ON PREDICATE LETTER FORMULAS WHICH HAVE NO SUBSTITUTION INSTANCES PROVABLE IN A FIRST ORDER LANGUAGE.

KENNETH WESTON

We shall investigate the following question in this discussion. Does there exist an algorithm A which operates on a recursively enumerable formal system S couched in the first order predicate calculus P (say the formulas of S are constructed from logical symbols of P with predicate and individual symbols from given finite or infinite lists) such that if S is simple consistent, then A(S) is a satisfiable predicate letter formula which has no substitution instance provable in S? A partial solution is given in the theorem below. The notation used is from [1].

Theorem 1 (Kleene): For every recursively enumerable and simple consistent formal system S, couched in the first order predicat calculus, there is a satisfiable formula F of P where F has no substitution instance provable in S and F can be effectively found, given S.

The following proof is due to S. C. Kleene in [2]. We shall repeat the argument here, since [2] is not readily available.

Because S is recursively enumerable, we can enumerate recursively all the provable formulas of S. From each provable formula of S we can recover the finitely many formulas of P of which it is a substitution instance. Thus we can recursively enumerate the formulas of P which have substitution instances provable in S. Suppose the formulas of P in this enumeration are: F_0, F_1, F_2, \ldots Then

1) F_i is satisfiable (i=0, 1,2,...),

for if F_i were not satisfiable, then $\neg F_i$ would be valid and hence provable in P by Gödels completeness theorem. So if F_i^* is any one of the substitution instances of F_i , which is provable in S, we would have $\neg F_i^*$ also provable and thus S is not simple consistent.

Consider the predicate $T_1(x,x,y)$ in [1, p.281] and the formulas K_x in [1, p.434, Remark 2] for $R(x,y) \equiv T_1(x,x,y)$.

2)
$$(y)\overline{T}_1(x,x,y) \equiv (\overline{Ey})T_1(x,x,y) \equiv [K_x \text{ is unprovable in P}]$$

 $\equiv [K_x \text{ is not valid}] \equiv [\neg K_x \text{ is satisfiable}]$

We can now go through the enumeration: F_0 , F_1 , F_2 , . . . and examine each F_i to tell whether it is $\neg K_x$ for some x. (This can effectively be done since the number of symbols in $\neg K_x$ is larger than x.) Therefore we get a recursively enumerable class of numbers x, $(\widehat{x}(Ey)R(x,y))$ with R(x,y) a recursive predicate), consisting of those x's for which $\neg K_x$ is in the enumeration: F_0 , F_1 , F_2 , We have shown that R(x,y) can be effectively found given S. For each such x, $\neg K_x$ is satisfiable by 1) and hence by 2) $(y)\overline{T}_1(x,x,y)$. Thus

3)
$$(Ey)R(x,y) \rightarrow (y)\overline{T}_1(x,x,y)$$
.

By [1, Thm. IV, p. 281] there is a number f (which can be effectively found from R using the method in the proof of Thm IV) such that

4)
$$(Ey)R(x,y) \equiv (Ex)T_1(f,x,y).$$

Hence

5)
$$(\overline{Ey})R(f,y) \equiv (\overline{Ey})T_1(f,f,y) \equiv (y)\overline{T}_1(f,f,y).$$

Suppose (Ey)R(f,y). Then by 3), (y) $\overline{T}_1(f,f,y)$ and hence by 4), (\overline{Ey})R(f,y), contradicting the assumption. Thus

6)
$$(\overline{Ey})R(f,y)$$
,

and hence by 5)

7)
$$(y)\overline{T}_1(f,f,y)$$
.

Thus by 6), $\neg K_f$ is not in the enumeration: F_0 , F_1 , F_2 , ... (i.e. no substitution instance of $\neg K_f$ is provable in S). But by 7) with 2), $\neg K_f$ is satisfiable. Thus $\neg K_f$ is an F for the theorem. (i.e. there is an algorithm A such that if S is simple consistant then A(S) is $\neg K_f$ and $\neg K_f$ is an F for the theorem).

Now notice how A(S) acts if S is not simple consistent. First of all, the set $\widehat{\mathbf{x}}(\mathrm{Ey})\mathbf{R}(\mathbf{x},\mathbf{y})$ consists of all of the integers. Hence if f is a number such that $(\mathrm{Ey})\mathbf{R}(\mathbf{x},\mathbf{y}) \equiv (\mathrm{Ey})\mathbf{T}_1(f,\mathbf{x},\mathbf{y})$ we have $(\mathrm{Ey})\mathbf{T}_1(f,f,\mathbf{y})$, since $f \in \widehat{\mathbf{x}}(\mathrm{Ey})\mathbf{R}(\mathbf{x},\mathbf{y})$. But his means by 2),

$$[K_f \text{ is provable in } P] \to K_f \text{ is valid } \to \neg K_f = A(S) \text{ is not satisfiable.}$$

Consequently if S is not simple consistent then A(S) is not satisfiable. The following theorem is a generalization of this.

Theorem 2. There is no algorithm A(S) which operates on recursively enumerable formal systems S couched in P, such that A(S) always produces satisfiable predicate letter formulas and if S is simple consistent then A(S) has no substitution instance provable in S.

To prove the theorem we construct a sequence of formal systems: S_1 , S_2 , S_3 , . . . , each of which has the properties described in the theorem, but the existence of any algorithm defined on this system having the properties described in the theorem leads necessary to a contradiction.

If Q is a formal system, it is convenient to abbreviate the statements;

F is a formula of Q and F is a provable formula of Q, by $F \in Q$ and $f \in P$ respectively. Should g be a formal object of P, let [g] designate its Gödel number.

Suppose that R represents Robinson's number theoretic formal system in [1, Lemma 18b, 49]. By [1, Thm. 43(b)] there is a number theoretic system R' couched in the same symbols as R except the function symbols for addition, multiplication and the successor function are replaced by predicate symbols (say the successor function is replaced by (,)), and we can find a correspondence θ between R and R' such that;

- (i) $F \in R \rightarrow F^{\theta} \in R'$
- (ii) $F(x) \in R$, where x occurs free \rightarrow for all integers n we can find variables x_1, \ldots, x_n such that $(F(n))^{\theta}$ is $\exists x_1 \exists x_2 \ldots \exists x_n ((0,x_1) \& (x_2,x_3) \& \ldots \& (x_{n-1},x_n) \& F^{\theta}(x_n))$ where n is the corresponding numeral for n
- (iii) $\vdash^{\mathbf{R}} \mathbf{F} \equiv \vdash^{\mathbf{R}'} \mathbf{F}^{\theta}$

For $i = 0, 1, 2, \ldots$ we define a recursively enumerable formal system S_i by adding the following formalism to R'.

- (a) Individual symbols (numerals): 0, 0, 0, 0, ...
- (b) Predicate symbol: G()
- (c) Formation rule: If t is a term then G(t) is a formula
- (d) Axioms:

Suppose that $F(x_1, \ldots, x_n)$ ε P contains only the variables x_1, \ldots, x_n free. If $f = [F(x_1, \ldots, x_n)]$, let $F_f([x_1], \ldots, [x_n])$ designate the formula which results from $F(x_1, \ldots, x_n)$ by replacing every occurrence of x_i with $[x_i]$ (i=1, ..., n). Then for each such f we have the axioms:

$$I(f): G(f) \sim F_f([x_1], \ldots, [x_n])$$

where f is the numeral corresponding to f. (Notice, since it can be effectively decided whether an integer f is the Gödel number of a formula of P, axioms I(f) can be recursively enumerated.)

Consider now the enumeration predicate $(Ey)T_2(z,x_1,x_2,y)$ in [1, p. 281]. From [1, ex. 2, p. 305] we can find a formula $T(z,x_1,x_2)$ ε R such that for all natural numbers n,m,p where n,m,p are the corresponding numerals respectively, we have

for variables: $x_1, \ldots, x_n, y_1, \ldots, y_m, z_1, \ldots, z_p$ having no occurrence in $T^{\theta}(z,x_1,x_2)$.

Suppose that the variables: x, y_1, \ldots, y_n have no occurrence in $T^{\theta}(z,x_1,x_2)$. Then for $n=1,2,3,\ldots$ we have,

$$\Pi_1(n)$$
: $\exists y_1 \dots \exists y_n \ ('(0,y_1) \& \dots \& '(y_{n-1},y_n) \& T^{\theta}(y_n,x_1,x_2)) \omega T^{\theta}(n,x_1,x_2)$

$$II_{2}(n): \exists y_{1} \ldots \exists y_{n} ('(0,y_{1}) \& \ldots \& '(y_{n-1},y_{n}) \& T^{\theta}(z,y_{n},x_{2})) \hookrightarrow T^{\theta}(z,n,x_{2})$$

 $II_{3}(n): \exists y_{1} \ldots \exists y_{n} ('(0,y_{1}) \& \ldots \& '(y_{n-1},y_{n}) \& T^{\theta}(z,x_{1},y_{n})) \hookrightarrow T^{\theta}(z,x_{1},n)$
(n is the numeral corresponding to n),

$$III_i \quad \forall x (T^{\theta}(i, i, x) \supset G(x))$$

(i is the numeral corresponding to i).

Thus for all natural numbers n, m, p where n, m, p are the corresponding numerals respectively, we have by $II_1(n)$, $II_2(m)$, $II_3(p)$ and 8)

$$(9) \quad (EY) T_2(n,m,p,y) \equiv \stackrel{S_i}{\vdash} T^{\theta}(n,m,p).$$

We shall now return to the proof of Theorem 2.

Suppose their exists an algorithm A as described in the theorem. Then the correspondence between S_i and F_i , where $A(S_i) = F_i$, determines a general recursive function $f(i) = [F_i]$. Let g be the Gödel number of f(i). In order to show that S_g is simple consistent, it is necessary to prove the following lemma.

Lemma 1. Suppose $F \in P$ where F contains free only the variables: x_1, \ldots, x_n and contains the predicate symbols $A_1(\ell_1), \ldots, A_k(\ell_k)$. $(A_i(\ell_i)$ is a predicate symbol where the number of attached variables is equal to the natural number $\ell_i \ge 0$, $i = 1, \ldots, k$.) Then if F is satisfiable we can find number theoretic predicates: $A_1(\ell_1), \ldots, A_k(\ell_k)$, for arbitrary natural numbers; y_1, \ldots, y_n such that: $y_1, \ldots, y_n, A_1(\ell_1), \ldots, A_k(\ell_k)$ satisfy F.

We may regard F as a logical functional $F(x_1, \ldots, x_n, A_1(\ell_1), \ldots, A_k(\ell_k))$ defined by the truth tables for: \supset , &, V, \cap , \exists and \forall with $\{t,f\}$ constituting the range, where x_1, \ldots, x_n vary over the natural numbers and $A_1(\ell_1), \ldots, A_k(\ell_k)$ vary over number theoretic predicates. Thus since F is satisfiable we have

$$F(z_1, \ldots, z_n, A_1(\ell_1), \ldots, A_k(\ell_k)) = t$$

for some natural numbers: z_1, \ldots, z_n and number theoretic predicates: $A_1(\ell_1), \ldots, A_k(\ell_k)$ whose domains are the natural numbers. Of course we make no restriction that $z_i \neq z_j$, $i \neq j$. Now define the following function

$$h_i(x) = \begin{cases} z_i & \text{of } x = y_i \\ y_i & \text{if } x = z_i \\ x & \text{otherwise} \end{cases}$$

Let $A_i^*(\ell_i)$ (i = 1, ..., k) be the predicate which results from $A_i(\ell_i)$ by replacing every occurrence of the variables corresponding to: $x_1, ..., x_k$ with: $h_1(x_1), ..., h_k(x_k)$ Therefore

$$F(y_1, \ldots, y_n, A_1^*(\ell_1), \ldots, A_k^*(\ell_k)) = F(z_1, \ldots, z_n, A_1(\ell_1), \ldots, A_k(\ell_k)) = t$$
 and the lemma is proved.

We can show that S_g is simple consistent by finding a model for it. This we do now.

First observe that for any assignment of number theoretic predicates to the predicate symbols of P the axioms I(f), under the intuative inter-

pretation of the logical symbols, allow to define a number theoretic predicate G(x). If we assign only predicates whose domains consist of all the natural numbers to the predicate symbols of P we observe that the domain of G(x) are all Gödel numbers of formulas of P. Also under the intuative interpretation of the successor and enumeration predicate we obviously have a model for axioms: $II_1(n)$, $II_2(n)$, $II_3(n)$ $(n=1,2,3,\ldots)$. Suppose $F(x_1,\ldots,x_n,A_1,\ldots,A_k) \in P$ where: A_1,\ldots,A_k are all the predicate symbols and only the variables x_1,\ldots,x_n occur free. Suppose also that $[F(x_1,\ldots,x_n,A_1,\ldots,A_k)] = f(g)$. Since by assumption $F(x_1,\ldots,x_n,A_1,\ldots,A_k)$ is satisfiable there are number theoretic predicates: A_1,\ldots,A_k , by Lemma 1, such that $F([x_1],\ldots,[x_n],A_1,\ldots,A_k) = t$. Now assign any number theoretic predicates to the predicate symbols of P except to the predicate symbols: A_1,\ldots,A_k assign: A_1,\ldots,A_k . We shall interpret $T^{\theta}(z,x_1,x_2)$ of course as the predicate $(EY)T_2(z,x_1,x_2,y)$. Since g is the Gödel number of the function f(i) we have

$$(x) ((EY) T_2(g,g,f(g),y) \& x \neq f(g) \rightarrow (EY) T_2(g,g,x,y))$$

But under the assignment to the predicate symbols of P we have that G(f(g)) is true. Thus

$$(x)$$
 $((EY)$ $T_2(g,g,x,y) \rightarrow G(x))$

and axiom III_g is satisfied.

Thus by 9) and modus ponens on axiom III_g we have,

$$\vdash^{S_g} G(f(g))$$

and by I(f(g)),

$$\stackrel{S_g}{\vdash} F_{f(g)}([x_1], \ldots, [x_n]).$$

where f(g) is the numeral for f(g). But $F_{f(g)}$ ($[x_1], \ldots, [x_n]$) is a substitution instance of $F(x_1, \ldots, x_n)$ and we have a contradiction.

REFERENCES

- [1] S. C. Kleene, Introduction to Metamathematics, D. Van Nostrand, Co., 1952.
- [2] S. C. Kleene, Memorandum on non-satisfiable Formula, June 1955.

University of Notre Dame Notre Dame, Indiana