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THE SUBSTITUTION SCHEMA IN RECURSIVE ARITHMETIC

Rβ D. LEE

In his paper Logic Free Formalisations of Recursive Arithmetic [1]
R. L. Goodstein presents a formalisation of primitive recursive arithmetic
in which the only axioms are explicit and recursive function definitions, and
the rules of inference are the schemata

( S b l ) F(A) = G(A)

(Sb2) ^ - ^
V 2 ' F(A)=F(B)

(T) A = B

A =C
B = C

where F(x), G(x) are recursive functions and A,B,C are recursive terms,
and the primitive recursive uniqueness rule

F(Sx) = H(pciF(x))
KU) F(x) =HXF(O)

where the iterative function Hxt is defined by the primitive recursion
H°t = t, HSxt = H(x,Hxt); in U, F may contain additional parameters.

In the same paper it is shown that the schema U may be replaced by

/E\ F(0) = 0 F(Sx)=F(x)
K } F(x) = 0

if we take as axioms

(A) a+ (b - a) = b + (a-b)

and, in place of the introductory equations for the predecessor function,

(P) Sa - Sb = a - b

This system is referred to as R1#
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The purpose of this paper is to present another formalisation, R*,
which also weakens U and yet avoids taking A as an axiom.

The rules of inference of R* are Sb1? Sb2, T and

F(Sx) = F(x)
K 1} F(x) = F(0)

(E3)t F(O) = G(O)

F(Sx) = G(Sx)
F(x) = G(x)

In place of the recursive definitions of addition we have the axioms

(Ax) a + 0 = a (A2) a + (b + c) = (a + b) + c.

and for subtraction, we have the recursive definitions of predecessor and
difference

(Sχ) 0- 1 = 0; fa) Sa- 1= a; (S3) a - 0 = a; (S4) a - Sb = (a - b) - 1;

and the axiom

(S5) ( β - δ ) - ! = f o - i ) - &

We have also the recursive definition of multiplication

(MO a - 0 = 0 (M2) a Sb = a b + a.

Exactly a s in [1] we may prove the following r e s u l t s

(K) A = B

( K ) B=A

and Sa - Sb = a - b, a-a = O,O-a = O, (a + b) - b = a, (a + n) - (b + n) =
a - b, n - (b + n) = 0.

We now derive the schema,

F(Sx) = SF(x)
KU2) F(x) = F(O)+x

(I am indebted to R. L. Goodstein for the following proof). Write
G(x) = F(0) + x, then G(Sx) = SG(x) and G(0) = F(0). Using these two results
andF(Sx) = SF(x) we deduce^W = G(x) for if L(x) = F(x - 1) + {l - (1 - x)},
then L(0) = F(O)znd L(Sx) = SF(x) = F(Sx) so that, by E6, L(x) = F(x).
Therefore

F(x) = F(x-l) + {l- (1-x)}

Let φ(n,x) be defined by

φ(0, x)= 0 φ(Sn,x) = {l - (I - (pc - n))} + φ(n,x)

then

F(x -n) + φ(n,x) ={F(x - Sn) + [l - (1 - (x - n))]}+ φ(n,x)
= F(x - Sn) + φ(Sn,x)

tRetaining the notation of [1].
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Using Ex

F(x-n)+ φ(nf x) = F(x - 0) + φ(6>, x) = F(x)

Whence taking n - x

F(0) + φ(κ,*)= JFW

Similarly

G(0) + ^ M = GW

Hence

F(x) = G(x)
F(pc) = F(O) + x.

We now use U2 to prove

0 + a = a.

Write F(a) = a, then F(Sa) = SF(a). Hence using U2 and K, 0 + a = «. Simi-
larly using U2 we may prove a + Sb = Sa + b, a + b = b + a, (a + b) - a =b
and exactly as in [1]

a + (b - a) = b + (a - b).

Now from El9 E follows immediately and hence we have postulated or
derived all the axioms and rules of inference of system Rl9 given in [1],
Hence the sufficiency of R* for the construction of primitive recursive
arithmetic follows from the sufficiency of Rί9 which is proved in [1]. In
fact we can reduce the axiom system R* by postulating only certain special
cases of Sb2. The special cases are

( S b 2 l ) x+A = XΛ B ( S b 2 2 ) A-x = B-x ( S b 2 3 ) x-A = x-B

( 5 b 2 4 ) F(A)=F(β)

where in Sb24 A = B is restricted to one of the initial equations AlfA2, SltS2f

S3, S4, S5, Mi, M2, or is any recursive or explicit function definition. For
F(0 - Sx)) F( (0 - x) - 1) = F( (0 - I) - x) = F(0 - x) using Sb24 for the
equations a - Sb = (a - b) - I, (a - b) - I = {a - i) ^ b, 0 - i = 0, and Sb,
to substitute 0 for ΛΓ and # for b. Now writing G(ΛΓ) = F(0 - ΛΓ), we have
proved G(Sx) = G(x) and hence from Ux, G{x) = G(0)
therefore

0.1 F(0-x) = F(0)

Similarly F(Sx - Sx) = F( (Sx - x) - I) = F{ (Sx - 1) - x) = F(x - x) and
hence by Ui

0.2 F(x - x) = F(0).

The proofs of the results in the first part of this paper up to and
including the proof of a + (b - a) = b + (a - b) use only the above special
cases of Sb2 and 0.1 and 0.2.
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Using a + b = b + a and 5b2 1 we have

( S M A+x = B+x

Following the proof, as given in [1], of the sufficiency of Rx (and

therefore of R*, since in R* we have derived or postulated all the axioms

and rules of Rχ)9 we may derive the schema

, Δ . A - B = 0, B -A = 0
{ ) A=B

The schema

( S b a β ) Ax = Bx

is now proved as follows

Using Sb24, A.Sx - B.Sx = A.Sx - B.x + B = A.x + A - J5.Λ; + B. As-

suming A = B, from Sb21, >ε +A =z +B, and hence from Sbx, B.x+A = B.x + J5.

Therefore using Sb23, « - 0.x + B) = z - (β.x + A) and hence from Sbx

(/i.x + A) - (β.x + B) = (4.# + A) - (B.ΛΓ + A); but from a previous result

(A.# + A ) - (β.x +A)=A.x ± B.x

Hence

A.Sx - S.Sar = A.Λ; - B.ΛΓ

Using Ex,

A.x - 5.Λ; = 0.

Similarly

B.x - A.x = tf.

Hence, by A.

A.x = 5.ΛΓ.

Exactly as in [1], we may now prove Sa.b = a.b + b, O.a = fl and

a.b = δ.#. The schema

( S b 2 7 ) *A = xB

follows from a.b = b.a and Sb2 6.

Apart from the special cases of Sb2 which are axioms or have been

derived the only application of Sb2 in the proof of the sufficiency of R*

occurs in the proof of the substitution theorem, in the form

x + (y ~ x) = y + (pc ~ y)

F(x+ (y -χ))=F(y + (?c - y))

I shall give an alternative proof of the substitution theorem which

avoids use of this result.
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THE SUBSTITUTION THEOREM

x= y-+ F(x)= F(y)

All primitive recursive functions can be obtained by substitution and
recursion according to the schema F(0) = 0 F(Sx) = H(F(x)), from the initial
functions u + v, u - v, Rt{u), where Rt(O) = O, Rt(Sx) = Rt(x) + [l - p(x,Rt(x))]
and p(x,y) = (Syf - Sx.

It suffices therefore to prove that the substitution theorem holds for
these initial functions and is preserved under substitution and the given
recursion. From the original proof of the substitution theorem given in [1],
we have

(i - \x,y\)F{x + (y - x)) = (I - \x,y\)F{x)
( i - \x,y\)F(y + (x-y))= ( I - \x,y\)F(y)

In the case of F(z) = z + a we have

(1 - \χ,y\)(ty + (y-x)) + a)= ( I - \x,y\) (x + a)

(1 - \x,y\) ((y+ (x-y)) + a)= (1 - ]χ,y\) (y +a)

But from Sb 2 5 and x + (y - x) = y +(pc - 3;), [x +(y - x)] + a = [y +(x - y)] + a

a n d h e n c e f r o m 5 b 2 7

(1 - \ x , y \ ) [ ( x + (y - x ) ) + α ] = (1 - Ur,y l ) [ (y + ( v - y ) ) + « ]

H e n c e

(i - U,y I) (x + a) = (1 - \x,y \)<y +a)

Thus we have derived the substitution for the function F(z) = z + a.
In the way, using Sb2i, Sb22, Sb23, Sb25, Sb27, we may obtain the substitu-

tion theorem for the initial functions u + v, u - v, u.v.
In the following proof of the substitution theorem for the function Rt(x),

I shall use theorems of the proportional calculus, which may easily be
proved by deriving their corresponding equations in recursive arithmetic.
The theorems concerned are

(1) (x = x') -> (Sx = Sx')

(2) (y = y')-*(Syf= (Sy'f
(3) (fr = x')&to=y'))-+ (Syf -Sx= (S3;')2- Sx'
(4) (pc=xr) & (Rt(x) = Rt (*'))-* p(x,Rt(x)) = p(?c',Rt(xr))
(5) (x=x')& (βt(x) = Rt(xr))-Rt(x)+ (1 - p(x,Rt(x))) = Rt(x')+(l~p(x',Rt(?cr))
(6) (*=#') & (fίt(x) = Rt(pcf)) — Rt(Sx) = Rt(Sx')

We now prove

((x = x') ->Rt(x) = Rt(x')) — (Sx = Sx' ->Rt(Sx) = Rt(Sx'))

with a,b,c standing for \χ,x'\ (and hence for \Sx,Sx'\, \Rt(x), Rt(x')\ ,
\Rt(Sx), Rt(x')\ respectively), we require to prove

(7) (1 1. (1 i f l ) i ) ( i ±a)c = O.
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From (6)

( I - (a + b))c = 0.

s o that

( i - (& + & ) ) ( ! - a)c = 0.

H e n c e

(I - a)c - b(l - a)c = 0

because a(l - a) = 0. Therefore

(8) ( i - α ) c ( Z - δ ) = 0 .

Hence

(9) (1- (1- a)b) (1 - a)c = (1 - α)c - (1 - α) (1 - α)δc
= (I - a)c - (i - a)bc
= (1 - a)c(l-b)
= 0

from (8). Therefore

(10) (* = x' -> itt(*r) = Λ φ ' ) ) -^ (Sx = Sxr -* Rt(Sx) = Rt(Sx'))

Now define P(x,xf) = (1 - \x,xr\)\ Rt(pc)9 Rt(pcr)\
Then, from (9),

P(pc,xr) = 0 -> P(5AΓ, SΛΓ') = 0.

But, from E3,

P(x,0) = (1 - x)\Rt(pc), Rt(O)\ = 0.

Similarly

P(0,x') = 0.

Hence, by l2,

P(x,x') = 0.

fr = x')-> {Rt(pc) = Rtx'}

We have now proved the substitution theorem for all the initial functions.

Now suppose the substitution theorem holds for the particular functions

f,g, i.e.

(11) x = y->f(?c)=f(y)

and

(12) x = y->g(?c)=g(y).

From Sbi and (11) we have

(13) g(?c) = g(y)->f(g(v))=f(g<y)).
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We now use the schema

(14) p-+q

which may be proved by a consideration of the corresponding equations in
recursive arithmetic.

Hence from (12), (13),

x = y-f(g<?)) =/{£&))

i.e. the substitution theorem is preserved under composition.
Now consider φ(pc) defined by the recursion φ(0) = 0, φ(Sx) = H(φ(x)) and

suppose the substitution theorem holds for H.
Define P(x,y) = (1 - \x,y\)\φ(?c), φ(y)\. Then, using E3

(15) P(x,O)= (1 -x)\φ(x) , φ(0)\ = 0

and

(16) P(O,Sy) = 0.

We now derive the result

(a =af) — {(6 = b')-> (a = b -> ar = b'j}.

As we observed above

(I - \x,y\)F(x + (y - x)) = (1 - \x,y\)F(x)

and so with F(x) = \x,t\

(1 - \x,y\)\x + (y - χ),t\ = (1 - 1^1)\x,t\.

Similarly

(i - k,yl) |y + <x-y), t\ = (1- \χ,y\)\y,t\

Using x + (y - x) = y + (x JL y)9 and the given special cases of Sb2 we obtain

(I - \x,y\)\x + (y - ΛΓ), t\ = (i - M D b + fc ~ y),ί| .

Hence

(17) (i - k , y | ) k , ί | = ( 2 - k,yl)|y,ίl

Now using (17) and rearranging factors

(1 - \a,a'\)(l - |6,6Ί) (2 - | α , δ | ) b ' , δ ' | = (I - |6,6' |)(i - \a,a'\)

(1 - \a,b\)\a,b\
= 0.

Hence

(18) a = a'->{b = δ ' - > (β = 6 - > α ' = b r ) } .

Replacing α,α f,5,6 f by H(φ(x)), φ(Sx)9 H(φ(y)), φ(Sy) respectively

H(φ(pc)) = φ(Sx) ->{H(φ(y)) = φ(Sy) - (ff(0W) = H(φ(y)) ->φ(Sx) = φ(Sy))}
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From the definition of φ, using modus ponens twice

H(φ(x)) = H(φ(y)) - φ(Sx) = φ(Sy)

Using the substitution theorem for H,

φ(?c) = φ(y)->H(φ(x)) = H(φ(y))

and hence by schema (14)

(19) φ(?c) = φ(y)->φ(Sx)=φ(Sy).

We now prove

(20) P(x,y)=0->P(Sx,Sy)=0.

With a, b, c standing for \x,y\, \φ(x), φ(y)\, \φ(Sx), φ(Sy)\ respectively there
is represented by the equation

(21) (1- (1- a)b) (1 - a)c = 0

With f(a) standing for the left hand side, f(Sa) = 0 and/(tf) = (l-b)c = 0 from
(19) and hence, using E3 f(a) = 0.

Now using l2 with conditions satisfied by (15), (16), (20), we obtain

x = y -• φ(x) = φ(y)

Hence the substitution theorem is preserved under the given recursion
and thus it holds for all recursive functions.

My thanks are due to Professor R. L. Goodstein for help and en-
couragement in the preparation of this paper.
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