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ON PREDICATE LETTER FORMULAS
WHICH HAVE NO SUBSTITUTION INSTANCES
PROVABLE IN A FIRST ORDER LANGUAGE.

KENNETH WESTON

We shall investigate the following question in this discussion. Does
there exist an algorithm A which operates on a recursively enumerable
formal system S couched in the first order predicate calculus P (say the
formulas of S are constructed from logical symbols of P with predicate and
individual symbols from given finite or infinite lists) such that if S is
simple consistent, then A(S) is a satisfiable predicate letter formula which
has no substitution instance provable in S? A partial solution is given in the
theorem below. The notation used is from [1].

Theovem 1 (Kleene): For evevy vecursively enumevable and simple
consistent formal system S, couched in the first ovdev predicat calculus,
there is a satisfiable formula ¥ of P where F has no substitution instance
provable in S and F can be effectively found, given S.

The following proof is due to S. C. Kleene in [2]. We shall repeat the
argument here, since [2] is not readily available.

Because S is recursively enumerable, we can enumerate recursively
all the provable formulas of S. From each provable formula of S we can
recover the finitely many formulas of P of which it is a substitution in-
stance. Thus we can recursively enumerate the formulas of P which have
substitution instances provable in S. Suppose the formulas of P in this
enumeration are: Fy, F,, F;, . ... Then

1) F; is satisfiable (i=0, 1,2, ...),

for if F; were not satisfiable, then 71F; would be valid and hence provable in
P by Gddels completeness theorem. So if F;* is any one of the substitution
instances of F;, which is provable in S, we would have T1F;* also provable
and thus S is not simple consistent.

Consider the predicate T,(x,x,y) in [1,p.281] and the formulas Ky in
[1, p. 434, Remark 2] for R(x,y) = Ti(x,X,y).

2) (¥ Tix,x,y) = (Ey)Ti(x,x,y) = [Kx is unprovable in P]
=[Kx is not valid] = [1Kx is satisfiable]
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We can now go through the enumeration: Fo, F), F;, . . . and examine
each F; to tell whether it is 71Ky for some x. (This can effectively be done
since the number of symbols in 11Ky is larger than x.) Therefore we get a
recursively enumerable class of numbers x, (X (Ey)R(x,y) with R(x,y) a
recursive predicate), consisting of those x’s for which 71Kx is in the
enumeration: Fo, F,;, F5, ... . We have shown that R(X,y) can be effec-
tively found given S. For each such x, 71Ky is satisfiable by 1) and hence by
2) (Y)Tl(X:X’Y)- Thus

3) (EYR(x,y) — (n)Tix,x,).

By [1, Thm. IV, p. 281] there is a number f (which can be effectively found
from R using the method in the proof of Thm IV) such that

4) (Ey)R(x,y) = (Ex)T.(f,x,y).

Hence
5) (Ey)R(t,y) = (Ey) Ty(£,1,y) = (v) Tu(£,L,y).

Suppose (EY)R(ny) Then by 3): (Y)Tl(f,f>Y) and hence by 4)7 (E;)R(f,Y),
contradicting the assumption., Thus

6) (Ey)R(fy),
and hence by 5)

7 TuLLY).

Thus by 6), 1K¢ is not in the enumeration: Fo, F,, F,, ... (i.e. no
substitution instance of 1Ky is provable in S). But by 7) with 2), 7Ky is
satisfiable, Thus 11K¢ is an F for the theorem. (i.e. there is an algorithm A
such that if S is simple consistant then A(S) is 1K¢ and 1K is an F for the
theorem).

Now notice how A(S) acts if S is not simple consistent. First of all, the
set X(Ey)R(x,y) consists of all of the integers. Hence if.f is a number such
that (Ey)R(x,y) = (Ey)T,(f,x,y) we have (Ey)T,(f,f,y), since f ¢ X (Ey)R(X,y).
But his means by 2),

[K¢is provable in P] — K; is valid — 1Ky = A(S) is not satisfiable.

Consequently if S is not simple consistent then A(S) is not satisfiable. The
following theorem is a generalization of this.

Theovem 2. There is no algovithm A(S) which operates on recursively
enumerable formal systems S couched in P, such that A(S) always produces
satisfiable predicate letter formulas and if S is simple consistent then A(S)
has no substitution instance provable in S.

To prove the theorem we construct a sequence of formal systems:
Sy, Ss, Ss, ..., each of which has the properties described in the theorem,
but the existence of any algorithm defined on this system having the
properties described in the theorem leads necessary to a contradiction.

If Q is a formal system, it is convenient to abbreviate the statements;
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F is a formula of Q and F is a provable formula of Q, by F € Q and }9 F
respectively. Should g be a formal object of P, let [g] designate its Gddel
number,

Suppose that R represents Robinson’s number theoretic formal system
in [1, Lemma 18b, 49]. By [1, Thm. 43(b)] there is a number theoretic
system R' couched in the same symbols as R except the function symbols
for addition, multiplication and the successor function are replaced by
predicate symbols (say the successor function is replaced by '(,), and we
can find a correspondence § between R and R' such that;

(i) Fe R—F® ¢R!

(ii) F(x) € R, where x occurs free — for all integers » we can
find variables Xx,, ..., X, such that (F(n))® is 3x, 3x,..
3%, (1(0,%:) & "(Xzp%0) &. . . &"(Xp_1yXn) & F? (x,)) where n is the cor-
respondmg numeral for »n

(iii) Br=R o

Fori=0, 1, 2,... we define a recursively enumerable formal system
8; by adding the following formalism to R',

(a) Individual symbols (numerals): 0, 0', 0", . . .
(b) Predicate symboi: G( )
(c) Formation rule: If t is a term then G(t) is a formula

(d) Axioms:
Suppose that F(x,, . . . , Xa) € P contains only the variables x,, . . . , X,
free. If f=[F(X,, ..., Xa)], let F¢([x,], . . . ,[Xa]) designate the formula

which results from F(x,, . . ., Xa) by replacing every occurrence of x; with
[xi] (i=1, . . ., n). Then for each such f we have the axioms:

If) : GE)Fi([x.], . . . ,[Xa))

where f is the numeral corresponding to f. (Notice, since it can be effec-
tively decided whether an integer f is the Gddel number of a formula of P,
axioms I(f) can be recursively enumerated.)

Consider now the enumeration predicate (Ey)Tz(z,%1,%,,9) in [1, p. 281].
From [1, ex. 2, p. 305] we can find a formula T(z,x;,X,) € R such that for all
natural numbers n,m,p where nm,p are the corresponding numerals
respectively, we have

8) (Ey)T2(n,m,p,y) = I—T(n m,p) = R 3x;...3x%,3y,.. .3y, 32, ...
3zp (’(0 x)&. . . &"(Xn-1yXn)
& '(0,Y1)& & (Ym-l, Ym)
&'(0,2,)&. . .&(zp_1y 2p) &
TO (xlh Ym, ZP))
for variables: x,,...,X4, V3, .+ . ,Ym, Z1, - - . ,Zp having no occurrence
in T?(z,%,,%;).

Suppose that the variables: X, y;, ..., y, have no occurrence in
T (z,x,,%;). Then for n=1,23, ... we have,

Hl(n): 3y1 o« e 3 Van ('(O,YI) & DR & '(Yn-l’YB) & To (Yn ,XIQXZ))U'TO (n,x1,xz)
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I, (z) : Ay, .. .3y, ('(Q,yl)&. e &'(Yo-1,Y0) & T (2, ¥a, X)) 2 T (2, n, x;)
I3): 3y, ... 3y, ( '(0,Y1)& . ¥ '(Yn-l,Yn) &T? (z,x,, Yn))"’To (z, %, n)
(n is the numeral corresponding to %),
Im;  vx(TO(, i,x) D G(x))
(i is the numeral corresponding toi).

Thus for all natural numbers n,m,p where n,m,p are the corresponding
numerals respectively, we have by II, (n), IL; (), II3 (p) and 8)

9) (EY) Taln,m,p,) = ¥ T (n,m,p).

We shall now return to the proof of Theorem 2.

Suppose their exists an algorithm A as described in the theorem. Then
the correspondence between S; and F;, where A(S;) = F;, determines a
general recursive function f(¢) = [F;]. Let g be the Gédel number of (). In
order to show that S, is simple consistent, it is necessary to prove the
following lemma.

Lemma 1. Suppose FeP wheve F contains free only the vaviables:

X1, . . . ,Xn and contains the predicate symbols Ay(L)), . . ., Ax(Lk). (Ai(Li)
is a predicate symbol wheve the number of attached variables is equal to
the natural number £;20, i=1,...,Kk.) Then if F is satisfiable we can

find number theovetic predicates: Ai(1,), ... ,Ax(l), for arbitrary natu-
ral numbers; vi, ..., Yy Such that: yi, ... ,yn,A:1(L1),. . ., Ax(Li) satisfy
F.

We may regard F as a logical functional F(x,,...,Xa,A; (L)), ...,A(£k))
defined by the truth tables for: D, & V, 7, 3 and V with {t,f} constituting
the range, where x,, ... ,X, vary over the natural numbers and
Ay(Ly), . . . ,Ax(Ly) vary over number theoretic predicates. Thus since F is
satisfiable we have

F(zl, o« o . ,zn,Al(il), e o . ’Ak(ik)) =t

for some natural numbers: z,, ... ,2z, and number theoretic predicates:
A(L), ... ,Ar () whose domains are the natural numbers. Of course we
make no restriction that z; # z;, i+ j. Now define the following function

z2; of x = y;
hilxk)= {y; if x=2;
x otherwise
Let A¥(£;) (i =1, ... k) be the predicate which results from A;(¢;) by
replacing every occurrence of the variables corresponding to: x,, . .. X}
with: 2i(,), . .. ,k(xy) Therefore

F(vl: o oo sVn, A;.k(il)) LI Az(fk))= F(zlx LY ’znyAl(ﬂl): -0-’Ak(£k)) =t

and the lemma is proved.

We can show that S; is simple consistent by finding a model for it.
This we do now.

First observe that for any assignment of number theoretic predicates
to the predicate symbols of P the axioms I(f), under the intuative inter-
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pretation of the logical symbols, allow to define a number theoretic
predicate G(x). If we assign only predicates whose domains consist of all
the natural numbers to the predicate symbols of P we observe that the
domain of G(x) are all Gddel numbers of formulas of P, Also under the
intuative interpretation of the successor and enumeration predicate we
obviously have a model for axioms: II;(r), IL(x), I(n) (n=1,2,3,...).
Suppose F(X,, ... ,%a,A, ...,Ar) € P where: A, ..., ,Ar are all the
predicate symbols and only the variables x,, . .. ,x, occur free. Suppose
also that [F(xy,...,Xq, Ay, ...,Ak)] = f(g). Since by assumption F(x,, . . .,Xq,
A,,...,Ay)is satisfiable there are number theoretic predicates: A,, ... Ak,
by Lemma 1, such that F([x,], . .. ,[Xa],A41 ... ,Ac)=t. Now assign any
number theoretic predicates to the predicate symbols of P except to the
predicate symbols: A, ..., Ay assign: A,,...,Ax. We shall interpret
T®(z,x,,X;) of course as the predicate (EY)T,(z,x,%,,9). Since g is the
Gbddel number of the function f(f) we have

) (EY) T,(.8/6))&x + fg) — (EY) T,(e,8,%,9))

But under the assignment to the predicate symbols of P we have that
G(f(g)) is true. Thus

) ((EY) T,(g.g,%,9) — G(x))

and axiom III, is satisfied.
Thus by 9) and modus ponens on axiom III; we have,

S G(H(g))
and by I(f(g)),
B F (K, .. [Xa))

where f(g) is the numeral for f(g). But F,) ([X1], . . . ,[Xa]) is a substitu-
tion instance of F(x;, . . . ,X,) and we have a contradiction.
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