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ON INDUCTION

ROLF SCHOCK

Philosophers whoworry about induction generally take for granted that
induction is something like deduction, but carried out by means of certain
peculiar inductive axioms or inference rules. Of course, deductive logic
can be extended in a certain way into a sound and semantically complete
logic of probabilities’. Nevertheless, such a logic of probabilities cannot
justly be called an inductive logic since it is entirely deductive; that is, the
so-called inductive inferences (from sample to population and so on) are
not provable in it. Moreover, if the inductive inferences were provable in
such a logic of probabilities, then, since most of them have innumerable
counterinstances, there would be no good sense in which that logic would be
sound. All of this suggests that the usual approach made to induction by
philosophers is misguided.

A quite different approach was made by R. Carnap® although he con-
structed a theory which he called inductive logic, his theory is in fact an
extension of deductive metamathematics. Moreover, Carnap’s inductive
logic is an extension of that part of metamathematics which deals with con-
cepts having to do with the interpretation of object language expressions. In
other words, Carnap’s inductive logic is a branch of semantics.

In this paper, we follow Carnap in dealing with induction semantically;
however, the theory of induction which we construct is somewhat different
from the one constructed by Carnap. Also, since our theory is both deduc-
tive and within semantics, we refrain from calling it either inductive or a
logic.

1. SYMBOLS, TERMS, AND FORMULAS

Our object language contains the following symbols:

(1) the logical constants w(‘not’), —(‘only if’), a(‘and’), v(‘or’),
<>(‘if and only if’), 1(‘the’), A(‘for any’), V(‘for some’), and I (‘is iden-
tical with’); we call the first five of these sentential connectives and the
next three variable binders;

(2) a denumerable infinity of distinct

(a) individual variables,
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(b) individual constants, and

(c) predicates of any positive number of places.

By {} (‘the empty set’) and € (‘is a member of’), we mean the first
individual constant and second 2-place predicate respectively. We under-
stand I to be the first 2-place predicate. ,

We use the symbols ‘<’, >’ and ‘{’, ‘}’ in the metalanguage to mark
the boundaries of non-empty finite sequences and sets respectively. The
letter ‘m’ will be used as a metalinguistic variable ranging over positive
integers. Terms and formulas will be understood as follows:

(1) all variables and individual constants are terms;

(2) for any m-place predicate p and m-term sequence of terms £,
<pt> is a formula; and

(3) for any variable v and formulas f and g.

(a) <1uf> is aterm and

(b) <Wf>,<f—g> <fag>, <fvg> <feg> <Ayf>
and < Vof > are formulas.

In what follows, we omit sequence marks according to the usual con-
ventions for the omission of parentheses and write two-place predicates be-
tween their arguments instead of in front of them. Given terms ¢ and # and
a term or formula f, we understand freedom and PStuf (the result of prop-
erly substituting # for « in f) as follows:

(1) if u =f, then u is free in f and PStuf =

(2) if u % f, then

(a) if f is a variable or individual constant, then u is not free in
f and PStuf = f;

(b) for any m-place predicate p and m-term sequence of terms v,
if f = <pv>, then u is free in f just in case u is free in some member of
the range of v and PS#uf = <p the m-term sequence w such that w(i) =
PStuv(z) for any ¢ in the domain of w >}

(c) for any sentential connective ¢ and formula g and %,

(1) if f=<cg>, then u is free in f just in case u is free ing
and PStuf = <cPSfug > and

(2) if f=<gch>, then u is free in f just in case u is free in
either g or % and PS#uf = <PSitugcPStuk >; and

(d) for any variable binder b, variable v, and formula g, if f=
<buvg >, then u is free in f just in case u is free in g and v is not free in
u and

(1) if » is not free in f, then PStuf =7f;
(2) if » isfree in f, then
(a) if v is not free in #, then PS#uf = <bvPStug > and
(b) if v isfree in ¢ and w is the first variable not occur-
ring in either f or £, then PStuf = <bwPStuPSwuvg > .

2. INTERPRETATION AND TRUTH
By an interpreter, we mean a function ¢ of the following kind:

(1) the domain of 7 = the set of all individual constants, predicates,
sentential connectives, and variable binders;
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(2) there is a set s such that

(a) for ary individual constant c, i(c) is in s;

(b) for any m-place predicate pﬁ,b i(p) is included in the set of all
m-term sequences whose ranges are included in s;

(c¢) 4({}) = the empty set, i{(I) = the set of all 2-term sequences 7
such that, for some x in s, v = <xx>, and i(€) = the set of all  such that,
for some x and y in s, y is a set, x is a member of y, and » = <xy>;

(d) (1) = the function d such that the domain of d = the set of all
subsets of s and, for any # in the domain of d, either there is just one ob-
ject g in 7 and d(7) = q -or there is not just one object in » and d(r) = the
empty set;

(e) i(A) = the function « such that the domain of « = the set of all
subsets of s and, for any # in the domain of u, either » =s and u(7) = 1 or
v # s and u(v) = 0;

(f) 4(V) = the function e such that the domain of e = the set of all
subsets of s and, for any 7 in the domain of e, either 7 is not empty and
e(v) = 1 or 7 is empty and e(¥) = 0; and

(3) for any sentential connective c.

(a) if ¢ = w, then i(c) = the function whose domain is {01} and
which assigns 1-f toany ¢ in its domain and

(b) if ¢ # ~, then #(c) is the function f whose domain is the set of
all 2-term sequences whose ranges are included in {01} such that, for any
t and u in {01}, f (<#u>) = the n such that either ¢ = — and » = the small-
est member of {1, (I-t) +u} or ¢ = and » = the smallest member of
{#u} or ¢ = v and n = the greatest member of {#fu}or ¢ =<>and n = ( 1-the
greatest member of {#fu}) + the smallest member of {fu}.

Given an interpreter ¢, we understand Ui (the universe of i) to be the
set satisfying (2) above with respect to ¢. If x is included in U:Z and the
empty set is in x, then Red ix (the reduction of 7 to x) is the interpreter j
such that

(1) for any individual constant ¢, either #(c) is in x and j(c) = i(c) or
not and j(c) = the empty set and

(2) for any predicate p, j(p) =the set of all s in #(p) such that the
range of s is included in x.

If £is a term or a formula, then a is an assigner for £ by ¢ just in case
a is a function such that

(1) every variable which occurs in # is in the domain of a,

(2) the domain of a is included in the set of all variables, and

(3) the range of @ is included in Ui.

We say that a is a proper assigner for £ by ¢ just in case a is an as-
signer for £ by 7 and the domain of a = the set of all variables which occur
in #. Given an assigner for ¢ by 7 a, variable v, and z in Ui, a(%) is the
assigner for ¢ by ¢ b such that b is a with the pair v, a(v) removed and the
pair v,z added in its place.

Given an assigner for f by i a, we understand Int ia(¢) (the interpreta-
tion with respect to 7 and a of ) as follows:
(1) if ¢ is a variable, then Int ia (¢) = a(t);
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(2) if ¢ is an individual constant, then Int ia (¢) = i(£);
(3) for any m-place predicate p.and m-term sequence of terms u, if
t =<pu>, then Int ia(¢) = the z such that either the m-term sequence s
such that, for any j in the domain of s, s(j) = Int ia («(j)) is in ¥p) and z = 1
or not and z =0; and
(4) for any formulas f and g, sentential connective c, variable v, and
variable binder b,
(a) if t = <cf>, then Int ia (¢) = (i(c))(Int ia (f));
(o) if t = <fcg>, then Int ia (¢) = (i (c))(<Int ia (f)Int ia (g)>);and
(c¢) if ¢ = <buf >, then Int ia (¢) = (i(b))(the set of all z in Ui such
that Int ia (%) (f) = 1).

Given a formula f and interpreter i, we say that f is true by ¢ just in
case, for any proper assigner for f by ¢ a, Int ia (f) = 1.

3. THE PRINCIPLE OF INDUCTION

Given a formula f, interpreter ¢, and finite subset of Ui x such that the
empty set is in x, we understand Txi(f) (the degree of truth in x by ¢ of f)
to be the z such that, for some %2 and [,

(1) % = the number of members of the set of -all proper assigners for f
by Red ix a such that Int (Red ix) a (f) = 1,

(2) 1 =the number of members of the set of all proper assigners for f
by Red ix, and

(3) z = the fraction 2/1.

This definition® embodies the principle that, if a formula f holds among
the members of a finite set x of objects, then, on the basis of what we know
from x, f holds in general. In other words, our definition of degree of truth
can be understood as an exact and strengthened formulation of the principle
of induction. In what follows, we call the definition the principle of induc-
tion. A consequence of this identification is the disappearance of the prob-
lem of justifying induction; just like any other definition, the principle of
induction is simply a convention which establishes how we shall use certain
expressions. We are, however, left with the problem of how far we can go
towards identifying maximal degree of truth with respect to a finite sample
x with truth before this identification can lead us into error. The answer
is, of course, that this identification almost always can lead us into error
and so that it is usually advisable to refrain from making it. We can act on
the basis of maximal degree of truth with respect to a finite sample without
trying to delude ourselves into believing that it is always the same as truth.

4. THE PRINCIPLE OF INDUCTION AND MILL’S CANONS
In his System of Logic, J. S. Mill listed five statements which are to

guide us in our search for laws among the facts of experience. These, the
famous five canons of induction, were expressed by Mill as follows*:
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(1) If two or more instances of the phenomenon under investigation
have only one circumstance in common, the circumstance in which alone all
the instances agree is the cause (or effect) of the given phenomenon.

(2) ¥ an instance in which the phenomenon under investigation occurs
and an instance in which it does not occur have every circumstance in com-
mon save one, that one occurring only in the former, the circumstance in
which alone the two instances differ is the effect, or the cause, or an in-
dispensable part of the cause, of the phenomenon.

(3) If two or more instances in which the phenomenon occurs have only
one circumstance in common, while two or more instances in which it does
not occur have nothing in common save the absence of that circumstance,
the circumstance in which alone the two sets of instances differ is the
effect, or the cause, or an indispensable part of the cause, of the phenomen-
on.

(4) Subduct from any phenomenon such part as is known by previous
inductions to be the effect of certain antecedents, and the residue of the
phenomenon is the effect of the remaining antecedents.

(5) Whatever phenomenon varies in any manner whenever another
phenomenon varies in some particular manner is either a cause or an effect
of that phenomenon, or is connected with it through some fact of causation.

Mill believed that the canons embodied five methods (those of agree-
ment, difference, agreement and difference, residues, and concomitant var-
iations respectively) of finding laws of nature.

If we understand Mill’s phenomena, circumstances, and antecedents to
be sets and his causes to be sets memberships in which are necessary con-
ditions, then, with the aid of the principle of induction, we can prove a se-
mantic analogue to the conjunction of the five canons. Suppose that 7 is an
interpreter, s is a finite subset of Ui of which the empty set is a member,
the set of all members of sets in Ui is included in UZ, a through e are dis-
tinct individual constants, and x and y are distinct variables. Obviously,
Tsi(KVx xeav al{}> aAy<yee — Vx xeyv yI{ }> rbee aAx<xea—-xeb>)
= 1 when one of the five following formulas is true by Red is:

(1) <Vxxeaval{}>aAy<yee - Vxxeyvyl{}> abeeraAx<xea
— xeb> AN y<yee aAx<xca — xey> —yIb>

(2) <Vxzxeaval{}>aAhy<yee - Vxxeyvyl{}>arbeerrAx< xea
- xeb>aAx<wvxea— vxeb> aAy<yee anvyld - <Ax<xea — x€y >
<« Ax<wxea — xey >

3) <Vxxeaval{}>rAy<gyee -Vxxeyvyl{}>abee aAx<xe€a
— xeb>ahNy<yeernAx<xea — xey>— yIb>aAy <yee aAx < wvxea
— xey> - Ax<xeye>nwxeb>

(4) <Vxxeaval{}>raAy<yee > Vxxey vxyl{}>/\ bee Acee
rdee n Ny<yee = <Ax<xec > xey> <> Ax<xey <> xed> aAy<
yee - <Ax<xecrxea— xey> <> Ax<xey<>xeda xeb >> Ahy <L
yee - <Ax<xea — xey> <> Ax<xey<>xec>

(5) <Vxxeaval{}>aAy<yee - VxxeyvyI{}> abee aAx
<xea<>xeb>
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The formulas (1), (2), (3), and (5) are restricted set-theoretical ana-
logues to the conditions of the first, second, third, and fifth canons respec-
tively while (4) is a restricted and corrected set-theoretical analogue to the
condition of the fourth canon. <Vx xeaval{}>rAy<yee - Vxxeyvyl
{}>arbeenaAx<xea — xeb>is a set-theoretical analogue to the asser-
tion that b is a cause among the circumstances e of the phenomenon a.

Notice that, if one of (1) through (4) is true by Red is, then it also fol-
lows that Tsi(bI1y <V x xeaval{}>aAy <yee -V xxeyvyl{}>ayece
AANx<xea — xey>>)=1. Since the just mentioned formula is a set-
theoretical analogue to the assertion that b is fhe cause among the circum-
stances e of the phenomenon a, this result fits Mill’s words more closely
than the previous one with respect to the first four canons.

5. THE PRINCIPLE OF INDUCTION AND INDUCTIVE INFERENCES

The principle of induction can also be used for the proof of semantic
analogues to certain of the so-called inductive inferences. Let i, s, a, b, c,
x, and y be as in the previous section, ¢ be a term, and f be a formula whose
only free variable is x. It can then be shown that

(1) if, for any finite subset of Ui » such that the empty set is in 7, f is
true by Red ir, then Tsi(f) = I;

(2) if f is true by Red is, then Tsi(f) = 1;

(3) if f is true by Red is, then Tsi(A xf) = I;

(4) if f is true by Red is, then Tsi(PS#xf ) = 1; and

(5) f Ax<xec =<VyyexvxI{}>ar<aex <> bex>> is true by
Red is, then Tsi(Ax <xeca<VyyexvxI{}> A aex — bex>) =1.

*(1) through (5) represent the inferences from .population to sample,
from sample to population, from sample to universal generalization, from
sample to instance, and by analogy respectively.

NOTES

1. One such extension was discussed by the author in ‘On probability logics’
(Notre Dame Journal of Formal Logic, vol. 6, 1965).

2. The curious reader is referred to Carnap’s books The Logical Founda-
tions of Probability (Chicago, 1950) and The Continuum of Inductive
Methods (Chicago, 1952).

3. The definition is an adaption to standard semantics of the definition of
degree of truth given by the author in‘Contributions to syntax, semantics,
and the philosophy of science’ (Notre Dame Journal of Formal Logic,
vol. 5, 1964).

4. The canons are quoted from E. Nagel’s edition John Stuart Mill’s Phil-
o0sophy of Science (New York, 1950).
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