Notre Dame Journal of Formal Logic Volume VI, Number 2, April 1965

A NOTE ON CERTAIN SET - THEORETICAL FORMULAS

BOLESŁAW SOBOCIŃSKI

In [1], p. 168, Sierpiński notices that the following formula

T For any cardinal numbers m and n, if $\aleph_0 \le m$, $\aleph_0 \le n$ and $\aleph_0 + m = \aleph_0 + n$, then m = n

is provable without the aid of the axiom of choice in the field of the general set theory.

In this note it will be shown that the following generalization of T

S₁ For any cardinal numbers m, n, β and q, if β and q are not finite, $m < \beta$, n < q and $m + \beta = n + q$, then $\beta = q$

is equivalent to the formula

 V_1 For any cardinal number m which is not finite, m = 2m

and that, on the other hand, the following modification of S_1

S₂ For cardinal numbers m, n, β and q, if β and q are not finite, $m < \beta$, n < q and $n + \beta = m + q$, then $\beta = q$

and the following formulas

S₃ For any cardinal numbers m, n, β and q, if β and q are not finite, $m < \beta$, n < q and $m\beta = nq$, then $\beta = q$

and

S₄ For any cardinal numbers m, n, p and q, if p and q are not finite, m < p, n < q and np = mq, then p = q

and which are, clearly, analogous to S_1 and S_2 are such that each of them is equivalent to the axiom of choice.

Proof:

1. Since, cf. [3], p. 115, in the field of the general set theory V_1 is equivalent to

Received July 5, 1960

- V_2 For any cardinal numbers m and n, if n is not finite and m < n, then m + n = n,
- S_1 is an obvious consequence of V_1 . Now, let us assume S_1 and that

(1) m is an arbitrary cardinal which is not finite,

Clearly, we have the generally valid formulas:

(2) 2m + 3m = m + 4m and (3) $m \le 2m$

If we suppose that the first case of (3), viz. m < 2m, holds, then we have also to accept that

(4)
$$2m < 3m$$
 and (5) $m < 4m$

are valid. Hence in virtue of S_1 we can conclude from (1), (4), (5) and (2) that

(6) 3m = 4m which gives at once that (7) 4m = 5m

Whence, by (6) and (7)

(8) 3 m = 5 m which implies that (9) 4 m = 6 m

Since the cancellation laws for cardinals are provable without the aid of the axiom of choice and of V_1 , *cf.* [2] and [4], we obtain from (9) at once that

(10) 2m = 3m

which contradicts (4). Hence our assumption that m < 2m is not true, and, therefore, the second case of (3), viz.

(11) m = 2/m

holds. Thus, it is proved that $\{V_1\} \rightleftharpoons \{S_1\}$.

2. It is evident that the axiom of choice implies S_2 , S_3 and S_4 .

2.1. Let us assume S_2 , (1) and put $n = \aleph_0 m$. Since, clearly, n = n + 1, we can establish at once, *cf.* e.g. [1], p. 169, that

(12) $n + 2^n = 2^n$

We have without the aid of the axiom of choice

(13) $n < 2^n$ and (14) $\aleph(2^n) \leq 2^n + \aleph(2^n)$

where (2^n) represents the least Hartogs' aleph which is not $\leq 2^n$, cf. e.g. [1], pp. 407-409. And, due to (12) we can establish that

(15) $\aleph(2^n) + 2^n = n + (2^n + \aleph(2^n))$

Hence, if we suppose that the first case of (14), viz. $\Re(2^n) < 2^n + \Re(2^n)$, holds, then in virtue of S_2 and due to the fact that 2^n and $2^n + \aleph(2^n)$ are, clearly, not finite cardinals it follows from our assumptions, (13) and (15) that

(16) $2^n = 2^n + \otimes (2^n)$

which gives an impossible conclusion that $2^n \ge \aleph(2^n)$. Therefore, the second case of (14), viz.

(17) $\aleph(2^n) = 2^n + \aleph(2^n)$

holds. Since, by assumption, $n = \aleph_0 m$, (17) implies at once that

(18) $\aleph(2^n) \ge 2^n > n = \aleph_0 m \ge m$

which proves that an arbitrary cardinal m which is not finite is an aleph. Thus, S_2 implies the axiom of choice.

2.2. Now, let us assume S_3 , (1) and put $n = m^{\aleph_0}$. Hence, clearly,

(19)
$$n = n^2$$

If $\Re(n)$ is the least Hartogs' aleph which is not $\leqslant n$, then we have without the aid of the axiom of choice, *cf.* e.g. [1], p. 409, that

(20) $n < n + \Re(n)$ and, therefore, a fortiori: (21) $n < n \Re(n)$

On the other hand, by (19)

(22) $n(n + \aleph(n)) = n^2 + n \aleph(n) = n + n \aleph(n) = n(1 + \aleph(n)) = n \aleph(n) = n^2 \aleph(n) = n(n \aleph(n))$

Since, by assumption, $n + \aleph(n)$ and $n \aleph(n)$ are not finite cardinals, S_3 together with (20), (21) and (22) implies that

(23)
$$n + \Re(n) = n \Re(n)$$

Since $\aleph(n)$ is the least Hartogs' aleph which is not $\leq n$, it is well-known, cf. [5], pp. 148-150, and [1], pp. 419-421, that (23) yields

(24) $\Re(n) \ge n$

which, since $n = m^{\aleph_0}$, allows us to conclude that

(25) $\aleph(n) \ge n = m^{\aleph_0} \ge m$

i.e. that an arbitrary cardinal number m which is not finite is an aleph. Thus, S_3 implies the axiom of choice.

2.3. It is obvious that the reasonings entirely analogous to the given above allow us to prove that S_4 implies also the axiom of choice.

BIBLIOGRAPHY

- W. Sierpiński: Cardinal and ordinal numbers. Monografie Matematyczne, v. 34. Warszawa, 1958.
- W. Sierpiński: Sur l'egalité 2m = 2n pour les nombres cardinaux. Fundamenta Mathematicae, v. III (1922), pp. 1-16.
- [3] B. Sobociński: A simple formula equivalent to the axiom of choice. Notre Dame Journal of Formal Logic, v. I (1960), pp. 115-117.

- [4] A. Tarski: Cancellation laws in the arithmetic of cardinals. Fundamenta Mathematicae, v. XXXVI (1949), pp. 77-98.
- [5] A. Tarski: Sur quelques théorems qui équivalent à l'axiom de choix. Fundamenta Mathematicae, v. V (1924), pp. 147-154.

University of Notre Dame Notre Dame, Indiana