A NOTE ON CERTAIN SET - THEORETICAL FORMULAS

BOLESもAW SOBOCIŃSKI

In [1], p. 168, Sierpiński notices that the following formula
\mathbf{T} For any cardinal numbers m and n, if $\aleph_{0} \leqslant m, \aleph_{0} \leqslant n$ and $\aleph_{0}+m=\aleph_{0}+n$, then $m=n$
is provable without the aid of the axiom of choice in the field of the general set theory.

In this note it will be shown that the following generalization of \mathbf{T}
\mathbf{S}_{1} For any cardinal numbers m, n, p and q, if p and q are not finite, $m<p$, $n<q$ and $m+p=n+q$, then $p=q$
is equivalent to the formula
V_{1} For any cardinal number m which is not finite, $\mathrm{m}=2 \mathrm{~m}$
and that, on the other hand, the following modification of \mathbf{S}_{1}
S_{2} For cardinal numbers $\mathrm{m}, \mathrm{n}, \mathrm{p}$ and q, if p and q are not finite, $m<p$, $n<q$ and $n+p=m+q$, then $p=q$
and the following formulas
S_{3} For any cardinal numbers $\mathrm{m}, \mathrm{n}, \mathrm{p}$ and q, if p and q are not finite, $m<p$, $n<q$ and $m p=n q$, then $p=q$
and
S_{4} For any cardinal numbers m, n, p and q, if p and q are not finite, $m<p$, $n<q$ and $n p=m q$, then $p=q$
and which are, clearly, analogous to S_{1} and S_{2} are such that each of them is equivalent to the axiom of choice.

Proof:

1. Since, $c f$. [3], p. 115, in the field of the general set theory \mathbf{V}_{1} is equivalent to
V_{2} For any cardinal numbers m and n, if n is not finite and $m<n$, then $\mathfrak{m}+\mathfrak{n}=\mathfrak{n}$,
\mathbf{S}_{1} is an obvious consequence of \mathbf{V}_{1}. Now, let us assume \mathbf{S}_{1} and that
(1) m is an arbitrary cardinal which is not finite,

Clearly, we have the generally valid formulas:
(2) $2 m+3 / m=m+4 m \quad$ and
(3) $m \leqslant 2 m$

If we suppose that the first case of (3), viz. $\mathrm{m}<2 \mathrm{~m}$, holds, then we have also to accept that
(4) $2 \mathrm{~m}<3 \mathrm{~m}$
and
(5) $m<4 m$
are valid. Hence in virtue of S_{1} we can conclude from (1), (4), (5) and (2) that (6) $3 \mathrm{~m}=4 \mathrm{~m}$. which gives at once that (7) $4 \mathrm{~m}=5 \mathrm{~m}$

Whence, by (6) and (7)
(8) $3 / \mathrm{m}=5 \mathrm{~m} \quad$ which implies that (9) $4 \mathrm{~m}=6 \mathrm{~m}$

Since the cancellation laws for cardinals are provable without the aid of the axiom of choice and of $\mathbf{V}_{1}, c f$. [2] and [4], we obtain from (9) at once that
(10) $2 \mathrm{~m}=3 \mathrm{~m}$
which contradicts (4). Hence our assumption that $\mathfrak{m}<2 \mathfrak{m}$ is not true, and, therefore, the second case of (3), viz.
(11) $\cdot \mathrm{m}=2 / \mathrm{m}$
holds. Thus, it is proved that $\left\{\mathbf{V}_{1}\right\} \rightleftarrows\left\{\mathbf{S}_{1}\right\}$.
2. It is evident that the axiom of choice implies $\boldsymbol{S}_{2}, \boldsymbol{S}_{\mathbf{3}}$ and \boldsymbol{S}_{4}.
2.1. Let us assume S_{2}, (1) and put $n=\aleph_{0} m$. Since, clearly, $n=n+1$, we can establish at once, cf. e.g. [1], p. 169, that
(12) $n+2^{n}=2^{n}$

We have without the aid of the axiom of choice
(13) $n<2^{n} \quad$ and \quad (14) $\aleph\left(2^{n}\right) \leqslant 2^{n}+\aleph\left(2^{n}\right)$
where $\aleph\left(2^{n}\right)$ represents the least Hartogs' aleph which is not $\leqslant 2^{n}, c f$. e.g. [1], pp. 407-409. And, due to (12) we can establish that
(15) $\aleph\left(2^{n}\right)+2^{n}=n+\left(2^{n}+\aleph\left(2^{n}\right)\right)$

Hence, if we suppose that the first case of (14), viz. $\aleph\left(2^{n}\right)<2^{n}+\aleph\left(2^{n}\right)$, holds, then in virtue of \mathbf{S}_{2} and due to the fact that 2^{n} and $2^{n}+\aleph\left(2^{n}\right)$ are, clearly, not finite cardinals it follows from our assumptions, (13) and (15) that
(16) $2^{n}=2^{n}+\kappa\left(2^{n}\right)$
which gives an impossible conclusion that $2^{n} \geqslant \aleph\left(2^{n}\right)$. Therefore, the second case of (14), viz.
(17) $\aleph\left(2^{n}\right)=2^{n}+\aleph\left(2^{n}\right)$
holds. Since, by assumption, $n=\aleph_{0} m$, (17) implies at once that
(18) $\aleph\left(2^{n}\right) \geqslant 2^{n}>n=\aleph_{0} m \geqslant m$
which proves that an arbitrary cardinal m which is not finite is an aleph. Thus, \mathbf{S}_{2} implies the axiom of choice.
2.2. Now, let us assume S_{3}, (1) and put $n=m^{N_{0}}$. Hence, clearly, (19) $n=n^{2}$

If $\mathfrak{N}(n)$ is the least Hartogs' aleph which is not $\leqslant n$, then we have without the aid of the axiom of choice, cf. e.g. [1], p. 409, that (20) $n<n+\aleph(n)$ and, therefore, a fortiori: (21) $n<n \aleph(n)$

On the other hand, by (19)
(22) $n(n+\aleph(n))=n^{2}+n \aleph(n)=n+n \aleph(n)=n(1+\aleph(n))=n \aleph(n)=n^{2} \aleph(n)=$
$n(n \aleph(n))$
Since, by assumption, $n+\aleph(n)$ and $n \aleph(n)$ are not finite cardinals, \mathbf{S}_{3} together with (20), (21) and (22) implies that
(23) $n+\aleph(n)=n \aleph(n)$

Since $\aleph(n)$ is the least Hartogs' aleph which is not $\leqslant n$, it is $^{\text {is }}$ well-known, $c f$. [5], pp. 148-150, and [1], pp. 419-421, that (23) yields
(24) $\kappa(n) \geqslant n$
which, since $n=m^{N_{0}}$, allows us to conclude that
(25) $\mathfrak{N}(n) \geqslant n=m^{\aleph_{0}} \geqslant m$
i.e. that an arbitrary cardinal number m which is not finite is an aleph. Thus, S_{3} implies the axiom of choice.
2.3. It is obvious that the reasonings entirely analogous to the given above allow us to prove that \mathbf{S}_{4} implies also the axiom of choice.

BIBLIOGRAPHY

[1] W. Sierpiński: Cardinal and ordinal numbers. Monografie Matematyczne, v. 34. Warszawa, 1958.
[2] W. Sierpiński: Sur l'egalité $2 \mathrm{~m}=2 \mathrm{n}$ pour les nombres cardinaux. Fundamenta Mathematicae, v. III (1922), pp. 1-16.
[3] B. Sobociński: A simple formula equivalent to the axiom of choice. Notre Dame Journal of Formal Logic, v. I (1960), pp. 115-117.
[4] A. Tarski: Cancellation laws in the arithmetic of cardinals. Fundamenta Mathematicae, v. XXXVI (1949), pp. 77-98.
[5] A. Tarski: Sur quelques théorems qui équivalent à l'axiom de choix. Fundamenta Mathematicae, v. V (1924), pp. 147-154.

University of Notre Dame
Notre Dame, Indiana

