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AXIOMATIZATION OF PROPOSITIONAL CALCULUS
WITH SHEFFER FUNCTORS1

THOMAS W. SCHARLE

The two binary functors of the (two-valued) propositional calculus
known as Sheffer functors have the property that all other functors are
definable by each of them.2 Hence, one is able to base a functionally
complete propositional calculus on either of these functors, and it is of
interest to axiomatize such systems, which is the main purpose of this
paper. We will employ the parenthesis-free notation of Lukasiewicz, in
which the Sheffer functors are given by

Dpq = NKpq, i.e., not both p and q
Spq = KNpNq, i.e., neither p nor q

It is well known that this problem has been investigated before. From
the first, it was seen that it would be easier to work with D rather than
with S, especially because 1) the shortest tautologies expressible with the
Sheffer functors are DDppp and SSSpppSSppp (indicating that tautologies
in S are generally longer than ones in D), and 2) the rules of detachment
can be made simpler for D: with D we are allowed such rules as

D1 DaDβγ D2 DaDβγ D3 DaDββ

a a a

Ύ β β

while with S, the simplest rules are of the sort

S1 SSSaβγδ S2 SSSaβγSSaβγ S3 SSSaaβγ

_a _a _a
γ γ β

For such reasons, all investigations have been for D axioms, using the
ruleDL 3

Following Nicod [6], the conventional rule of detachment for D is D1.
Clearly, this is a stronger rule than, say, D3, for we are allowed more
freedom in the first line. However, the only investigations carried out have
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been with the rule D1, and we continue the practice in this paper. For S,
we take the corresponding rule SI, which again is a quite strong rule.

As mentioned above, the aim of this paper is to give axioms for the
Sheffer functors. To establish the point that this is still necessary for D,
we devote the first section to the history of D axioms, and it will be shown
that no proof of completeness has been given for any of the famous axioms.

To fill the gap, in the second section we give a completeness proof.
Finally, in the third section we investigate the properties of S which show
the way to giving an axiom set for S, and a demonstration of the complete-
ness of the propositional calculus based on this axiom set.

J. Nicod intended to simplify the propositional calculus of Principίa
Mathematica by giving a system with only one undefined functor and a
single axiom, viz.:

DDpDqrDDtDttDDsqDDpsDps

and the rules of substitution and detachment. Other axioms, closely
related, have been given by Lukasiewicz [5]:

DDpDqrDDsDssDDsqDDpsDps
DDpDqrDDpDrpDDsqDDpsDps

and Wajsberg [12]:

DDpDqrDDDsrDDpsDpsDpDpq

from which they derived the axiom of Nicod.
From his basis, Nicod sketched deductions of what purported to be the

axioms of Principia Mathematica:

*1.2 CAppp
*1.3 CqApq
*1.4 CApqAqp
*1.5 CApAqrAqApr
*1.6 CCqrCApqApr

At points in Nicod's presentation, it is not clear what the steps are to be,
and a more detailed exposition was to be desired, as was given by
J. J^rgensen in [3], pp. 150-158. Unfortunately, there was an error
made in the derivation of *2.08, one of the early steps, the theorem DpDpp.
This error invalidated the subsequent steps4. Corrections were given by
Lukasiewicz [5], and shortly thereafter (and independently) by W. V. Quine
[9].

It was then noticed by B. A. Bernstein in [1] that in the demonstrations
of the axioms of Principia Mathematica, it was assumed that they were in
fact the formulas *1.2 - *1.6. This could not be the case, for the primitive
functors of this system are not implication and alternation but alternation
and negation, with implication being a defined functor. This would ordi-
narily be of no difficulty, except that it was also noted by Bernstein that the
definitions of alternation, negation, and implication by D given by Nicod
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were incompatible with the definitions given in Principia Mathematica. To
make this point clearer, let us arrange these definitions in a table:

DEFINIENDUM DEFINIENS AS GIVEN BY

NICOD PRINCIPIA MATHEMATICA BERNSTEIN

Np Dpp (undefined) Dpp

Apq DDppDqq (undefined) DDppDqq
Cpq DpDqq ANpq DDDppDppDqq
Kpq DDpqDpq NANpNq DDDDppDppDDqq-

DqqDDDppDppDDqqDqq

Bernstein went on to show that the equivalences between Nicod's and
his definitions obtained in Nicod's system, hence this point was cleared up.
This seems to be the end of any contributions to the problem.

But even now, there is another oversight, for to show the complete-
ness of an axiom set in one set of primitives, it is not sufficient to derive
another axiom set with a different set of primitives. To be specific, all
that can be claimed for any of the axioms for D is that one can prove that
there is a model for a complete propositional calculus contained in the
consequences of the axiom.5

It might be possible to finish a proof of completeness simply by filling
in a few steps, but it seems worthwhile to give a unified presentation, with
all deductions explicitly presented. Here we intend to do that, with the first
axiom of Lukasiewicz. Since this axiom is only a substitution in Nicod's
axiom, the argument given below is equally valid for Nicod's axiom, hence
also for any other system containing this axiom (and the rules). First of
all, we must obtain certain consequences of this axiom.6 In so doing, we
use a certain short-hand notation by way of indicating what substitutions
and detachments are performed: i. p/a, q/β, r/γ, . . . refers to the
formula resulting from formula number i when for p we substitute a, for
q, β, for r, y, etc. Given our rule of detachment, if a formula of the form
D i D j - k is a consequence of the axiom, and also formula number i, then
the formula numbered k is a consequence (here, the j serves no purpose as
far as the detachment is concerned).

1. DDpDqrDDsDssDDsqDDpsDps
1, p/DpDqr, q/DsDss, r/DDsqDDpsDps, s/t = Dl D6 - 2

2. DDtDsDssDDDpDqrtDDpDqrt
1, p/DtDsDss, q/DDpDqrt, r/DDpDqrt, s/w = D2 D6, t/w - 3

3. DDwDDpDqrtDDDtDsDsswDDtDsDssw
3, w/DpDqr, p/s, q/s, r/s, t/DDsqDDpsDps = Dl D4 - 4

4. DDDDsqDDpsDpsDtDttDpDqr
2, t/DDDstDDtsDtsDtDtt, s/t = D4, q/t, p/t, r/t D5-5

5. DDpDqrDDDstDDtsDtsDtDtt
5, p/DpDqr, q/DDstDDtsDts, r/DtDtt = D5 D7 - 6

6. DtDtt
1, P/t, Q/t, r/t = D6 D6, t/s - 7.
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7. DDstDDtsDts
7, s/t, t/Dtt = D6 D8 - 8

8. DDttt
7, s/Dst, t/DDtsDts = D7 D9 - 9

9. DDDtsDtsDst
1, p/DDtsDts, q/s, r/t, s/p = D9 D6, t/p - 10

10. DDpsDDDDtsDtspDDDtsDtsp
10, p/Dpp, s/p, t/s = D8, t/p Dll -11

11. DDDspDspDpp
7, s/DDspDsp, t/Dpp = Dll D12 - 12

12. DDppDDspDsp
1, p/Dpp, q/Dsp, r/Dsp, s/r = D12 D6, t/r - 13

13. DDrDspDDDpprDDppr
13, r/DpDqr, s/DtDtt, p/DDsqDDpsDps = Dl D14 - 14

14. DDDDsqDDpsDpsDDsqDDpsDpsDpDqr
7, s/DDsqDDpsDps, t/DpDqr = D14 D15 -15

15. DDpDqrDDDsqDDpsDpsDDsqDDpsDps
15, p/Dst, q/Dts, r/Dts, s/p = D7 DΪ6 - 16

16. DDpDtsDDDstpDDstp
7, s/DpDts, t/DDDstpDDstp = D16 D17 - 17

17. DDDDstpDDstpDpDts
16, p/DDDstpDDstp, t/p, s/Dts = D17 D18 - 18

18. DDDtspDDDstpDDstp
7, s/DDtsp, t/DDDstpDDstp = D18 D19 - 19

19. DDDDstpDDstpDDtsp
15, p/DpDqr, q/DDsqDDpsDps, r/DDsqDDpsDps, s/t =
D15 D2O - 20

20. DDtDDsqDDpsDpsDDDpDqrtDDpDqrt
20, t/DDDqsDDpsDpsDDqsDDpsDps = D19, p/DDpsDps, s/q, t/s

D21 - 21
21. DDpDqrDDDqsDDpsDpsDDqsDDpsDps

1, p/DDtsDts, q/s, r/t, s/p = D9 D6, t/p - 22
22. DDpsDDDDtsDtspDDDtsDtsp

22, s/Dpp = D6, t/p D23 - 23
23. DDDtDppDtDppp

7, s/DDtDppDtDpp, t/p = D23 D24 - 24
24. DpDDtDppDtDpp

1, p/DDtsp, q/DDstp, r/DDstp, s/q = D18 D6, t/q - 25
25. DDqDDstpDDDDtspqDDDtspq

25, q/DpDts, s/Dst, t/p, p/DDstp = D16 D26 - 26
26. DDDpDstDDstpDpDts

7, s/DDpDstDDstp, t/DpDts = D26 D27 - 27
27. DDpDtsDDpDstDDstp

21, p/DpDts, q/DpDst, r/DDstp, s/q = D27 D28 - 28
28. DDDpDstqDDDpDtsqDDpDtsq

28, P/Dts, q/DDDstDpqDDstDpq, s/p, t/q = D18, p/Dpq D29 - 29
29. DDDtsDqpDDDstDpqDDstDpq

1, p/DDtsDqp, q/DDstDpq, r/DDstDpq, s/r = D29 D6, t/r - 30
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30. DDrDDstDpqDDDDtsDqprDDDtsDqpr
30, p/t, q/Dpp, r/p, t/Dpp = D24 D31 - 31

31. DDDDppsDDppsp
7, s/DDDppsDDpps, t/p = D31 D32 - 32

32. DpDDDppsDDpps

We will work with certain substitutions in these laws:

8* = 8, t/Dpp = DDDppDppDpp
21*= 21, r/q, s/Drr = DDpDqqDDDqDrrDDpDrrDpDrrDDqDrrDDpDrrDpDrr
24* = 24, t/Dpp = DpDDDppDppDDppDpp
32* = 32, s/Dqq = DpDDDppDqqDDppDqq

Note that we can use the definitions of C and N, rewriting:

8#. CCNppp
21#. CCpqCCqrCpr
32#. CpCNpq

These last three laws are the well-known axiom set of Lukasiewicz [4] for
a complete propositional calculus. Moreover, it is obvious that the rules of
substitution and detachment for C and N hold in our system. So we know
that if any formula, is a tautology expressed in C and N, it follows from
these three, and a fortiori from the single axiom. Also, we know that CpNq
(i.e., DpDDqqDqq) has the same truth-values as Dpq, so that to every
tautology expressed in D, there is a corresponding tautology, expressed in
C and N, which is a consequence of the axiom. This can be expressed
more formally as:

Lemma: If a is a tautology (with D as the only functor), and β results
from a by replacing every part of a of the form Dγδ by DγDDδδDδδ, then β
is a consequence of axiom 1.

If we had the equivalence of Dpq and DpDDqqDqq and a rule for the
substitutability of equivalents, completeness would follow. So we define an
equivalence relation and show the required propositions.

Definition: a~β if and only if DaDββ and DβDaa are consequences of
the axiom.

From the definition we obtain immediately:

a~a (by 6)
If a ~β and β~γ then a~γ (by 21*)
If a ~β then β~a (by definition)
a ~ DDaaDaa (by 8* and 24*)

Lemma: If a~β, and γ results from δ by replacing some occurrence
of a by β, then γ ~δ.

Proof: (By induction)

If δ = a, then γ = β,and γ~δ.
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Suppose γo~δo, we show that Dγoε~Dδoε and Dεγ0~Dεδ^:

a) DγoDδoδo
b) DδoDγoΎo

c) DDγ0 εDDδoεDδoε (by 21* and a)
d) DDδoεDDγoεDγoε (by 2Z*and b)
e) DDDεδoDεδoDγoε (by 30 and c)
f) DDεγ0DDεδ0DεδQ (by 16 and e)
g) DDDεγ^Dεy^Dδ^ ε (by 30 and d)
h) DDεδ0DDεγQDεγ0 (by i£ and g)
i) Dγoε ~Dδ0 ε (by c and d)
j) Dεγo~Dεδo (by/ andh)

We can then show in an obvious way:

Lemma: If a is a consequence of the axiom, and β results from a by
replacing all occurrences of the form DDγγDγγ by γ, then β is a conse-
quence of the axiom.

Theorem: If a is a tautology, a follows from the axiom.

Having shown the completeness of an axiom set with D alone, we can
construct an axiom set for the functor S alone. In this section, we will
prove the theorem:

If a and β constitute a complete axiom set for D, with the rule for
detachment

DξDηζ

ζ

then

51. SSSSpSqSrsSpSppSSSStqStqStsSpSppa*

52. SSSSpqSpqSqpβ*

constitute a complete axiom set for S, with the rule for detachment

SSSξ*η*ζ*θ*

_I*
ζ*

where a* and β* are a and β, respectively, with every occurrence of "D" in
them replaced by "S".

This theorem requires for its proof a few lemmas. In the discussion to
follow, we will adopt these conventions:
1) Placing an asterisk after a formula indicates the replacing of every "D"
in it by an " S " .
2) The use of the rules of substitution and detachment are indicated in a
manner similar to that for D above, viz.:

m. p/a*, . . . = SSSn ( ) - k - ( )
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means: in thesis Sm,for "p" substitute a*, etc., obtaining a formula, from
which detach thesis Sn, yielding formula Sk as a thesis.

We prove the completeness of {SI, S2} by first drawing attention to the
fact that every proposition in S, say Sξ*η*f is tautologous if and only if ξ
and η are tautologies (in D). Then we can show by some straightforward
deductions that if ξ and η follow from a and β, then Sξ*η* follows from
Si and S2.

Lemma 1. Sζ*η* is a tautology if and only if ξ and η are tautologies.

Proof: Since S and D are mutually dual, ξ is true precisely when ξ* is
false. But Sζ*η* is true when ξ* and η* are both false, and conversely.

Lemma 2. If γ is deduced from a and β, then there is such a δ* that
Sδ*γ* is deducible from SI and S2.

Proof: By induction on the number of detachments from a and β to y.
i) If γ = a or γ - β, then Si or S2 satisfies the lemma.
ii) Suppose we deduce γ from DζDηγ&nά ξ, where we have (by induction
hypothesis) results from SI and S2;

53. Sζ*Sζ*Sη*γ*

54. Sθ*ζ*

Then we may proceed as follows:

1. P/ζ*. q/ξ*, r/η*, s/γ* = SSS3 ( ) - 5 - ( )
55. SSSStζ*Stζ*Stγ*Sζ*Sζ*ζ*

5. t/θ*= SSS4 ( ) -6 - ( )
56. Sθ*γ*

The induction is completed.

Lemma 3. If ε and ζ are tautologies, then Sε*ζ* is provable.

Proof: Since ε and ζ are true, there are formulas γ and δ which are
true, and such that

S9. Sγ*ε*

510. Sδ*ξ*

are provable. Likewise,

λ = DDDγεDγεDDDDδζDδζDεζDpDpp

is true, whence for some η,

57. Sη*λ*

and detach:

2, p/η*, q/λ*=SSS 7 ( ) - 8 - ( )

58. Sλ*η*
8 = SSS 9 ( ) - l l - ( )

511. SSSSδ*ζ*Sδ*ζ*Sε*ζ*SpSpp
11 =SSS 10 ( ) - 1 2 - ( )

512. Sε*ζ*
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Theorem. If a and β are complete axioms for D, then SI and S2 are
complete axioms for S.

Proof: We may see from lemma 1 and inspection that SI and 32 are
true; and by lemmas 1 and 3, every true proposition follows from Si and
S2.

By applying this theorem to the results for D, we arrive at the
following two-axiom set:

SSSSpSq&rsSpSppSSSStqStqStsSpSppSpSpp
SSSSpqSpqSqpSSpSqrSSsSssSSsqSSpsSps

The question of the independence of the axioms is left open.
The theorem may be generalized for different rules of detachment,

with essentially the same proof. Without providing all of the steps re-
quired, which for the most part are identical to those given above, we can
point out that

DpDpp
DDpDqqDDDsqDDpsDpsDDsqDDpsDps

are an axiom set for D with the rule of detachment D3, hence, by this
generalization

SSSSpSqSrsSpSqSrsSSSStqStqStsSStqStqStsSpSpp
SSSSpqSpqSqpSSpSqqSSSsqSSpsSpsSSsqSSpsSps

are an axiom set for S with the rule of detachment S3.

NOTES

1. The author would like to thank Prof. B. Sobociήski, especially for pointing out the
paper [5] of Lukasiewicz and for suggesting the problem of axiomatization of 5.

2. C. S. Peirce discovered these two functors ca. 1880, but his discovery was not
published until 1933 - see [7] par. 12-20 and 264-265, wherein it is shown that all
binary functors are definable with either functor. The first published indication of
this property was by E. Stamm [11], and later, more explicitly, by H. M. Sheffer [10].
E. Zylinski [13] then showed that this holds for no other binary functor. He also
pointed out that no proof had been published that all functors (ternary, quaternary,
etc.) were definable (Peirce claimed this to be true in [7] par. 265). For such a proof,
we can only refer to a proof of functional completeness as given in, say, E. L. Post
[8] or A. Church [2].

3. See J. Nicod [6], p. 40. We should qualify these remarks to the extent that some
logicians, Sheffer for one, used S in the basis for a Boolean algebra, but since S and
D are duals, a Boolean algebra based on one is isomorphic to a Boolean algebra
based on the other, i.e., the two functors are indistinguishable.

4. The error was first detected by S. Lesniewski in the work of Nicod — see [5], ad init.
Quine, in the work mentioned below, contended that the error was not Nicod's, and
that the deductions given by Quine were the ones indicated by Nicod. For the record,
we should mention that two other errors occur in the presentation of J^rgensen:
1) an improper substitution at step (98) in the deduction of *1.5 (p. 155), and 2) un-
warranted use of the rule: from a and β to infer Kaβ, in the deductions of the
equivalences *1.01, *4.13, *3.01, which are respectively the definition of implication



AXIOMATIZATION OF PROPOSITIONAL CALCULUS 217

by negation and alternation, the law of double negation, and the definition of conjunc-
tion by negation and alternation.

5. Suppose that we translate every tautology of C and N into a tautology of D by the
definitions Cpq = DpDqq and Np = Dpp. Then it can easily be checked that the result-
ing formulas are all verified by the matrix

12 3
13 11
2 1 1 1
3 13 1

where 1 is the designated value truth, while the tautology DDpqDDqpDqp is not
verified. Hence it is independent of any C-N axiom system.

6. The steps here shown are largely adapted from [5] and from [3].
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