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A NOTE ON CONTINUOUS GAMES, THE NOTION
OF STRATEGY AND ZERMELO’S AXIOM*

CELSO de RENNA e SOUZA

1. Introduction. The notion of a continuous game has appeared very
naturally from a generalization of discrete (or sequential) games, and
partly stems from the simple fact that a time scale is more often than not
considered continuous. While for sequential games, finitist as they are,
(see M. Claude Berge), the notion of strategy does not bring set-theorectical
difficulties, the same is not the case for continuous games. In fact, the
problem of existence of a single (pure) strategy for such games is strongly
linked to Zermelo’s Axiom of Choice for infinite sets.

A particular approach to continuous games has, in the recent years and
because of its immediate practical applications, received increased atten-
tion. It was started by Rufus Isaacs in 1954 and 1955 in a series of Rand
Corporation memoranda which were followed by, among others, papers by
Scarf, Fleming and Berkovitz, and goes under the general heading of
‘“Differential Games’’., The method is akin to and includes the widespread
one in Control Theory, and is based on a set of differential equations:

x=G(x: o;¢;....)

where x is the state vector and ¢; ¥; . ... are vector-valued functions of
time chosen independently by the various players; associated with one or
more optimization criteria (integral or terminal pay-offs) etc. .

Intrigued by the implications of the existence of pure strategy
theorems for such games, the author has devised a very general set-
theoretical description of a n-person continuous game with simultaneous
moves (that is, a description of the game in extensive form) and attempted
to determine the power of the sets involved. In behalf of clarity, we present
here a two-person simplified game only. It seems that the same reasoning
could be applied to the question of existence of single solutions to sets of
differential equations without mentioning game theory, mutatis mutandis.

*Excerpted from a Doctoral Dissertation, University of Notre Dame, January, 1965.
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2. Description of the Game. We shall take as our model for the game
the set

(1) T={M;F} ; ke k=12
where

M. = move corresponding to ke

f® = an index set of special structure
81,2 = pay-off for player 1; 2
moreover:
(2) D = {Ac(a)loce A} A, an index set

A(ay) are called ‘‘alternatives’. We let also:

o« = player’s or chance choice on the move I, ; 0. €A,

The final pay-off depending on all the choices made during the play:
(3) & = §({oulker})

If M« is a chance move we must know the probability distribution in
A, that is, some p(a,) such that:

@ [, plo) dax =1

the integral being taken in the Lebesgue-Stieltjes sense.

Most descriptions of games consider the moves as a finite sequence
S:w'— UM where for some 'qsw, w' = {plpsw; p <gq}, and UM is the space
of all possible moves. I suggest that a continuous play with simultaneous
moves by several players could be described by a net S:®— UM, the
directed set ® having a peculiar structure, since the time scale is very
important in the ordering of moves, This ordering in ® may be described,
in our model, by the existence of an at most three-to-one map #2:8— &', &'
being linearly ordered. We define:

[xy] : %, 9eR D :x <y.=.hx)<hr()

(5) [xy] :x,9e®@ H:x<y.v.y<x.v.x=y

where = indicates ‘‘is at the same level as’’ or ‘‘is simultaneous to’’. The
above is obviously a weakened linear ordering. Since the play must
eventually start and finish, the set & has to have at least one infimum « and
and one supremum k¥,

3. State of Information. Consider the move M. The player k. may
or may not know the choices o);2e8®, A < k. One may attempt to describe
the state of information of 2, by a subset of R:

(6) Ax c{nlre®. a<k}c ®

and k. will know all oy; re A, .

(7) Def.: If xeA, then ) is “‘preliminary’’ to k.
(8) Def.: If A< k then ) is ‘“anterior’’ to «.
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Obviously, preliminarity — anteriority but not vice-versa. Moreover,
preliminarity is not transitive.

(9) Def: If in T preliminarity < anteriority then T is a ‘‘perfect informa-
tion game”’,

However A, is not enough to describe the situation at .. That is,
{cA(ax)} may also depend on the previous choices. We must resort to a
quite general description. Let:

(10) & ={rlh =h(0)) ; xe® ; A<k}

of all sets & depending on the previous choices. Then k,e£®, and A, ed,
ete..

4, The Notion of Strategy. Let Q be the space of all “‘plays’’, that is:
(11) @ = {S|s: 8- vun}

It is not enough, however, that ® would satisfy (5) and (6). The net S
may send the elements of & into UM in an inordinate fashion and the result
would be a chaotical description bearing little semblance to a game. This
inclusion of ‘‘impossible’’ plays in 2 does not bring immediate difficulties.
Consider then a certain ‘‘instant’’ 2'¢ &' and the elements:

(12) ®y = {ne® [EQ) <2’}

this set narrows Q down to the subset A,: of all possible plays that, up
to A', have the same course. That is, Ax' is the set of all nets S for which
the corresponding ® agree in their ' and S[®)'] are the same. The Ay are
obviously disjoint. Consider:

(13) Ay ={An| Aef'}

and 9%, is not a decomposition of © but, since it includes all possible
plays, it divides a proper subset Q@* c Q into equivalence classes.

Consider now 2~'(x'). This may be none, one, two or at most three
keR®. Obviously ~~'(\') is the same within each A,r but may vary from one
to another. In other words, in some cases the complete structure of £ is
only known a posteriori.

From the point of view of player %, it may or may not be the case that
k« = k for some keh'(\'). In other words, 2 may or may not be called to
make a decision at the instant \'. Let’s suppose he is and define:

(14) B (k) = {Axt| 2 = B kRN }
of all plays in which it is £’s turn to move at x'. Then form:
(15) Bx' = {B(k) |2 =0,1,2}
Note that:
(16) Bgl Bi(k) = 0

1. In the sense of the French: ‘“Partie’’ or Portuguese ‘“Partida’
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but the sets B« (k) are not disjoint. Also, because of (13), (14), (15) and (16):
(17) *Ayr < By

Suppose now that for some kek™'(A') we have k. = 0, the player number
zero representing chance moves. To k. = 0 is presented a set as (2) with
probabilities as in (4). Note that this distribution is the same within each
Ay,

If 2« #+ 0 we have a so-called personnal move. The player k&, does not
necessarily possess the full state of information described by A)\i’ but is
aware of some ®, as in (10). &, then divide B«(k) into disjoint sets
D, e9«(k) and UD. = B«(k). In other words, 2. is not aware of Ay but of
D, only. For a chance move we may assume Dy = Ajr.

At \' all players k. =k; keh™'(A'") make their decisions (there are at
most three). These will divide Ay’ into three subsets which correspond to
the restrictions imposed by the choices o«, since in A)r these choices will

From the point of view of k., the set D« is such that certainly
Ayt ¢ D, (unless he is unrepairably deluded as the fool in Wiener’s
considerations). So that his choice o« will divide D, into subsets C« dis-
joint and their family €« covers D, .

Note that for:

(19) '] 0 ate®  at<k, 1D Ay = {Q}
and
(20) [A'] .. ATER LA kR D Uy = Q
Here the distinction between {Q} and @ itself is crucial. Obviously,
after the play is finished each A)' corresponds to one 7€ (or one SeQ).

(21) Def.: A strategy of the player k is a function E, on £ X 9,(k) into
G« (k) for all ke® and keh™'(\') and kx =k and k = 1,2 such that:

Ep <k; Dy > =Cx CreGx(k); Ck C Dg

(22) Def.: An Umpire’s Choice is a function Eq on 8 X Uy into €.(0) such
that, for all \'ef":

Eo<\'; Ay >=Cx  CkeG (0)

In the space Z, of the functions E, we have an induced probability
density. If for all A'e®' such that %, = 0 for kek™'(A') we have a set of
choices of,(ax) for a,eA. as in (2), we see that p(a,) = p(Cx). The event
E, would then be a conjunction of all particular C. for all A'e ®' as above
and the probability density:

(23) pEo) = Il p(c.)
NeR'; keh 15 k=0
where we consider the events for each )\' as independent.
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Certainly:

(24) [5 P(Eo)dE, = 1

5. The Power of These Sets. Throughout this analysis we shall accept
a restricted continuum hypothesis for sets with power up to g = AR
Consider the set ®'. This set may be considered of the power:

(25) ®' = ¢

since our time scale is continuous. & is related to &' by #. Since the
number of players is only two we have at most:

(26)R =3R' =3.2=12
then, since there is a one-one correspondence M, — k :
@NUR =% =12
Let in (2):
(28) Ac=z Allke® .. W=t
according to (11) and (27) then:
(20) @ =% =2° =t = RR

and the space of all games has the same power as the space of all real
valued functions of a real variable. This does not mean that Q* = because
the definition of ‘‘possible’’ game could make Q* = ¢ or even Q* = R,

Now let’s consider (13) and (19). We see that before the game starts,
that is for A" <x,', we have:

(30) Uy = {Q}
as in (19). Hence:
Ay =1

At \' = k; the players make their first choice. This will divide the set
A)' into as many different subsets as the set:

A«

keh 1o
as in (18). And:

(31) Uy =X A =3 -Ac=3-2=1

this process repeating itself =z times, that is, after any non-zero interval in
&' has elapsed we have:

(32) Uy =z2° =1

and so, for A"™> k*' as in (20):
U =Q=t

which agrees with the result of (29) above.
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Now consider the player k. At A'< ky' he is aware of the whole ¥,:.
At )" = k*' he is then required to choose one o, out of A,. For simplifica-
tion of the reasoning, we may consider perfect information games as in (9)
without loss of generality. The process of decision repeats itself for all
r'e®'. In other words, he must make © choices out of sets, each of which
has the power of the continuum.

Now consider the definition of strategy of (21). With Ay'| D, we have:

(33) Ez : (R X Uy) — C

and the power of the set of these functions:

(34) Ep, = G(0)®¥U = g1 =gl = 2f

In other words, the choice of a single strategy for the player Z amounts to,
out of a set of power 2*, to choose one element.

In the other hand, the existence of one strategy for the player %
amounts to the following: out of each set of a family:

f X Ay

which, as it was seen, has the power f, 2 must be able to choose one
element of each set, each set having the power z.

The possibility of choosing one strategy out of an infinite set is also
strongly related to the notion of self-information. For the probability of a
single point in an infinite set for which the probability distribution does not
have impulses is zero (the singleton has zero Lebesgue measure) and hence
the self-information is not finite. Hence, even if 2 could choose one strat-
egy 3, it seems that he would never be able to announce his choice, since
this would imply the transmission of infinitely many bits. Samuel Karlin
has advanced a finitist idea to obviate these troubles. In essence, his K-
strategies are simply the result of discretizing the time scale. Whether or
not his e-optimal solutions will, heuristically, yield truly continuous optimal
solutions is a point considered by many as an unnecessary subtlety.
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