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SYSTEMS CLASSICALLY AXIOMATIZED AND PROPERLY
CONTAINED IN LEWIS’S S3

JOHN THOMAS CANTY

It is well known that Lewis’s modal systems S3, S4 and S5 can be
classically axiomatized. That is, an axiomatic for those systems can be
given with a finite number of axioms taking substitution for propositional
variables and material detachment as the only primitive rules of inference.
It will be shown in this paper that such an axiomatic is available for some
systems properly contained in S3. Each section of the paper introduces new
axiomatics for sub-systems of S3 and then gives new sub-systems which
are classically axiomatized and in which all of Lewis’s primitive rules of
inference are derivable. The symbolism throughout is that of [7] and ‘‘a is
a thesis’’ is abbreviated as ‘‘ a”’.

I. Lemmon in [4] gave new foundations for Lewis’s systems S1-S3 of
[56] analogous to a systematic for T of Feys-von Wright [2, 8, 12] due to
Godel in [3]. In this section new foundations for Lemmon’s systems are
described and two systems containing Lemmon’s S0.5 and properly
contained in S3 are classically axiomatized.

The Lemmon systems are N-C-L calculi with K and E defined in the
usual way by C and N, € defined as LC and G€pq (strict equivalence) as
K&pqCgp. Propositional calculus (PC) is given by three rules:

(PCa) if @ is a tautology, then o;
(PCb) substitution for propositional variables;
(PCc) material detachment (that is, from a and Caf infer B);

and Lewis’s systems are based on selections from the following rules and
axioms:

(a) Faonlyif FLa; (a') «@ is a tautology or axiom only
(a') @ is a tautology only if +La; if FLo;

(b) +FLCap only if FLCLaLp; (b') substitutability of strict

(b") FGap only if FELaLp; equivalents;

(1) CLCpqLCLpLg; (1') CLCpqCLpLg;

(2) CLpp; (3) CKLCpqLCqrLCpr.
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Lemmon’s foundations for the Lewis systems, S1-S3, are then given as:

S1 = {PC; (a"); (b"); (3); (2)}
s2 = {PC; (a"); (b); (1; (2)}
83 = {PC; (a"); (1); (2)}

the system of Feys-von Wright as:

T = {PC; (a); (1; (2)}

and a system introduced by Lemmon as:
80.5 = {PC; (a"); (1; (2)}.

Now from the following list of axioms;

Al. LCCNppp Al1'. LCLCNppp
A2, LCCpqCCqrCpr A2', LCLCpgCLCqrLCpr
A3. LCpCNpq A3'. LCLpLCNpq

A4, CLCpqCLpLq A4', LCLCpqLCLpLq

A5, CLpp A6. CLCpgCLCgpLCLpLq

the axiomatics for the above systems are taken as:

MO = {PCb; PCc; AI; A2; A3; A4; A5}
M1 = {M0; (b"); AI"; A2'}

M2 = {MO; (b"); AI'; A3'}

M3 = {M0; A1'; A4'}

M ={MO; (a)}.

The adequacy of the revisions can be seen by observing first that all of
Lemmon’s systems contain MO; (i) A1-A3 follow from PC and either (a);
(a"), or (a"), and (ii) A4 either follows from (1) and (2) by PC, or in S1 is
provable from (3):

1.

.

PRI

9.
10.

CKLCpqLCqrLCpr [(3)]
CLCpqCLCqrLCpr [1, PC]
CLCNgNpCLCNppLCNgp [2, PC]
€ CpqCNpNq [PC, (a9]
& pCNpp [PC, (an]
& CNpqCNqp [FC, (a")]
CLCpqCLpLCNpq (3, 4, 5, 6, (b")]
CLCNgNpCLCNpqLCNqq [2, PC]
CLCpqCLCNpqLq (8, 4, 5,(b")]
CLCpqCLpLq [7, 9, PC]

Thus, 0.5 contains MO and T contains M.

Secondly, (i) each of the remaining systems, S1-83, contain (b')(cf. p.
178 of [4]), and thus contain AI' by (2) and (a'); while (ii) S1 contains A2' by
(3) and (a'), S2 contains A3' by A3 and (b), and S3 contains A4' by (1) and
(a'). Thus S1-S3 contain M1-M3 respectively.
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Conversely, it can be shown that M0-M3, and M contain S0.5, S1-S3,
and T. To this end the following theorems of MO are established.

Theorem 1. If +ain PC, then +La.

Proof. If a is an axiom of PC, then Lo is given by AI-A3 since CCNppp,
CCpqCCqrCpr, and CpCNpg form a set of axioms for PC (cf. Appendix of
[7]), and if @ is derived from the axioms of PC, then La is given by:

1. Lg [Induction hypothesis]
2. LCBa [Induction hypothesis]
3. CLBLa [2,44]
4. La [1’ 3]

Theorem 2. If +LCaf and +LCay, then +LCaKpy.
Proof. From hypothesis by Theorem 1 and A<,
Theorem 3. If FLCaB and +LCBy, then +LCary.
Proof. From hypotheses by Theorem 1 and A4,
Theorem 4, If ra and B, then +Kap.

Proof. From hypotheses by Theorem 1 and A5.
Theorem 5. If +a and FLCaB, then +p.

Proof. From hypotheses by AS.

Hence, PC is contained in each of M0-M3, and M by Theorem 1 and A5, and
thus MO contains S0.5 and M contains T.

Further, M3 contains (b'). The proof is given by showing that (i) +FSapB
only if FGLaLp, (ii) FGap only if FENaNB, (iii) FCap only if +GCCay
CBy, and (iv) FEap only if €Cya CyB. Now (i) follows by A4’ and (ii-iv)
follow from CLCpgqLCNqNp, CLCpqLCCqrCpr, and CLCpqLCCvpCrq, each
of which are obtained by Theorem 1 and A4.

Moreover M2 contains (b):

1. LCaB [Hypothesis]
2. LCau [Theorem 1]
3. LCaKap [1, 2, Theorem 2]
4. LCKapa [Theorem 1]
5. LCLaLa [Theorem 1]
6. LCLaLKap (3, 4, 5, (b")]
7. LCLKaSLCNKaBKNaf [A31
8. LCLKaBLB [7, Theorem 1, (b")]
9. LCLalLp [6, 8, Theorem 3]

And by Theorem 1, in order to show that M1-M3 contain (a') it is
sufficient to remark that (i) each system contains LCLpp by AI' and (b'),
(ii) M1 contains LCKLCpqLCqvLCpr by A2' and (b'), (iii) M2 contains
LCLCpqCLpLg by AZ2', (b") and Theorem 3, and (iv) M3 contains
LCLCpgLCLpLg as A4'.
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Thus, to complete the proof that M1-M3 contain S1-S3 it need only be
shown that each of the axioms of S1-S3 which is not an axiom of M1-M3 are
provable in M1-M3. In M1, (3) follows from LCKLCpqLCqrLCpr by AS5.
And in M3, (1) follows from A4' by AS.

On the basis of the new foundations for Lewis’s systems it is now
possible to classically axiomatize some systems containing S0.5 and
properly contained in S3. The systems to be considered are:

R1 = {MO; A6; AI'; A2'}
R2 = {MO0; A6; AI'; A3'}
R3 = {M3}.

Bull in [1] uses an equivalence relation employing schemata analogous
to A6 as Lemma 1 part III (p. 212) while for R1-R3, since A6 yields (b"),
the proof that each of the systems contains (b') can be established as was
the proof above that M3 contains (b'). And thus:

R1 = {S1; A6}
R2 = {S2; A6}
R3 = {s3}.

Hence R1-R3 obviously contain S0.5. But R1 and R2 are properly contained
in S3 as is shown by a variation of Parry's matrix of [6]: a regular expan-
sion of the C-N matrix (as are all matrices considered in this paper) to
eight values:

Cll1 23456 7 8|N
11 234567 8|8
2|11335b5577|7
3|11 212056 5616
411 1115655655 5(56
511 234123 44
6|1 233123 3|3
711 212121 2|2
81111 11111|1

with L(*1*2*3%45678) = (26888888), where *r indicates a designated value,
For with this matrix all the axioms and rules of S2 are designated together
with A6 while A4'(p/1,q/2) = LCLCI2ZLCLIL2 = LCL2LC26 = LC6L5=
LC68 = L3 = 8.

It may be noted that the independence of A6 in R1 and R2 is shown by
Parry’s original matrix where only I and 2 are designated values. For in
this case all the axioms and rules of S2 are still designated while
A6(p/1,q/2) = CLC12CLC21LCLIL2 = CL2CL1LC26 = C6C2L5 = C6C28 =
C67 = 3.

Moreover, the independence of Al' in R1-R3 is shown by a variation of
Group IV of Lewis [5] in which L(*1%234) = (1333), since Al'(p/2) =
LCLCN222 = LCLC322 = LCL22=LC32=L1L2= 3,

The independence of A3' in R2 is shown by Group V of Lewis [5] in
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which L(*¥1#234) = (2434), since A3'(p/3,q/2) = LCL3LCN32 = LC3LC22 =
LC3L1=LC32=1L2= 3,

And though Lemmon has shown that A2' is derivable in S2 (cf. p. 178 of
[4]), and hence R2, it remains an open question as to whether A2' is
derivable or independent from the remaining axioms of R1l. It should be
noted that Lemmon describes a proof of A2' in S3 (p. 179 of [4]), but in so
doing applies (a') to (1') which is not an axiom of S3. However A2' is
derivable in S3, and hence R3, as follows:

1. LCCpqCCqrCpr [PC, (a")]
2. LCLCpqLCCqrCpr [1, ()]
3. LCLCpqLCLpLq [(1), (a"]
4. LCLpp [(2), (a"]
5. LCLCpqCLpLq [3, 4, Theorem 3]
6. LCLCpqCLCqrLCpr [2, 5, Theorem 3]

Indeed, this derivation points up a significant difference between
Lemmon’s foundations for S1-S3 and those given here. The derivation
requires line 5 whereas that thesis is independent of S0.5 (given Thomas’s
matrix of [11] in which L(*1%*234)= (2334), since LCLC34CL3L4=LCL2C34=
LCL2C34 = LC32=L2=3). And it is the absence of this thesis and A1
which gives rise to the systems to be discussed in the next section.

Finally, although A6 is useful in classically axiomatizing systems
properly contained in S3, its addition to system T yields S4, and thus it is
useless in attempting to axiomatize T. That T with A6 yields S4 clearly
follows from the fact that the proper axiom of S4, LCLpLLp, follows from
A6 in T° (= PC; (a); A4):

1. CLCqpCLCpqLCLpLgq [46, PC]
2. CLCqCppCLCChpgLCLChpLg [1, PC]
3. LCqCpp [PC, (a)]
4. CLCCppqLCLCppLq (2, 3, PC]
5. LCqCCppq [PC, (a)]
6. CLgLCCppgq [5, A4 PC]
7. CLqLCLCppLq [4, 6, PC]
8. CLCppCCLCppLgLq [PC]
9. LCpp [PC, (a)]
10. CCLCppLgLq (8, 9, PC]
11, LCCLCppLgLg [10, (a)]
12. CLCLCppLqLLq [11, A4,PC]
13. CLgLLq [7, 12, PC]
14. LCLgLLgq [13, (a)]

Thus this section gives a classical axiomatization for two systems R1
and R2 which contain S0.5 and are properly contained in S3.

Il. Sobocifiski in [9] describes a system, S3* which is properly con-
tained in S3 and is classically axiomatized. In this section, S3* will be
given a new basis and other systems properly contained in S3* will be
classically axiomatized.
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System S3* is an N-K-M calculus with C and E given their usual
definitions, €pq defined as NMKpNq, €pq as KE€pq€qp, and L as NVIN. The
rules of inference are PCb adjusted to N-K-M and PCc for N-K (that is
from o and NKaNpB infer B). The following are the axioms of S3*:

Z1. NMEKpNKpp (i.e., CPKpD)

Z2. NMKKpgNq (i.e., CKpqq)

Z3. NMKKKypNKqrNKpNg (i.e., CKKYpNKqrKpNq)
Z4. NMKNMKpNgNNMKNMgNNMp (i.e., €SpgENMgNMp)
'Z5. NKNMpNNp (i.e., CNMpND)

While the new basis for S3* is the N-C-L calculus:
R3* = {MO; A4},

To see that R3* contains S3* first observe that the definitions of E, C,
€, and L are provable in the form of strict equivalences, when K is given
its usual N-C definition and M = NLN.

Now the proof of section | that M3 contains (b') in no way relies on A1'.
Thus R3* contains (b'). And hence the axioms of S3*, are obtainable
from the following theses of R3*: LCpKpp, LCKpqq, LCKKvpNKqrKpNq,
LCLCpqLCLpLq, and CLpp, while the rules of S3* are obtainable from the
rules of R3*,

Conversely, to show that S3* contains R3* it must be remarked that the
definitions of K, E, €, and M are provable in the form of strict equiva-
lences when C is given its usual N-K definition and L = NMN. Thus, once
the substitutability of strict equivalents is shown for S3*, it is clear that
A4’ follows from Z4, A5 from Z5, and A4 from A4' and A5 by PC.

Hence, besides showing (b') in S3* it is sufficient to show that S3*
contains PC and that if +a in PC then FNMNg in S3*, in order to complete
the proof that S3* contains R3*. For in such a case, AI-A3 will be theses
of S3*,

To this end, the following meta-rules and theses of S3* given passim in
[9] are required.

Rl. vraand FNMKaNB only if 8.

RIll. FNMKaoNB and FNMKBNy only if FNMKaNvy.
RIV. FNMKaNB only if FNMKMaNM@.

RV. +NMKaNB and FNMKaNy only if FNMKoNKpBy.

Z7. NMEKNpp Z12. NMENKNNprNNKrp
Z8. NMKNMKpNgNNMKNgNNp Z16. NMKKpgNKqp
Z9. NMEKpNNNp Z21. NMEKKpgNp

It is now possible to derive the following meta-rules.
RVIl. +NMKaNB only if FNMKNBNNa.
Proof: From hypothesis by Z8 and RI.
RVIIl. WNMKaNg only if FNMKKayNKpy.
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Proof:
1. NMKaNB [Hypothesis]
2. NMKKayNa [z21]
3. NMKKayNB [1, 2, RN
4. NMKKayNy (z2]
5. NMKKayNKpBy [3, 4, RV]

RIX. F&apand +y only if 6 where b results from y by rveplacing a by B
(B by a) in one or more places.

Proof: The meta-rule follows immediately from (i) +GapB only if HFEMaMpB,
(ii) FGaB only if FENaNB, (iii) +FCapB only if FEKayKpBy, and (iv) HEapB
only if FEKyaKyB, which are obtained from RIV, RVIIl, RVIIl, and RVIII
with Z16, respectively.

RX. If tain PC, then ta.

Proof: The meta-rule is established by deriving a sufficient set of axioms
for PC. BI-B4, below, is such a set, given by Sobocinski in [10].

B1. NKpNKpp [Z1, Z5]
B2. NKKpgNq [z2, z5]
B3. NKKKrpNKqrNKpNq (23, z5]
B4. NKNKpNgNNKNgNNp [Z12, z7, 29, RIX]

RXIl. If +athen F-NMNa.

Proof: In case ¢ is an axiom of PC, NMNa is given by:

NMNNKpNKpp (21, Z7, 29, RIX]
NMNNKKpgNq (22, z7, Z9, RIX]
NMNNKKKypNKqrNKpNq (23, 27, 29, RIX]
NMNNKNKpNgNNKNgNNp [Z12, 27, Z9, RIX]

and in case & is derived from the axioms of PC, the proof is completed by
the following derivation.

1. NMNB [Induction hypothesis]
2. NMNNKpBNa [Induction hypothesis]
3. NMKBNa [2, Z7, Z9, RIX]
4, NMKNaNNg [3, RVII]
5. NMKNMNBNNMNa [4, Z4, RI]
6. NMNa [1, 5, RI]

Thus RIX-RXI complete the proof that S3* contains R3*,
With S3* given a basis analogous to those of section I, the following
systems are now defined:

s2* = {M0; (b"); A3'}; R2* = {M0; A6, A3'};
S1* = {MO; (b")}; R1* = {M0; 46 }.
The independence of A2' from all the systems under consideration in

this section is given by the Thomas matrix, for A2'(p/1,9/2,7/4) =
CCLC12CLC24LC14 = LCL2CL3L4 = LC3C34 = LC32 = L2 = 3. Thus
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S3 properly contains R3*
that

R2* = {S2%; 46 };

R1* = {S1*; A6};

, while proofs of the previous section establish

as well as showing that each of the following systems properly contains its
predecessor: S0.5, R1* R2* and R3*,

Thus this section gives a classical axiomatization for three systems,
R1* R2* and R3*, which properly contain S0.5 and are properly contained
in S3.

IIl. In [9] Sobocifiski has also described a system, S3°, analogous to
S1° and S2° of Feys [2], which is properly contained in S3. In this section,
analogues, R1°-R3°, of these systems will be classically axiomatized.

Systems S1°-S3° have the same primitive basis as S3*, while their
rules of inference are the four given by Lewis [5]: substitution for proposi-
tional variables adjusted to N-K-M; substitutability of strict equivalents;
adjunction (that is, +a and F8 only if FKaB); and strict detachment (that
is, o and FNMKaoNB only if +B). Their axioms are drawn from:

F1. NMKKpqNp (i.e., CKpgp)

F2. NMKKpgNKqp (i.e., CKpaKgp)

F3. NMKKKpqrNKpKgr (i.e., SKKpqrKpKqr)
F4. NMKpNKpp (i.e., CPKDD)

F5. NMKKNMKpNgNMKgNyNNMKpNr (i.e., CKCpgGqrCpr)
K1. NMKMKpgNMp (i.e., EMKpgMp)
L1, NMKNMKpNgNNMKMpNMgq (i.e., €CpaEMpMq)

so that, with the above rules of procedure:

S1° = {F1; F2; F3; F4; F5};
S2° = {S1°;K1};
§3° = {s1°; L1},

The R-systems to be considered are:

R1° = {M0; A6;A2'};
R2° = {M0;46; A2';A3'};
R3° = {M0; A2, A4'};

and it will be shown that

R1° = {S1°; A5; A6},
R2° = {82°; A5; A6}
R3° = {83° A5},

As in section Il the required definitions are provable in both the R- and
S-systems as strict equivalences, as is the substitutability of strict
equivalences. Thus R1°-R3° contain: FI1-F4 by Theorem 1 and A5; F5 by
AZ2'; and the remaining rules of inference by Theorems 4 and 5. Moreover,
R2° contains K1I:

1. LCNMNpNMNCNpq [A3', (b"), MO]
2. LCMNCNpgMNp [1, (b"), MO]
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3. LCMNCNNpNgMNNp [2, PC]
4, NMKMKpgNMp (3, (b"), MO]

and finally, LI follows in R3° by A4'.

Conversely, the required containments are obvious, since S1° together
with A5 yields MO as is clear from Feys [2], and thus the adequacy of
R1°-R3° is established.

It should be noted that the presence of A5 with S3° (S1°, or S2°) defines
a system which properly contains S3° (S1°, or $2°) and is properly contained
in 83 (S1, or S2). A5 is shown to be independent from S1°-S3° by inter-
preting L as verum, and the independence of A1' from R1°-R3° was given in
section I. (But whether or not it is possible to classically axiomatize S3°
remains an open question.)

Finally, the proofs of independence given in the two previous sections
show that (i) R1-R3 properly contain R1°-R3° respectively, just as these
systems properly contain R1*-R3* respectively, while (ii) each of the
following systems properly contains its predecessor: S0.5, R1°, R2°, R3°
and S3.

Thus this section gives a classical axiomatization for three systems
R1°-R3° which contain S0.5 and are properly contained in S3.

IV. In conclusion the appended table shows the containment relations
between the systems discussed in this paper.

R1<—R2<—R3 (= S3)

R1°<— R2°<——R3° (=83°; CLpp)

/

$0.5 R1* R2* &«——R3* (= S3%)
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