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A SET OF AXIOMS FOR THE PROPOSΠΊONAL CALCULUS
WITH IMPLICATION AND CONVERSE NON-IMPLICATION

ANJAN SHUKLA

It is well-known that implication and converse non-implication consti-
tute a complete system of independent primitive connectives for the propo-
sitional calculus,, In this article it is the author's intention to give a set of
independent axioms for the propositional calculus by means of the two con-
nectives mentioned above, the rules of inference being substitution and
modus ponens1. In setting up the axioms the purpose of the author has been
to achieve simplicity of individual axioms while preserving their independ-
ence. In §1 we give the set of axioms and prove some preliminary theo-
rems. In §2 we solve the decision problem. Finally, in §3, we establish
the independence of the axioms and rules. In the matter of notation and
style of presenting proofs of theorems we shall follow Church.

§1. AXIOMS AND PRELIMINARY THEOREMS. The axioms of our logistic
system, say P, are the six following

Axiom 1. p ^.q ^>p
Axiom 2. s ^[p ^q] =>. s ^p D. s ^q
Axiom 3. p ^q =>/> ^p
Axiom 4. p D [p <tq] =>. q =>. p <t q
Axiom 5. p <ίq ^q
Axiom 6. p <t q =>. p ^s

In fact, as is evident from the above set, any formulation of the impli-
cational propositional calculus and Axioms 4-6 will suffice. We note that
from the present formulation the deduction theorem—to be henceforth re-
ferred to as D.T.—follows immediately. We now go on to prove some the-
orems.

Theorem 1. p <t p ^s

1. This is suggested as an open problem in Church's Introduction to Mathematical
Logic, I. Princeton, N. J., 1956. p. 139.
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Proof. By Axiom 5, p <tp \—p. By Axiom 6, p <tp \—p ̂  s . Hence p 4 p *~s
Hence by D.T., \—p Φp D s .

Theorem 2» p =>[r Φr] ==>. q =>. p Φq

Proof. We have p => [ r φ r ] , ί I— r Φ r. Hence by Theorem 1, p => [r Φ r ] ,
p I—p <t #. Hence by D.T., p ^ [r Φ r] \—p ^> .p t q. Hence by Axiom 4,
p D [r Φ r ] Y—q ̂  .p Φ q0 Hence by D.T., I—p =} [r Φ r] =>.#=>. p Φ #.

Theorem 3O p = > . # Φ r = > . p = > t f Φ r

Proof o By Axiom 6, q Φ r h-# ^ s t s . Hence P, .q <tr, p^> q I—s <t s.
Hence by D T , p, tf Φ r I—p ̂ q 3 . s Φso Hence by Theorem 2,
p9 q <t r V-r ̂ >. p ^ q 4 r . Again by Axiom 5, ί, ί Φ r ι—r. Hence />, # <t r
I—/> D ^ c t r , Hence by D.T., V-p ^>. q <t r 3 . /> => q Φ r.

Theorem 4. p^).r^.p<tq$r

Proofo By Axiom 6, p <t # I— £ D . s <t s. Hence p, p <t q \—s t s. Hence by

D.T., p \—p <t q =>. s <t s . Hence by Theorem 2, /> I— r ^>. p <t q <t r0 Hence

by D.T., h-£ =>. r =>. /> <t 0 <t r .

Theorem 5. q ^ [s <$ s]^. p <t q ^. s <t s

Proof, By Axiom 5, p Φ ^ I— <?. Hence p [ s ί s ] , H ^ 1—5 <t s . Hence by
D.T., I—q => [s Φ s] 3 . /) ί ^ D . s <t 5 .

Theorem 6. ^ Φ r =>. p c t ^ c t r

Proof. By Axiom 6, <? Φ r \—q => . s φ s. Hence by Theorem 5, # Φ π —
/> Φ q =>. s• φ s o Hence by Theorem 2, q t r \—r ̂ .p <t q <t r0 Again by
Axiom 5, q <t r 1—ro Hence ^ Φ r h-/> Φ ^ ί r . Hence by D.T., \—q ί r ^ .
p φ q φ r.

Theorem 70 p<tr^.q^.p<tq

Proof. By Axiom 6, p Φ r Y—p =>. r <Φ r . Hence by Theorem 2, /> Φ r \—q ^ .
/> Φ q. Hence by D.T., h-p φ r ^. q ^. p Φ q.

Theorem 8. p D # D . ̂  D r D. p Ώ r

Proof. By Axiom I, q ^ r ^—p ̂ . . q D r. Hence by Axiom 2, # =) r \—p 3 ̂
^. p ^ r. Hence /> ̂  q, q ^ r \—p ̂  r. Hence by D.T., l—/> ̂  q =>. ̂  ̂  r =λ

Theorem 9. / > i p s 3 , / ) D s D , p s

Proof. By Theorem 8 , P 5 , s ^ [ r i r ] h- p ^ [ r ί r]. Hence by Theorem
2, /> => s, s =5 [r Φ r] I— # 3 β p Φ q. Hence p ̂  s, q, s =) [r Φ r] H-p Φ Q'.
Hence p Φq^>s,p^sfq9s^>[rΦr] I— s. Hence by D.T., p Φ q => s, p =) s,
ί t - s ^ [ r t r ] ^ s , Hence by Axiom 3 , ί ί p s , p s , g h s , Hence by

§2. THE DECISION PROBLEM

METATHEOREM 1. Every theorem of P is a tautology.

Proof. This Metatheorem can be established easily. We omit the proof.
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METATHEOREM 2. Let B be a wff of P, let cu, α 2 , . . . , αw be distinct vari-
ables among which are all the variables occurring in B, and let
au a2,. . , an be truth-value s. Let C be any theorem of P, z.β.,1—C.
Further, let A* be α* or on <t C according as ai is T or F; and let Bτ δ# B or
B Φ C according as the value of B for the values au a2,..., an of
αi, α 2 , . • . , On is Ύ or F. T&ew Ax, A 2 , . . . , Aw V—B\

Proof. In order to prove that

(1) Ax, A 2 , o . . , A W H B »

we proceed by mathematical induction with respect to the number of occur-
rences of => and <t in Bo

If there are no occurrences of ^ and ΐ in B, then B is one of the vari-
ables α*. Hence B' is the same wff as A*, and (1) follows trivially.

Suppose that there are occurrences of ^ or <t or both in B. Then B is
either Bx => B2 or Bx <t B 2 0 By the hypothesis of induction,

(2) A1 } A 2 , . o . , Aw h-B[

(3) Ax, A 2 , . . , A, h-B 2

where BJ is Bi or Bi <t C according as the value of Bx for the values
#i, « 2 , . . . , an of αi, α 2 , . . . , on is T or F, and B!> is B2 or B2 ί C according
as the value of B2 for the values au a2,..., an of au α 2 , . . „, an is T or F.

CASE I. B is of the form Bx => B 2 o

In case B2 is B 2 , we have that Bτ is Bx ^ B 2 , and (1) follows from (3)
by Axiom 1. In case Bi is Bx ί C, we have again that Bτ is Bx ^ B2 and
(1) follows from (2) by Axiom 6. There remains only the case that B[ is Bi
and B2 is B2 Φ C and in this case Bf is Bλ ^ B2 Φ C, and (1) follows from
(2) and (3) by Theorem 3.

CASE Π. B is of the form Bx <t B 2 .
In case Bl is B x , we have that Bf is Bi <t B2 Φ C and (1) follows from

(2) by Theorem 4. (It is to be noted here that h-C). In case B2 is B2 ΐ C,
we have again that Bτ is Bx Φ B2 <t C, and (1) follows from (3) by Theorem
6. There remains only the case that Bi is Bj Φ C and B2 is B 2 , and in this
case Bτ is Bj, <t B2 and (1) follows from (2) and (3) by Theorem 7.

Therefore Metatheorem 2 is proved by mathematical induction.,

METATHEOREM 3O If B is a tautology, H-B.

Proof. Let αi, α 2 , . . . , an be the variables of B, and for any system of values
ai> a2, ..., an of au α 2 , . . . , an let A1? A2,. 0 0 , Aw be as in Metatheorem 2.
The Bτ of Metatheorem 2 is B, because B is a tautology. Therefore by
Metatheorem 2,

Ax, A 2 , . o . , A n h - B

This holds for either choice of an, i.e0, whether an is F or T, and so
we have both

Ai, A 2 , . . . , An-l9 an $ C l - B
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and

Ai, A2,. , A«-i, an I—B

By the deduction theorem,

Ai, A 2 , . . , A w . ! H - a w ί C ^ B

Ai, A 2 , . . . , A«-i i—a n

 D B

Hence, by Theorem 9,

Ai, A 2 , . . . A w . x l - C = > B

Hence, since I—C,

Ai, A2,.. o, Aw-i I B.

This shows the elimination of the hypothesis Aw. The same process
may be repeated to eliminate the hypothesis kn-u and so on, until all the
hypotheses are eliminated. Finally we obtain I—Bo

In Metatheorem 1 and Metatheorem 3, together with the algorithm for
determining whether a wff is a tautology, we have a solution of the decision
problem of P. The consistency and completeness of P, now follow as
corollaries of this solution.

§3. INDEPENDENCE. The independence of the axioms and rules of P,
with the exception of the rule of substitution, is established by the standard
device of generalised systems of truth-values (see tables below).

The independence of the rule of substitution can be established by a
well-known argument. For the proof of independence of modus ponens, it is
necessary to supply also an example of a theorem of P which is not a
tautology according to the truth-table (Table No. 1) used0 One such example
is p => p. Lastly, since the calculations are extremely long to prove the in-
dependence of Axiom 2, the author wishes to point out for the convenience of
the reader that when s, p, q take the values 4, 5, 3 respectively the axiom
yields a non-designated value according to the truth-table (Table No. 3)
used.

TABLE NO. 1. (MODUS PONENS)

^ 0 1 2 $ 0 1 2

* 0 0 0 0 * 0 2 2 2

1 0 2 0 1 2 2 2

2 0 0 0 2 2 2 2
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TABLE NO. 2. (AXIOM 1)

^ 0 1 2 3 4 <t 0 1 2 3 4

*0 0 1 2 3 4 *0 4 4 4 4 4

*1 0 1 3 3 4 *1 4 4 4 4 4

*2 0 1 0 3 4 *2 4 4 4 4 4

3 0 1 0 0 1 3 0 0 2 4 4

4 0 1 0 0 1 4 0 0 2 4 4

TABLE NO. 3. (AXIOM 2)

^ 0 1 2 3 4 5 <t 0 1 2 3 4 5

*0 0 1 2 3 5 5 *0 5 5 5 5 5 5

*1 0 1 2 3 5 5 *1 5 5 5 '5 5 5

*2 2 1 0 3 5 5 *2 5 5 5 5 5 5

3 0 1 0 2 4 4 3 5 5 5 5 5 5

4 0 0 0 3 0 0 4 3 3 3 3 5 5

5 1 1 1 1 1 1 5 0 0 0 3 5 5

TABLE NO. 40 (AXIOM 3)

^ 0 1 2 <t 0 1 2

*0 0 1 2 *0 2 2 2

1 0 0 2 1 2 2 2

2 0 0 0 2 0 1 2

TABLE NO. 5. (AXIOM 4)

3 0 1 <t 0 1

*0 0 1 *0 1 1

1 0 0 1 1 1
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TABLE NO. 6. (AXIOM 5)

=> 0 I . <t 0 1

*0 0 1 *0 1 1

10 0 10 0

TABLE NO. 7 (AXIOM 6)

D o i 4 o l

*0 0 1 *0 0 1

10 0 10 1

Remark. Axiom 1, Axiom 2, Axiom 5, Axiom 6 and Theorem 9 also
constitute a complete set. For, (1) Axiom 4 follows immediately from
Theorem 9 by substitution and modus ponens, and (2) in order to prove the
completeness of P, we need Axiom 3 only in one place: to prove Theorem 9.
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