from
L.22, Γ.3. and T.4.).

The monadic first-order functional calculus is decidable (follows from
L.ll, T.3. and T.4.)}.

From L.8. and L.25. it also follows that in T4. we may assume that Q
has only one line whose rank is ^ k2qtk\ where k =n(E).

The above consideration describes a method of decidabling of arbitrary
formulas; the examples we shall give in [θ].
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