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A Simple Proof of Parsons’ Theorem

Fernando Ferreira

Abstract Let I61 be the fragment of elementary Peano arithmetic in which

induction is restricted to 61-formulas. More than three decades ago, Parsons

showed that the provably total functions of I61 are exactly the primitive recur-

sive functions. In this paper, we observe that Parsons’ result is a consequence

of Herbrand’s theorem concerning the ∃∀∃-consequences of universal theories.

We give a self-contained proof requiring only basic knowledge of mathematical

logic.

1 Introduction

Primitive recursive arithmetic, or Skolem arithmetic, was invented in 1923 by the

Norwegian mathematician Thoralf Skolem. It presents a way of developing arith-

metic in a quantifier-free calculus in which theorems are stated by free-variable for-

mulas (asserting, in effect, 51-sentences of arithmetic). The work of Skolem [22]

was given ample attention by Hilbert and Bernays in [10] where they took up the

task of formalizing it in a propositional calculus of equations. A few year later, inde-

pendently of each other, Curry [5] and Goodstein [8] carried the work of Skolem a

step further, showing how to develop primitive recursive arithmetic in a “logic-free”

calculus based solely on equations.

The interest of Hilbert and Bernays in primitive recursive arithmetic stemmed

from their conviction that the arguments carried in it correspond to the point of view

of the “evident, finitistic theory of numbers” (anschaulichen, finiten Zahlentheorie,

p. 286 of [10]—in italics in the original).1 Hilbert’s foundational program aimed at

reducing infinitistic, set-theoretic mathematics, to finitism. As explained by Hilbert

(e.g., [11]), the reduction was to be accomplished by means of finitistic proofs of

conservation results for 51-sentences or, equivalently, by means of finitistic consis-

tency proofs.2 It is well known that Gödel’s second incompleteness theorem refuted

Hilbert’s original foundational program. Hilbert’s programmatic ideas didn’t die
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with Gödel’s theorem. Rather, they were reformulated in the light of Gödel’s results.

Beweistheorie, the mathematical discipline that Hilbert invented to carry out finitis-

tic consistency proofs, eventually redirected its aims and broadened its methods (the

reader can find a clear and accessible description of this change of direction, as well

as more specialized references to this topic, in Feferman’s lecture [6]). Somewhat

surprisingly, Hilbert’s original program resurfaced after a torpor of more than fifty

years. It has been studied in detail in the form of the following question: What parts

of mathematics can be reduced to finitism in Hilbert’s original sense? In other words:

Gödel showed that Hilbert’s original program is not feasible in its entirety, but it re-

mains a matter of investigation what partial realizations of Hilbert’s program may

still be vindicated. This line of research was forcefully articulated by Simpson in

[20] and can be viewed as a subprogram of Simpson and Friedman’s wider program

of Reverse Mathematics (see [21]).

It is against this background that it is important to study formal systems of arith-

metic that are (finitistically) conservative over primitive recursive arithmetic. Plainly,

the parts of mathematics able to be carried out in these systems constitute par-

tial realizations of Hilbert’s original program. Parsons’ conservation theorem—

independently proved by Mints and Takeuti—is an important and central result of

this sort.

A modern exposition of primitive recursive arithmetic can be found in Section 2.1

of the textbook of Troelstra and van Dalen [27]. Their presentation is of a piece with

the original presentations of Skolem and Hilbert/Bernays in that it is framed in a

quantifier-free calculus. Nevertheless, we opt for a framework based on a first-order

language with equality as expounded in Section IX.3 of [21]. In the sequel, PRA is

such system: It is a first-order universal theory (i.e., axiomatized by purely univer-

sal formulas) with a function symbol for each (description of a) primitive recursive

function, and in which the principle of induction for quantifier-free formulas holds.

By Herbrand’s theorem, PRA is conservative over quantifier-free Skolem arithmetic

(a result which, by itself, constitutes a conservation result in the sense described

above—see Section 2). The theory I61 is the fragment of elementary Peano arith-

metic in which induction is restricted to 61-formulas. It is well known that the

primitive recursive functions can be suitably introduced in this theory. Thus, by a

harmless abuse of language, PRA is a subtheory of I61. Parsons’ result of [15], [16],

and [17] can be formulated as follows (note that it even applies to52-consequences).

Theorem 1.1 Any 52-consequence of I61 is also a consequence of PRA.

Parsons’ proof uses a variant of Gödel’s functional interpretation.3 The proofs of

Mints and Takeuti use quite different ideas, namely, the no-counterexample interpre-

tation and a Gentzen-style assignment of ordinals to proofs, respectively.4 A dozen

or so years ago, Sieg [19] gave a very perspicuous proof of Parsons’ theorem by sys-

tematically applying Herbrand’s theorem for ∃-consequences of universal theories at

the induction inferences of a suitable normalized proof.5 Very recently, Avigad [1]

provided a very elegant model-theoretic analogue of Sieg’s proof. In [21], Simpson

gives a model-theoretic proof of Parsons’ theorem based on the notion of ‘semireg-

ular cut’, a notion due to Kirby and Paris in [12]. Simpson attributes to these two

authors the idea of the proof.

In the present paper, we observe that Parsons’ result is a simple consequence

of Herbrand’s theorem concerning the ∃∀∃-consequences of universal theories. Our
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proof can be followed with only basic knowledge of mathematical logic. It also read-

ily applies to similar situations, for example, to show that the polytime computable

functions witness the ∀6b
1 -consequences of Buss’s theory S

1
2 (as in [2]).

2 Herbrand’s Theorem

Herbrand’s theorem characterizes first-order validities in terms of suitable tautolo-

gies. In the sequel, we need a form of Herbrand’s theorem for ∃∀∃-consequences

of universal theories.6 The particular form in question has a quite elegant statement

and can be proved by a very simple compactness argument due to Krajíček, Pudlák,

and Takeuti in [13]. Their argument was given in the somewhat arcane setting of

bounded arithmetic. It is however a general argument and merits to be more widely

known. We include their argument below (making our exposition self-contained).

Theorem 2.1 Let U be a universal theory in the first-order language L.

1. Suppose ∃xϕ(x, u) is a consequence of U, where ϕ is a quantifier-free for-

mula with its variables as shown. Then there are terms t1(u), t2(u), . . . , tk(u)

of L (with at most the variable u) such that

U |H ϕ(t1(u), u) ∨ ϕ(t2(u), u) ∨ · · · ∨ ϕ(tk(u), u).

2. Suppose ∃x∀yϕ(x, y, u) is a consequence of U, where ϕ is an existential for-

mula, with its free variables as shown. Then there are terms t1(u), t2(u, y1),

. . . , tk(u, y1, . . . , yk−1) of L (with its variables among the ones shown) such

that

U |H ϕ(t1(u), y1, u)∨ϕ(t2(u, y1), y2, u)∨· · ·∨ϕ(tk(u, y1, . . . , yk−1), yk, u).

Proof Note that (1) is a particular case of (2): just insert two dummy quantifiers

and substitute the y’s by the variable u in the terms. Alternatively, one can prove (1)

directly by a compactness argument. We will not do this, since the same proof idea

(albeit more involved) appears in the proof of (2) below.

Assume that no disjunction as in (2) is a consequence of the theory U. Let

v0, v1, . . . be the list of the formal variables of L, and fix t1, t2, t3, . . . an enumera-

tion of all the terms of the language such that the variables of t j (v0, v1, . . . , v j−1)

occur among v0, v1, . . . , v j−1.

Consider the set of sentences U together with

{¬ϕ(t1(c), d1, c),¬ϕ(t2(c, d1), d2, c), . . . ,¬ϕ(t j (c, d1, d2, . . . , d j−1), d j , c), . . .},

where c, d1, d2, . . . , d j , d j+1, . . . are new constants. It follows from our assumption

that this set is finitely satisfiable. By compactness, it has a model M. Let us consider

the following subset of the domain of M,

{t1(c), t2(c, d1), . . . , t j (c, d1, d2, . . . , d j−1), . . .},

where we are identifying the terms with their interpretations in M. Note that all

elements c, d1, d2, . . . are members of the above subset because the variables v j

appear in the enumeration of terms. It is also clear that the above subset defines a

substructure M
∗ of M. Using the fact that U is a universal theory, M

∗ is a model of

U. But

M
∗ |H ∀x∃y¬ϕ(x, y, c).

In fact, for x = t j (c, d1, . . . , d j−1) take y = d j and use the fact that ¬ϕ is a universal

formula and, therefore, downward absolute between M and M
∗. �



86 Fernando Ferreira

We have restricted the statement of the theorem to single variables u, x , and y in

order to make the proof more readable. It is clear, however, that the theorem holds

for several variables u := u1, . . . , ui , x := x1, . . . , x j , and y := y1, . . . , yr . In

this case, we must consider appropriate terms t1 := t1
1 , . . . , t

j

1 ; . . . ; tk = t1
k , . . . , t

j
k .

One should also point out that part 1 of the theorem simplifies if the universal theory

U admits definition by cases,7 as it is the case with PRA. In this case, we may take

k = 1. Note, however, that no such simplification is forthcoming for part 2 of the

theorem!

The above theorem (in general, Herbrand’s theorem for prenex formulas) can

also proved through the analysis of a suitable complete proof system. The theorem

is a simple consequence of Gentzen’s “verschärfter Hauptsatz,” known in English

as Gentzen’s midsequent theorem (see Troelstra and Schwichtenberg [26] for this

route). It can also be proved using Gentzen’s plain Hauptsatz, as Buss does in [3].

Herbrand’s own method appears in his doctoral dissertation [9]. The reader can find

a partial translation into English of Herbrand’s thesis in [28], together with com-

mentaries and corrections of Herbrand’s proof. Both analyses (à la Herbrand or à la

Gentzen) automatically entail that a quantifier-free first-order consequence of a uni-

versal theory is a quasi-tautological consequence8 of a finite number of substitution

instances of its axioms. When applied to the theory PRA, this additional feature ex-

plains why PRA is conservative over quantifier-free Skolem arithmetic, as observed

in Section 1.

However, one need not lay down and analyze a complete proof system in order

to obtain the extra information above. Plain semantic considerations suffice. Here

is why. First, we may work with pure first-order logic (no equality present) and, in

tandem, with tautological (vs. quasi-tautological) consequences, since the equality

axioms may be taken to be universal sentences. Secondly, it is easy to argue seman-

tically that a pure quantifier-free first-order validity must be a tautology (where the

propositional letters are the atomic formulas). After these preliminaries, suppose that

U is a (pure) universal theory and that U |H ϕ(u), where ϕ(u) is a quantifier-free for-

mula with its variables as shown. By compactness, ϕ(u) is a consequence of finitely

many axioms of U. Without loss of generality, we may suppose that ∀ xψ(x) |H ϕ(u)

for a single axiom ‘∀ xψ(x)’ of U. Therefore, the sentence ∀ u ∃ x(ψ(x) → ϕ(u))

is a first-order validity. By Herbrand’s theorem (part 1), applied to the empty theory,

there are terms t1(u), . . . , tk(u) such that the implication

ψ(t1(u)) ∧ · · · ∧ ψ(t k(u)) → ϕ(u)

is a first-order validity and, hence, a tautology. In short, ϕ(u) is a tautological con-

sequence of finitely many substitutions instances of axioms of U.9

3 A Proof of Parsons’ Result

We are now ready to prove Parsons’ theorem. Suppose that the 52-sentence

∀u∃vθ(u, v) is a consequence of I61, where θ is an open formula (in the language

of PRA). By compactness, the given 52-sentence is a consequence of finitely many

instances of the 61-induction scheme. It is not difficult to see that these finitely

many instances can be subsumed by a single instance. Therefore,

PRA |H Indϕ → ∀u∃vθ(u, v),
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where Indϕ abbreviates the sentence

∀c∀z(ϕ(c, 0)∧ ∀x(ϕ(c, x) → ϕ(c, x + 1)) → ϕ(c, z))

for a certain 61-formula ϕ(c, x) := ∃y ψ(c, x, y), ψ quantifier-free (it is all right to

consider only a single parameter c because PRA has a pairing function).

We now put the sentence Indϕ → ∀u∃vθ(u, v) in prenex form and obtain,

(∗) PRA |H ∃v, c, z, y0∀x, y, w∃y ′(θ(u, v) ∨ χ(c, z, y0, x, y, w, y ′)),

where χ(c, z, y0, x, y, w, y ′) is the quantifier-free formula,

ψ(c, 0, y0) ∧ (ψ(c, x, y) → ψ(c, x + 1, y ′)) ∧ ¬ψ(c, z, w).

Lemma 3.1 Let t (p), s(p), r(p), and q(p, x, y, w) be terms of the language of

PRA, with the variables as shown. Then

PRA |H ∀p ∃x, y, w ¬χ(t (p), s(p), r(p), x, y, w, q(p, x, y, w)).

Proof We reason inside PRA. In order to get a contradiction, suppose that there is

p such that ∀x, y, w χ(t (p), s(p), r(p), x, y, w, q(p, x, y, w)). We get

1. ψ(t (p), 0, r(p)),

2. ∀x, y, w (ψ(t (p), x, y) → ψ(t (p), x + 1, q(p, x, y, w))), and

3. ∀w¬ψ(t (p), s(p),w).

Define h by primitive recursion according to the following clauses:

h(0, p) = r(p),

h(x + 1, p) = q(p, x, h(x, p), 0).

By (1), (2), and quantifier-free induction, it follows that ∀x ψ(t (p), x, h(x, p)). In

particular, ∃w ψ(t (p), s(p),w). This goes against (3). �

Herbrand’s theorem applies to PRA. Therefore, from (∗) and part 2 of Theo-

rem 2.1, there are terms r1(u), t1(u), r2(u, z1), t2(u, z1), . . . , rk(u, z1, . . . , zk−1),

tk(u, z1, . . . , zk−1) such that the disjunction of the following formulas is a conse-

quence of PRA:

θ(u, r1(u)) ∨ ∃y ′χ(t1(u), z1, y ′)

θ(u, r2(u, z1)) ∨ ∃y ′χ(t2(u, z1), z2, y ′)
...

θ(u, rk(u, z1, . . . , zk−1)) ∨ ∃y ′χ(tk(u, z1, . . . , zk−1), zk, y ′),

where each z j abbreviates a triple of variables and each t j abbreviates a triple of

terms (with its variables as shown). Hence, the disjunction of the formula ∃vθ(u, v)

together with the disjunction of the k formulas,

∃y ′χ(t1(u), z1, y ′)

∃y ′χ(t2(u, z1), z2, y ′)
...

∃y ′χ(tk(u, z1, . . . , zk−1), zk, y ′),
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is a consequence of PRA. By Herbrand’s theorem (in the form of part 1 of Theorem

2.1), there is a term q(u, z1, . . . , zk−1, zk) of the language such that the last formula

of the previous list may be substituted by

χ(tk(u, z1, . . . , zk−1), zk, q(u, z1, . . . , zk−1, zk)).

By the above lemma,

∃zk ¬χ(tk(u, z1, . . . , zk−1), zk, q(u, z1, . . . , zk−1, zk))

is a consequence of PRA. Therefore, the disjunction of ∃vθ(u, v) together with the

disjunction of the k − 1 formulas

∃y ′χ(t1(u), z1, y ′)

∃y ′χ(t2(u, z1), z2, y ′)
...

∃y ′χ(tk−1(u, z1, . . . , zk−2), zk−1, y ′),

is also a consequence of PRA.

If we repeat the previous argument (k − 1) times we eventually conclude that

PRA |H ∃vθ(u, v).

Q.E.D.10

Notes

1. Finitistic theory of numbers was never made precise by Hilbert. It remained informal,

presumably because an actual finitistic consistency proof would be recognized as such

without disputation. The remarks of Hilbert and Bernays in the Grundlagen clearly en-

dorse the thesis that primitive recursive arithmetic is part of finitistic mathematics. The

substantive thesis that primitive recursive arithmetic is all there is to finitistic mathemat-

ics (modulo the arithmetization of syntax) is defended by Tait in [24].

2. More precisely: If S is a theory that purports to formalize infinitistic mathematics,

then the consistency of S is equivalent to the reflection principle for 51-sentences (see

Smorynski [23]).

3. Parsons’ result appears in the last theorem of [15]. In its proof, Parsons refers to the

abstract [16], where it is stated that the theory I61 (actually, a seemingly stronger but

equivalent theory) has a functional interpretation in T0, a fragment of Gödel’s T. The

proof of this statement is carried out in [17] (via a preliminary Gödel-Gentzen double

negation interpretation). As a consequence, if ∃vθ(u, v), θ quantifier-free, is provable in

I61, then there is a closed term t of T0 such that T0 proves θ(u, tu). In order to get his

conservation result, Parsons associates to t a unary term t ′ of the language of PRA such

that the latter theory proves θ(u, t ′(u)). He studies this association in the initially cited

paper [15].

4. In [14], Mints works directly with the sequent calculus already restricted to a language

with one-quantifier formulas only (i.e., there are no alternations of the quantifiers ∀ and

∃ in the formulas that appear in the sequents). Clearly, these restricted systems are

complete in the obvious sense. As noted, Mints’s argument uses the no-counterexample

interpretation which, being restricted here to one-quantifier formulas, reminds one of

Buss’s technique of witness functions [2]. For a witness function account of Parsons’

theorem, see Buss [4]. Takeuti’s proof appears in [25].
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5. Sieg has an earlier, rather convoluted, proof of Parsons’ theorem in [18]. The proof

technique used in [19] was foreshadowed by an argument in Ferreira [7].

6. More precisely, we need a version of the “Propriété A” of first-order validities (of the

form ∃∀∃), introduced by Herbrand in chapter V of his thesis [9]. This is the version of

Herbrand’s theorem without the introduction of (so-called) index functions.

7. A theory U admits definition by cases if, for any terms t1(u), . . . , tk+1(u) and quantifier-

free formulas θ1(u), . . . , θk(u), there is a term t (u) such that

[θ1(u) → t (u) = t1(u)] ∧ [θ2(u) ∧ ¬θ1(u) → t (u) = t2(u)] ∧ · · ·

· · · ∧ [¬θk(u) ∧ · · · ∧ ¬θ1(u) → t (u) = tk+1(u)]

is a consequence of U.

8. That is, a tautological (a.k.a. propositional) consequence of instances of the equality

axioms.

9. This three-part semantic argument is folklore. The last piece is due to Mints and Shanin

for the theory PRA (see [14]).

10. We strove for simplicity in the above proof and, accordingly, we formulated Parsons’ the-

orem in semantic terms and proved it in a semantic, nonfinitistic, manner. The argument

of this section may, nevertheless, be given a finitistic form. One must, of course, work

with provability instead of semantic consequence, and rely on proof-theoretic accounts

of Herbrand’s theorem. The induction on k in the final step of the proof (a61-induction)

can be avoided if we use the following fact: From the proof-theoretic proofs of Her-

brand’s theorem, one can obtain primitive recursively a PRA-term t and a PRA-proof of

ϕ(u, t (u)) from a PRA-proof of ∃xϕ(u, x). Applying this fact to the induction part of

the proof as well as to the lemma, we may replace 61-induction by an explicit primitive

recursive construction/verification.
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