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J. P. Mayberry’s The Foundations of Mathematics in the Theory of Sets is an invigo-

rating call to foundational arms, which should strike readers as either revolutionary,

reactionary, or both. I intend the above claim normatively: if it elicits either or

both of these opinions from the reader the book will be a success, and it is only if

the book is counted as a localized “area of mathematical research” that Mayberry’s

project will have failed. However strenuous my disagreement in certain regards with

Mayberry’s more specific philosophical position, in this essay-review I will make the

strongest possible case for the goad which Mayberry supplies the mathematical and

philosophical communities in this regard. Indeed, even my serious disagreements

with Mayberry affirm the significance of the foundations of mathematics which he

claims.

1 Introduction

Mayberry’s general viewpoint, as presented in the preface to the book, is both sweep-

ing and, in certain regards, quite damning of mathematicians’ and formal logicians’

neglect of the foundations of mathematics. According to Mayberry there is “wide-

spread misunderstanding among mathematicians concerning the underlying logic of

the axiomatic method,” and “[i]ndeed, mathematical logicians are as prone to con-

fusion over the foundations of the axiomatic method as their colleagues” (p. xi).

This confusion lies, in particular, in the tendency of a large part of the mathemat-

ical/logical community to view “foundations of mathematics as a branch of logic”

(p. xi), whereas for Mayberry it is a fundamental principle that the axiomatic method

cannot itself be justified in a (formally) logical manner, but rather relies on set-

theoretic foundations. It is Mayberry’s aim to present and analyze these set-theoretic

foundations in this book.

As Mayberry puts it, his “approach to set theory rests on one central idea, namely,

that the modern notion of set is a refined and generalised version of the classical
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Greek notion of number (arithmos), the notion of number found in Aristotle and

expounded in Book VII of Euclid’s Elements” (p. xiii). As quickly becomes clear,

Mayberry understands this conception of number as an exclusively cardinal concep-

tion, and much of his book is preoccupied, in a variety of ways, with analysing what

sense we can make of the notion of ordinal on the basis of a foundational conception

of sets as collections determined by their membership and cardinality, that is, inde-

pendently of ordering. In presenting his conception of cardinal number, Mayberry

appeals to Jakob Klein’s discussion of the Greek conception of arithmos as a finite

totality composed of units, with the concomitant commitment to the finiteness of

quantity being understood in terms of Euclid’s axiom that the whole is greater than

the part (Klein [5], pp. 46–60). Given that Mayberry views the conception of set in

such close connection with the ancient conception of number, it might not seem en-

tirely out of place to suggest that what Mayberry is providing would more adequately

be described as “The Foundations of Mathematics in the Theory of Arithmetic,” and

indeed Mayberry himself states that “the point of view embodied in this book [is

that] all of mathematics is rooted in arithmetic, for the central concept in mathemat-

ics is the concept of a plurality limited, or bounded, or determinate, or definite—in

short, finite—in size, the ancient concept of number (arithmos)” (p. xix).

Since Euclid’s axiom is clearly violated by Cantor’s transfinite quantities, May-

berry goes on to characterize Cantor’s set-theory as non-Euclidean (p. xiv). As such,

Mayberry sees Cantorian set theory as fundamentally committed to a conception

of (unordered) totalities composed of units, but adopting a different, non-Euclidean

conception of the “finite.” Consequently, what Cantor refers to as the “transfinite”

Mayberry will refer to as the “Cantorian finite,” and this puts Mayberry in a position

to see the justification of set-theoretic foundations in terms of finiteness principles.

What will distinguish Cantorian finitism from Euclidean finitism will be precisely

which principles of finiteness each accepts.

Mayberry clearly, if tacitly, acknowledges that his construal of set-theory in terms

of the provision of finiteness principles is only one possible way of promoting set-

theoretic foundations. What are its advantages? For “orthodox” foundations (these

will include Euclidean and Cantorian variants of set-theoretic foundations) the pri-

mary advantage is that “it enables us to see that the central principles—axioms—of

set theory are really finiteness principles which, in effect, assert that certain mul-

titudes (pluralities, classes, species) are finite in extent and for that reason form

sets” (p. xv). That is, the construal of set theory in Mayberry’s way allows us to gen-

erate a systematic program for the justification of set-construction principles. How-

ever, understanding the sense in which Mayberry intends to supply a justification

will require investigating arguments Mayberry gives later in the book.

A related motivation for Mayberry’s construal of set-theory in terms of finiteness

principles is that it gives him a vantage point from which to criticize various forms of

operationalism which he sees infecting not only competing, non-set-theoretic foun-

dational programs, but also the standard presentation of the Cantorian position as

well. All of these positions are criticized, in particular, in terms of the operationalist

conception of the natural numbers which they adopt:

I am convinced that this operationalist conception of natural number is the

central fallacy that underlies all of our thinking about the foundations of math-

ematics. It is not confined to heretics, but is shared by the orthodox Cantorian

majority. This operationalist fallacy consists in the assumption that the mere
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description of the natural number system as “what we obtain from zero by

successive additions of one” suffices on its own to define the natural number

system as a unique mathematical structure—the assumption that the opera-

tionalist description of the natural numbers is itself what provides us with a

guarantee that the system of natural numbers has a unique, fixed structure.

(p. xvii)

Although Mayberry will show that the orthodox Cantorian position may be

“shored up” by demonstrating the uniqueness of the natural numbers, if, on the

other hand, “we abandon Cantorian orthodoxy we thereby abandon the means with

which to prove these things” (p. xvii). This is not the only casualty of such a turn:

the adoption of Mayberry’s strict perspective (whether pursued along Euclidean or

Cantorian lines) will lead us to modify our straightforward “orthodox” commitment

to the availability of proofs by induction and definition by recursion. These two

latter commitments rely on operations which “too must be analysed in terms of more

fundamental notions” (p. xvii).

Before proceeding to issues which will allow me to illuminate the difference be-

tween Cantorian and Euclidean set-theoretic perspectives, it is worth pointing out

that although Mayberry’s cardinal-based attitude is consonant with modern expo-

sitions of Cantorian set theory such as ZF(C) or NBG(C), historically, there is in

fact an evolution of Cantor’s thinking in the direction of making the cardinal concep-

tion of set primary, but Cantor’s early work in set theory was clearly dominated by an

ordinal-driven conception of sets (see, for example, Hallett [3], pp. 120–64). Further-

more, when Cantor moves in the direction of a foundationally cardinal conception

he is left with dilemmas about the differentiation of fundamental “units” which he

was unable to address adequately. It is, then, already a nontrivial orientating decision

on Mayberry’s part to align himself with a fundamentally nonordered conception of

collectivity. This decision is an integral (and consistent) part of Mayberry’s own

anti-operationalist stance, but as I will suggest below, is at a deeper level a function

of even more fundamental commitments in Mayberry’s approach to foundations of

mathematics.

A second remark about Mayberry’s overall attitude toward set-theoretic founda-

tions is that the program of justifying set-theoretic foundations in terms of finiteness

principles carries with it specific ambitions that many other advocates of set-theory

as a foundation for mathematics either fail to supply or, indeed, have no desire to

supply. In the assessment of Mayberry’s position, then, it is important to be as clear

as possible about the strength of the claims he is making in defense of set-theoretic

foundations and what is necessary in order for these claims to be established. In a

section of the first chapter of his book entitled “What the foundations of mathematics

consists in,” Mayberry draws a distinction between the exposition and the justifica-

tion of the foundations of mathematics which is crucial for his understanding of these

issues, remarking that “the task of expounding the foundations of mathematics must

be kept separate from the task of justifying them: this is required by the logical role

that those foundations are called upon to play” (p. 10). Indeed, Mayberry goes on to

point out that there can be “no question of a rigorous justification of proposed foun-

dations” (ibid.) on pain of a regress. Justification must proceed, then, “by persuasion

rather than by demonstration: it must be dialectical rather than apodeictic” (ibid.).

Given that the concepts to which we appeal in expounding a foundation of math-

ematics are taken to be basic—for otherwise they would not be foundational—they
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must then be justified in the absence of the canonical form of mathematical justifica-

tion, that is, the provision of proofs themselves based on (justified) definitions. But

this means that their justificatory status must in some sense be self-evident.1 It is

imperative, then, to be as clear as possible about what sort of support Mayberry is

claiming to provide in terms of appeals to self-evidence. In correspondence with the

author of this review, Mayberry has clarified his position in the following terms:

even though we cannot carry out a proper process of justification in these

cases—that would be a mathematical definition or a mathematical proof—

at least we can clear away misconceptions and prejudices that cloud the

judgement and prevent our seeing the basic concepts and principles as self-

evidently justified. Such misconceptions and prejudices can be historical

(as when our notion of natural number is conceived to be the original notion

of number), technical (as when formal mathematical logic is deemed to be

an autonomous discipline, independent of, and antecedent to, mathematics),

epistemological, ontological, sociological, etc. (personal correspondence,

December 28, 2002)

In the context of his book, it seems that Mayberry’s “justificatory program,” in this

passive sense of clearing away misconceptions, is primarily organized in terms of

the power which accrues from taking the concept of finiteness, and consequently, the

distinction between the finite and the infinite, as our guide for organizing our vision

of the foundations of mathematics in a coherent way.

Here, however, two points must be made. First, insofar as the concept of the finite

serves this organizing function, Mayberry’s agnosticism regarding Euclidean versus

Cantorian foundations registers a sense in which his own foundational program re-

mains incomplete: “My own view is that we do not yet know enough about how

mathematics can be developed in Euclidean set theory to make an informed choice

between that theory and Cantorian orthodoxy” (p. 387). The way Mayberry puts this

point at least makes it sound like pragmatic evidence regarding the success or failure

in developing these theories could serve as a guide for resolving our dilemma. But

at best it remains unclear how to reconcile this sort of appeal with Mayberry’s insis-

tence that set-theoretic foundations be justified in terms of the proper conception of

the distinction between the finite and the infinite: we have, in particular, no reason

on Mayberry’s account to think that what works is what is proper, and this seems

like a particular deficit in the case of someone arguing that foundations be supplied

in the way Mayberry requires.

The second point to introduce here is that although Mayberry does supply per-

suasive reasons for thinking that the sort of set-theoretical foundations he promotes

will provide a philosophical context for resolving problems associated with the op-

erationalist fallacy he criticizes, he is unable, in this reviewer’s opinion, to provide

equally persuasive reasons for viewing set-theoretic foundations as the exclusive or

even the best vantage point from which to understand the distinction between the fi-

nite and the infinite which drives his specifically justificatory program. I will discuss

this second point and further general criticisms of Mayberry’s program below, but

this further discussion will involve a greater sense of his position than I have been

able to develop at this point in the essay. To this end, I turn now to the issue which is

perhaps most illuminating in understanding the consequences of adopting Cantorian

versus Euclidean foundations: the status of the natural numbers and the way this is

reflected, in particular, in the status of the exponential operation.
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2 Natural Numbers and Exponentiation

Because the status of the exponential operation throws into relief both the most sig-

nificant discrepancies between the Cantorian and Euclidean set-theoretic approaches,

and because, as I will argue below, the status of exponentiation is a fundamental is-

sue for foundations for which Mayberry’s work constitutes a major contribution, I

will focus in this section on the treatment of exponentiation in the two approaches

Mayberry considers. I begin with some motivating examples which will illustrate

points key for the development of Mayberry’s position. Consider the issue of string

growth in decimal representation: let’s begin by looking at some simple examples.

In base 10 decimal representation,

2 + 4 = 6,

8 + 9 = 17,

103 + 104 = 207,

846 + 372 = 1218,

2 × 4 = 8,

8 × 9 = 72,

103 × 104 = 10712,

846 × 372 = 314712.

These examples suggest that in the case of addition we may bound the length of

the product decimal representation by adding 1 to the longer decimal representation

length, and in the case of multiplication we may bound the length of the product

decimal representation by the sum of the decimal representation lengths. This can

easily be seen sufficient by representing the decimal expansions algebraically. If we

have x = a0 + a1101 + a2102 + · · · + am10m and y = b0 + b1101 + · · · + bn10n ,

with am and bn nonzero, then x + y is bounded by 2 max{am, bn} max{10m, 10n},
and this is bounded by 2 × 10max{m,n}+1, which has max{m, n} + 1 places. In the

case of multiplication, x × y < (am + 1)10m(bn + 1)10n ≤ 10m+n+2, and since x

has length m + 1 and y length n + 1, we are done (since 10m+n+2 is the smallest

number having m + n + 3 places in its decimal representation and the inequality is

strict).

However, when we consider exponentiation, the situation is suddenly different.

Indeed, x y = (a0 + a1101 + · · ·+ am10m)(b0+···+bn10n) ≥ ((am)10m)(b0+···+bn10n) ≥
(10m)(b0+···+bn10n) = 10(m)(b0+···+bn10n) ≥ 10(m)(bn)(10n) ≥ 1010n

, and so the growth

rate is bounded below by 10n digits in this way. Here the point is simply that as we

exponentiate the number of digits is growing in an exponential fashion. (This should

not be particularly surprising, since the decimal system itself is based on exponential

representation; however, I will say more about the significance of such representation

systems below.) It is this basic sort of behavior which distinguishes exponentiation,

and this behavior witnesses something which bears on the “definability” of expo-

nentiation, as I will proceed to explain. I will begin this process by first presenting

Mayberry’s picture of Cantorian finitism, in which the definability of exponentia-

tion causes no problems. This presentation will then allow me to highlight exactly

what changes when I turn to Mayberry’s exposition of Euclidean finitism, that is,

Euclidean set theory (EST).
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In the following definitions a local relation is a set of ordered pairs and a local
function is a local relation with the additional property that for each element of the
domain there is exactly one element in the range to which the first element stands
in relation. Mayberry’s presentation of Cantorian finitism is then grounded in the
notions of Dedekind structures and morphisms between such structures, which May-
berry defines as follows:

(i) A Dedekind structure is an ordered triple (N, s, a), where N is a non-

empty set, s : N → N is a function from N to N , and a ∈ N is a distinguished

element of N .

(ii) Let (N, s, a) and(M, t, b) be Dedekind structures, and let m : N → M

be a local function. Then, by definition, m is a morphism from (N, s, a)

to (M, t, b) : iff : m‘a = b and (∀x ∈ N)[m‘s‘x = t‘m‘x]; a bijective

morphism is called an isomorphism. (pp. 153–54)

A Dedekind structure (N,s,a) is then a simply infinite system if it satisfies the follow-
ing three axioms:

I. (∀x ∈ N)[s‘x 6= a]
II. (∀xy ∈ N)[s‘x = s‘y implies x = y]

III. (∀S ⊆ N)[a ∈ S and (∀x ∈ S)[s‘x ∈ S] : implies : S = N]. (p. 155)

In terms of these definitions Mayberry proves the following theorem, which guaran-
tees what Mayberry calls “definition by recursion along a simply infinite system”:

Let (N, s, a) be a simply infinite system and (M, t, b) an arbitrary Dedekind

system. Then there is exactly one function f : N → M which is a morphism

of Dedekind structures. (pp. 156–57)

In terms of this result we are able to guarantee that for a simply infinite system there

are unique binary functions satisfying the usual definitions of addition, multiplica-

tion and exponentiation, and the existence of these functions in turn makes it possible

to define a Peano system as an ordered quintuple (N, s, a,+, · ) which satisfies the

axioms for a simply infinite system and axioms which characterize addition and mul-

tiplication in the usual way. The result establishing definition by primitive recursion

along a simply infinite system then guarantees that any two simply infinite systems

are isomorphic as Dedekind structures, and that any two Peano systems are isomor-

phic as structures of their type. Mayberry is thus able to establish categoricity results

for both simply infinite systems and Peano systems. This result does not guarantee

the existence of Peano systems, because it does not require Cantor’s axiom of infin-

ity. But in the presence of the axiom of infinity, the existence of Peano systems is

assured (pp. 159 ff.).

What about exponentiation? We are essentially asking a question about the rep-

resentability of exponentiation in the formal system Q which is a fragment of Peano

Arithmetic (PA) (Epstein and Carnielli [2], pp. 180–81). In PA we take the functions

s,+, and × as primitive, but not exponentiation, and therefore showing the repre-

sentability of the recursive functions in PA requires using a coding which does not

rely on the exponential function. Given that coding in the presence of the exponen-

tial function is quite straightforward, the chief technical difficulty in this program is

to find a way to code functions without appeal to the exponential function (supplied

by Gödel’s β-function, see [2], pp. 190–91), and this perhaps suggests that there is

something “difficult” about the exponential function. But whether this is the case or

not, it does not indicate in what regard the introduction of exponentiation depends
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on the existence or categoricity of Peano systems. Mayberry’s work on Euclidean

set theory provides a context in terms of which these issues may be discussed.
The Euclidean perspective is most easily approached by comparing the Cantorian

and Euclidean perspectives. In particular, the following problem poses itself: in the
Cantorian case we have a successor function which is defined on a simply infinite
system (N, s, a); in the Euclidean case, without the Cantorian axiom of infinity, we
do not have such a collection N with the status of a set. What are we to do? May-
berry handles this by introducing a distinction between local functions and global
functions. As Mayberry says,

By a local function I mean, as a first approximation, a function whose domain

of definition is a set (and whose range is therefore, by Replacement, also a

set). It is thus to be contrasted with the Fregean conception of global function.

This notion of local function plays so central a role in modern mathematics

that it is scarcely possible to imagine what the subject might be without it.

(p. 130)

More exactly, Mayberry defines a (local) relation as a set of ordered pairs, and then
defines a local function as a local relation that satisfies the expected functionality
criterion. Although this all seems standard enough, the distinction between local
and global function is critically related for Mayberry to his espousal of what he calls
“Brouwer’s principle”:

Brouwer’s Principle (i) Conventional (i.e. what Brouwer calls “classical”)

logic is the logic of finite domains. In particular the conventional laws of

quantification apply only when the domains of quantification are finite.

(ii) Propositions that require global quantification for their expressions can-

not be assigned conventional truth values, true or false. They can only be

classified as justified or unjustified. (p. 89)

Brouwer’s principle indicates the manner in which Mayberry understands the rela-

tion between logical and set-theoretic concerns. In particular, the notion of local

function is linked via Brouwer’s principle to the commitment to a particular brand of

finiteness, either Cantorian or Euclidean in the cases Mayberry considers. Further-

more, by Brouwer’s principle, the notion of global function, whatever that turns out

to be on any particular view, effectively requires a treatment in terms of intuitionistic

logic, although this treatment will be carried out at the foundational rather than at

the axiomatic level: it is this which requires us to distinguish between justified and

unjustified propositions, on the one hand, and true and false ones, on the other (here

see also Mayberry [7] and [8]).

So far as EST is concerned, the importance of this distinction lies chiefly in the

fact that simply infinite systems are not sets (so that, in particular, the above-stated

categoricity result does not apply) and functions defined on simply infinite systems

are global, not local, functions. In this setting, we work from the fact that we have a

theory of (Euclidean finite) linear ordering, and in terms of this we may define, for

any object a and σ any global first level function and for any linear ordering r , “σ

generates r from a” (in the obvious way, resting on the ordering r ). Then we say that

σ generates a simply infinite system from a if for all linear orderings x , x is generated

from a by σ and x is nonempty implies that σ(Last(x)) /∈ Field(x) (p. 326). The

elements of a SIS will be the linear orders lying in it and the corresponding terms

will be the terms of the constituent linear orderings. Heuristically, we may write this

as

0 = [], 1 = [E0], 2 = [E0, E1], 3 = [E0, E1, E2],
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and in general if n 6= 0, n = [E0, E1, . . . , En − 1] but we must note that because

of Mayberry’s commitment to anti-operationalism we must not take the dots used

in the above notation to mean any more than that n is a linear order generated

from 0 by σ ; in particular, we should not view this as a shorthand notation

meant to represent an explicit, that is, concrete, list of equations of the form

σ(0) = 1, σ (1) = 2, . . . , σ (n − 1) = n (see a related discussion at p. 158). Even

more importantly for Mayberry’s purposes, we must not assume that all finite linear

orderings are elements of one canonical ongoing collection of finite linear orderings.

In the context of EST Mayberry is able to prove a “principle of mathematical

induction” for SIS’s and show that a necessary and sufficient condition for addition,

multiplication, or exponentiation to be defined on a SIS N is that “the recursion equa-

tions succeed in defining a function on N” (p. 335). This parallels the requirement

that a theorem be proved in Cantorian set theory establishing definition by recursion

along a SIS, but here the analogous result is much more difficult to obtain since we

now are not able to work with SIS’s as sets. Consequently we need to include along

with the defining functions of the recursion a bounding function which guarantees

that the recursion functions not grow so fast that their joint growth outstrips any func-

tion. This is because, in particular, we do not have any set upon which to project, in

advance, the values of the recursion, and so must guarantee that we can generate a

sufficiently large range to “capture the recursion at each stage.”

We may illustrate the distinction between local and global quantification and the

concomitant application of Brouwer’s principle in the context of EST by consider-

ing the statement that “(all) simply infinite systems are not sets.” In EST we may

demonstrate something which corresponds to this statement, in a sense which I will

specify below, by showing that given any simply infinite system and any set we may

exhibit an element of the simply infinite system that is not in the set. But the force

of this demonstration is, first, logically schematic: what it shows is that any infinite

system is not any set. Second, it is formal: the term ‘simply infinite system’ is not

to be understood to refer to an object per se, but rather to the function which “gener-

ates” the simply infinite system, and this function is not itself to be understood as an

object, but only in terms of the objects which are its course of values. In this way we

are able to understand the result in a way which avoids global quantification over all

simply infinite systems, and as Mayberry has ackowledged in correspondence, any

attempt to make a point about the collection of simply infinite systems would run

seriously afoul of his program, since he does “not think we can legitimately speak of

species of higher level ‘entities’ ” (December 20, 2002).
As mentioned above, even speaking of a simply infinite system as an object is

something that can only be understood as shorthand, and accordingly, the informal
statement I, “(all) simply infinite systems are not sets” may be more accurately ex-
pressed in terms of the following schematic proposition II: The hypotheses (i) and
(ii) entail the conclusion (iii):

(i) σ generates a simply infinite system;

(ii) S is a set all of whose members are elements of the simply infinite sys-

tem generated by σ ;

(iii) the linear ordering L ∗ σ(T), where L is the longest linear ordering in S

and T is its last term, is an element of the simply infinite system gener-

ated by σ but does not belong to S. (December 20, 2002)
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Even here, Mayberry concedes,

[t]he wording of (i), (ii), and (iii) in II is perhaps misleading in that, on the

face of it, they contain reference to “things” that are really not “things” at all.

But I do not intend for this wording to be taken literally as referential; it is

intended merely to help the reader to grasp my intention in laying down these

definitions. In fact, II can be translated into a proposition in the conceptual

notation of the form A, B ⇒ C, where A is a 51-formula expressing (I), B is

a local formula (i.e., containing no global quantifiers) expressing (ii), and C

is a local formula expressing (iii). (ibid., modified at Mayberry’s request)

The above example illustrates what might be called the ontological character of

Mayberry’s approach to EST. The need for such care in the formulation of this as-

pect of his presentation of EST is a function of the fact that the appeals to simply

infinite systems which support the result Mayberry establishes concerning mathe-

matical induction cannot themselves be treated as appeals to objects within the the-

ory itself. This leads to, but must be conceptually distinguished from, the second

major “wrinkle” introduced by EST: because of the unavailability of simply infinite

systems within the theory there is no way to establish the categoricity results for

simply infinite systems and Peano systems which are available within the Cantorian

theory. In the absence of these results we cannot guarantee the existence of a univer-

sal numeration system, that is, a scale against which quantity may be “measured” in

general, and this leads to the necessity of examining carefully the nature of numera-

tion systems. It is this investigation which demonstrates that in the context of EST,

the operationalist assumption of the uniqueness (up to isomorphism) of “the” natural

numbers is not simply lacking demonstration, as it typically has been in the context

of presentations of Cantorian set theory, but is indeed ill-founded.

Since the trajectory of Mayberry’s treatment of this issue becomes quite technical,

it is helpful at this point to think back to our original examples. Suppose that I need

to define multiplication on decimal strings. We start with a simply infinite system

N , which we may think of as a stroke system: |, ||, |||, ||||, . . .. Next we select a

numeration base, ||||||||||, and form decimal strings. This gives us a new simply

infinite system, which we may call N[10]. Now if addition is defined on N[10] we

may define multiplication on N by

a ×10 b = i{x ∈ NUM(k + 1) : [· · · x) ∼= [· · · a) ×c [· · · b)},

where k = length(a) +N length(b), and NUM(k + 1) is the collection of all decimal

notations of length at most k + 1 digits. Then ×10 satisfies the recursion equations,

a ×10 〈0〉10 = 〈010〉

and

a × (b +10 〈110〉) = (a ×10 b) +10 a.

But, as we have seen, a similar maneuver will not go through for exponentiation,

and in fact we obtain ‘exp is definable in N[10] if and only if it is definable in N’

(p. 343).

Mayberry’s Euclidean approach requires us to take into consideration extensions

of simply infinite systems by what he calls “the method of S-ary expansion,” of

which the extension of the stroke notation system to decimal notation base 10 given

above would be a specific example (see p. 338ff.). This is because, in general, we do

not know whether a given function can be represented in a given SIS. There is thus

some analogy with the problem of definability in Q, Robinson’s fragment of Peano
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Arithmetic, and in both cases it is essentially inclusion of definition by recursion that

causes problems.

3 Foundations and Mayberry’s Anti-Operationalism

As has already been mentioned above, Mayberry views a certain “operationalist con-

ception of natural number” as “the central fallacy that underlies all of our thinking

about the foundations of mathematics” (p. xvii). It will be my thesis in this section

that although the core (at least as I will understand it) of Mayberry’s critical point is

sound, the implications of this point for foundations of mathematics are other than

those which Mayberry himself draws. This will have significant implications for

Mayberry’s own foundational project, since on my construal the implictions of May-

berry’s critical point bear equally on set-theoretic and non-set-theoretic foundations,

and so cannot be used to argue in favor of set-theoretic foundations, as Mayberry

himself wishes to do.

In order to prosecute this agenda we must first gain a more thorough sense of

Mayberry’s anti-operationalism. As a primary framework, I begin by considering

three fundamental theses Mayberry states in the preface to his work, the third of

which comprises the passage referred to above.

Thesis 1 “If . . . we see the notion of natural number as a secondary growth on the

more fundamental notion of arithmos . . . then the principles of proof by induction

and definition by recursion are no longer just ‘given’ as part of the raw data, so to

speak, but must be established from more fundamental, set-theoretical principles.”

(pp. xvi–xvii)

Thesis 2 “Nor are the operations of counting out or calculating to be taken as

primary data: they too must be analysed in terms of more fundamental notions.”

(p. xvii)

Thesis 3 “[The] operationalist conception of natural number is the central fallacy

that underlies all our thinking in the foundations of mathematics.” (p. xvii)

Thesis 1 affirms Mayberry’s commitment to the notion of arithmos, “finite plural-

ity in the original Greek sense of ‘finite’ ” (p. xvii), as basic. This thesis plays (at

least) two key roles in Mayberry’s enterprise which must be distinguished. Insofar

as Mayberry provides a parallel development of Euclidean and Cantorian set the-

ories (what I referred to above as Mayberry’s “agnosticism”), the Greek notion of

arithmos serves as a common conceptual core on the basis of which variant notions

of finite collection may be grounded. But in line with the historical connection be-

tween the Greek conception of arithmos and Euclid’s axiom, the primary nature of

the commitment to arithmos also reinforces Mayberry’s own admitted excitement

about EST (see, e.g., p. 387). From the perspective of any decision to pursue EST,

the strength of the commitment to arithmoi as the fundamental, given mathematical

“data” can only increase.

Thesis 2 expresses Mayberry’s anti-operationalism most succinctly: operations,

whether of counting or calculating, must be analysed in terms of more fundamental

data. In conjunction with Mayberry’s commitment to Thesis 1, it is clear that opera-

tions are to be analysed in terms of our primary ontological commitment to arithmos,

and whether or not this analysis is to be reductive in any thoroughgoing sense, it is

clear that it must be effectively reductive so far, at least, as foundational purposes
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are concerned. No undischarged appeal to operations may be made in providing

foundational justifications.

Thesis 3 has already been considered, but it is perhaps appropriate to reiterate here

that after stating this thesis Mayberry goes on to remark that residual operationalism

infects the Cantorianism of the “orthodox Cantorian majority” as well. Given that

such residual operationalism infects standard (i.e., “non-Mayberrian”) presentations

of Cantorian set-theory, in what sense are we to distinguish Mayberry’s set-theoretic

perspective not only from “heretics” (p. xvii), that is, non-set-theoretic foundations,

but also from the Cantorian orthodoxy? Here, I believe, Mayberry’s answer is clear:

we must purify set theory of the residual operationalism found in its standard ex-

pression while retaining a commitment to the fundamental set-theoretic approach

which survives such purification. Only then will we be in a position to establish a

set-theoretic foundation (whether it be of a Cantorian or Euclidean, or perhaps even

some other, variety) which does not fall prey to the “operationalist fallacy.” The de-

bate about foundations, on this picture, will then be one about justifying a particular

approach to the set-theoretic characterization of the finite.

Having characterized Mayberry’s set-theoretic foundationalism, I am now in a

position to offer my criticism of it. The criticism is not, at least directly, one about

the potential for success of the foundational program Mayberry suggests, but rather

a criticism directed at Mayberry’s claims to the uniqueness, or at the very least the

primacy, of the set-theoretic perspective. Simply put, the problem is this: there are

other, non-set-theoretic perspectives which seem perfectly capable of respecting the

point Mayberry makes in his critique of operationalism along the lines of Thesis 3.

Even more damningly, it is difficult if not impossible to characterize some of these

alternative programs as anything but operationalist in the sense of Thesis 2. If this

is so, as I believe it is, then Mayberry’s so-called critique of operationalism is not

exclusively about operationalism as a philosophical position at all, but about some-

thing else. But before attempting to ascertain what this “something else” might be,

let me describe these alternative approaches.
To begin with, it should be noted that Mayberry himself recognizes that there

are proponents of non-set-theoretic foundations who respect his “critique of oper-
ationalism.” Mayberry mentions, in particular, Petr Vopenka and Edward Nelson’s
respective rejections of the idea of a unique natural number system and goes on to
remark:

Neither Vopenka nor Nelson approaches the natural number problem from

the foundational standpoint I have adopted here. Indeed, both are formalists

of a sort (in Nelson’s case, a self-described formalist), but their formalism

is not, like Bourbaki’s, a mere device for avoiding a serious confrontation

with foundational issues. On the contrary, it functions more like a working

hypothesis that allows them to get to grips, each in his own fashion, with

the very difficult business of developing mathematics without presupposing a

unique natural number sequence. (pp. 387–88)

I am not sure whether either Vopenka or Nelson would be happy with Mayberry’s

characterization of their respective (philosophical) formalisms as “working hypothe-

ses,” but in any case, it seems clear that from Mayberry’s own set-theoretic per-

spective such formalism should look, at best, like a provisional investigation which

brackets ultimate concerns of justification which must refer to (set-theoretic) ontol-

ogy. If, indeed, this is all that is going on in the cases of Vopenka and Nelson, then we

might still be willing to concede to Mayberry the unique relevance of set-theoretic
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foundations as the only perspective which gets to the ontological bottom of things.2

That this is not all that is going on follows from my description of further, essen-

tially operationalist, positions which nonetheless respect the point Mayberry makes

in what I have called Thesis 3; it is to these that I now turn.
Perhaps Mayberry’s most explicit characterization of the “operationalist fallacy,”

and certainly the one most relevant for present purposes, is embodied in his specific
claim that

The assumption that simply by giving the conventional operationalist descrip-

tion of the natural numbers, we have thereby characterised them uniquely will

simply not stand up under serious scrutiny. (p. 387)

With this statement of the “operationalist fallacy,” in particular, I could not be in more

wholehearted agreement. But this point has been made, most strongly, and prior to

the work of either Vopenka or Nelson, in the so-called ultra-intuitionism of Yessenin-

Volpin, whose philosophical position is simultaneously as anti-set-theoretical and as

pro-operationalist as any position is likely to come. Although Yessenin-Volpin’s po-

sition is admittedly challenging to ascertain with confidence, his treatment of the

noncategoricity of natural number systems in particular has been studied and pre-

sented with great care in a series of papers by Isles, and in Isles’s work one finds

the commitment to the noncategoricity of natural number notation systems specifi-

cally motivated by an operationalist (or, as I would ultimately prefer, “praxiological”)

philosophical stance.

From Isles’s competing perspective we may see, indeed, that much of the force

militating against recognizing any foundational problem with establishing the cat-

egoricity of the natural numbers derives largely from arguments stemming directly

from realist, and in particular, set-theoretic, commitments. Isles presents three argu-

ments for the uniqueness of the natural numbers which he takes to be common. The

first makes an appeal to induction in order to produce an isomorphism between any

two natural number series; this Isles rejects as circular, and indeed it is just May-

berry’s point that in the absence of some antecedent foundational defense of such an

application of a principle of induction it must indeed fail on just this ground. The

second and third arguments Isles considers rely on “definitions or ‘constructions’

of the natural numbers” ([4], p. 113), and both commit to a notion of mathematical

realism which Isles, in particular, finds philosophically prejudicial. Isles describes

first the set-theoretic definition or characterization of the natural numbers “as the in-

tersection of all sets which contain a zero and which are closed under a successor

function” ([4], p. 113). As Isles points out, and as Mayberry’s juxtaposition of Can-

torian and Euclidean set theory dramatically demonstrates, the availability of such a

characterization will depend on the set-theoretic axioms adopted, and so will rely on

a principled argument for selecting one particular version of set theory. Furthermore,

philosophically this approach arguably requires a realist commitment to set-theoretic

collections, since the definition itself is impredicative.
The more simple-minded characterization, which Isles presents last, is the one

that he takes to underlie most mathematicians’ belief in the existence of a unique
collection of natural numbers. Isles calls this the “counting description” and charac-
terizes it in terms of the following three rules:

R1: Write down a stroke 1.

R2: Given a set of strokes (call it X) write down X1.

R3: Now apply R1 once and then apply R2 again and again. ([4], p. 113)
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Here we encounter what Mayberry would presumably be willing to call the “naive
operationalism” of the working mathematician. Isles does not contest R1 and R2
himself, but, as he remarks, R3 is “in a different category”:

It does not determine a unique method of proceeding because that determina-

tion is contained in the words “apply R2 again and again.” But these words

make use of the very conception of natural number and indefinite repetition

whose explanation is being attempted: in other words, this description is cir-

cular. ([4], p. 113)

Isles aligns the two positions of the working mathematician and the “orthodox” set-

theorist in a way which is reminiscent of Mayberry’s remark about the pervasiveness

of the operationalist fallacy among both working mathematicians and mathematical

logicians studying axiomatic set theory as a mathematical domain. But whereas

Mayberry will attempt to resolve this dilemma by purifying set theoretic realism

(or, if one prefers, foundations of mathematics in the ontology of sets), Isles will

respond to the situation by abandoning just these sorts of ontological commitments.

It is in the process of abandoning these ontological commitments that Isles comes to

question the categoricity of the natural numbers.
To this end, Isles considers one final potential argument for the uniqueness of the

natural numbers: “Nonsense. I understand R3 perfectly well because I understand
how to use it” ([4], p. 114). But as Isles points out, this depends on our having
a univocal conception of our use of the natural numbers, and Isles takes this to be
palpably false:

For the use may be manifested in an enormous variety of forms, using various

notation systems, computer, etc., and it may be a difficult matter to see that

two such apparently different procedures are, in some sense, isomorphic. ([4],

p. 114)

What Isles shows, then, is that the most common arguments both of the ontological

and praxiological sort fail to support the uniqueness of the natural numbers. But, in

fact, it is most evident in his response to the argument from use how the nonunique-

ness of the natural numbers may be motivated, by appeal to the diversity of ways

in which we make use of “them.” And the appeal to such motivation plays a crucial

and legitimate philosophical role in the work of Isles and the tradition from which his

work derives (Mannoury, van Dantzig, Yessenin-Volpin). This is not to say that all

the philosophical or foundational advantages lie on the side of this tradition I would

dub “praxiological”; rather, it is to point out simply that there are two philosophi-

cally antithetical and prima facie legitimate ways of responding to the state of affairs

of which Isles and Mayberry provide us with a largely common diagnosis.
In fact, I believe Nelson’s work constitutes a distinct, third alternative. In mak-

ing this claim I am suggesting a different attitude to Nelson’s work than the one
which seems to be implied by Mayberry’s remarks about Nelson discussed previ-
ously. That, in any case, Nelson’s work shares praxiological affiliations with the
tradition to which Isles subscribes is, I believe, indicated by remarks from Nelson
such as the following:

The intuition that the set of all subsets of a finite set is finite . . . is a ques-

tionable intuition. Let A be the set of some 5000 spaces for symbols on a

blank sheet of typewriter paper, and let B be the set of some 80 symbols of a

typewriter; then perhaps B A is infinite. Perhaps it is even incorrect to think

of B A as being a set. To do so is to postulate an entity, the set of all possible

typewritten pages, and then to ascribe some kind of reality to this entity—for
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example, by asserting that one can in principle survey each possible typewrit-

ten page. But perhaps it simply is not so. Perhaps there is no such number as

805000; perhaps it is always possible to write a new and different page. ([9],

p. 50)

What specifically interests me in Nelson’s position here is that he is allowing himself

to appeal to issues like surveyability in fashioning his argument. In particular, the

persuasive force of the passage relies on such issues in much the same way as pas-

sages from Isles do. From an ontologizing, set-theoretic perspective, these appeals

could only seem psychological and (hence) inessential, but from a praxiological per-

spective they are susceptible to being recognized as of philosophically fundamental

import: in this case equally as fundamental as the distinction between the finite and

the infinite (Bassler [1]).

This leaves us, then, with the question already mentioned above: if Mayberry’s

critique of operationalism is not about operationalism per se, then what is it about?

An obvious candidate answer would be: it is about the status of the categoricity of

the natural numbers. Up to a first approximation this seems like the right answer, and

Mayberry has conceded in correspondence that if it is not “one neologism too far”

we might speak here of the “iterationist” fallacy, (August 3, 2003), but the problem

with this proposed response in any case is that it leaves us largely in the dark if

we wish to compare how foundational philosophical attitudes might bear on this

issue. On the other hand, just because I am claiming that Mayberry’s set-theoretic

foundations don’t offer a uniquely relevant perspective on this issue does not mean

that philosophical foundations cannot contribute to our investigation. In fact, as I

have attempted to demonstrate throughout this essay-review, it is just the fact that

Mayberry does take foundations seriously which leads him to recognize the centrality

of this issue. But we must now reassess the situation after recognizing that we may

appeal to other foundational perspectives as well in order to motivate the centrality

of this issue.

4 Assessment and Conclusion

The ultimate strength of Mayberry’s attitude to set-theoretic foundations is the force

with which he insists that the justificatory power of (philosophical) foundations of

mathematics must be a function of our capacity to provide a philosophical accounting

for the distinction between the finite and the infinite. On both historical and concep-

tual grounds Mayberry makes the point, in this reviewer’s opinion convincingly, that

this distinction lies at the core of our conception of arithmos, and hence at the core

of our conception of set-theoretic collection. It is in terms of this distinction, then,

that arguments must be given for accepting those axiomatic formulations of the basic

principles which underlie the existence and formation of such collections.

In the process of pursuing this project with respect to both Cantorian and Eu-

clidean set theory, however, an interesting twist begins to emerge with respect to

the distinction between the finite and the infinite. In Cantorian set theory, we are

able to say categorically what counts as a finite number (in Cantor’s sense, not to

be confused with Mayberry’s locution “Cantorian finite”), since Mayberry is able to

provide a proof of the categoricity of Peano systems. However, the existence of such

a collection relies on an appeal to Cantor’s so-called axiom of infinity, and Mayberry

is able to justify this according to his own standards only if such transfinite (in Can-

tor’s sense) collections are (“Cantorian”) finite in Mayberry’s sense. The problem,
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here, is the following: how are we then to take the property which characterizes the

Cantorian finiteness of the individual natural numbers? In particular, what are we to

say about it so far as Mayberry’s distinction between the finite and the infinite (in the

Cantorian context) is concerned? At the very least it seems we must say that Can-

tor’s own notion of finiteness is not conceptually foundational. Indeed, since Cantor

makes his distinction between the finite and the transfinite in terms of whether col-

lections can or cannot be put in one-to-one correspondence with a proper subset of

themselves, this sense of the finite simply reflects on the distinction between Eu-

clidean and non-Euclidean collections from within the Cantorian perspective! But

given that Euclid’s axiom is denied as a proper characterization of the (Mayberrian)

finite in this Cantorian perspective, the distinction cannot have any conceptually fun-

damental status, and so the distinction between the Cantorian finite and the Cantorian

transfinite is lacking any particular foundational significance: what collections are fi-

nite in this sense turns out not to have much philosophical weight.

On the other hand, within EST we encounter a different, although perhaps in

some sense complementary, situation. Here we adopt Euclid’s axiom as delimiting

what counts as Mayberrian, and hence Euclidean, finite; in this case it seems that

our traditional distinction between the finite and the infinite aligns with what is to

be counted as definite, and hence a set, versus what is indefinite, and hence does not

so count. But what we then find is that within the realm of the definite there is no

canonical collection of finite quantities! And so, once again, what counts as definite

in the sense of being a collection may or may not count as finite in the sense of being

“measurable” against any particular numeration system.

The fact, as Mayberry admits, that we are not currently in a good position to de-

cide, on the basis of our understanding of the distinction between the finite and the

infinite, between the Cantorian and Euclidean approaches, already suggests a defi-

ciency in our ability to appropriate fully the distinction between the finite and the

infinite for foundational decisions. In conjunction with the peculiar twist I have de-

scribed above, there is perhaps sufficient motivation to ask whether the distinction

between the finite and the infinite is itself definite or indefinite. Mayberry’s own

work suggests that the distinction between the finite and the infinite is indefinite, and

Mayberry has indicated in correspondence that this is indeed his view, but it must

at the same time be sufficiently definite that we are able to appeal to it in order to

discriminate between various foundational proposals. In particular, a complete ex-

position and justification of the foundations of mathematics in the sense which May-

berry requires would require that the distinction between the finite and the infinite be

sufficiently definite that we could at least decide which axioms are self-evident and

which are not. This may suggest that we should perhaps give up on completeness

“for now,” or else establish some sense of an ongoing program for how to add axioms

to set theory (as Lavine has attempted to do in [6], pp. 309–28]).
In correspondence, Mayberry suggests he can accommodate vagueness in the dis-

tinction between the finite and the infinite by recognizing that global quantification,
by Brouwer’s principle, doesn’t obey the law of excluded middle (LEM):

for if we take ∃x∀y[y ∈ x ↔ 8(y)] to assert the finiteness of the species

of all y such that 8(y), then the assertion is global (in fact 62) and therefore

excluded middle does not apply to it. Thus assertions of finiteness are “vague”

in this sense on my view. (December 28, 2002)
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But here two points must be made. First, such an accommodation is just that: an

accommodation of vagueness ex post facto, which does little to explain why the dis-

tinction between the finite and the infinite is indefinite or what sort of consequences

we should draw from this indefiniteness. Second, as a consequence of this lack of ex-

planatory power, it is not clear that Mayberry’s proposal accommodates the correct

vagueness or how, indeed, we could even decide whether it does. In particular, we

are prima facie dealing with two different types of vagueness: the sort of vagueness

which emerges by denying LEM for global quantification and the sort of vagueness

that arises by virtue of the noncategoricity of SIS’s in EST. What we would need

then, at the very least, is some story which would link together these two different

senses of vagueness. But as I’ve suggested elsewhere in the review, there is insuffi-

cient reason, at least at present, to think that these two “platforms” within Mayberry’s

program mesh together well enough that we should expect such a “pre-established

harmony”! If, on the other hand, they could convincingly be shown so to mesh, this

would be striking and compelling evidence for the organicity of Mayberry’s pro-

gram. What is needed here are more compelling arguments on Mayberry’s part, if

possible, to the effect that his set-theoretic ontologism (Thesis 2) and his specific

criticism of operationalist justifications for an ontology of number (Thesis 3) must

go hand in hand.

The lack of such compelling argument points to potentially the greatest weak-

ness of Mayberry’s program: in the process of focusing attention on the key role

played by the distinction between the finite and the infinite and the concomitant

issues surrounding the status of simply infinite systems, he may have severed our

philosophical access to some of the tools and perspectives which will be required

for a philosophical consideration of the fundamental significance of this distinction.

Mayberry’s claims to the effect that set-theoretic foundations are the strongest van-

tage point for criticizing operationalism in the foundations of mathematics is vitiated

as a consequence of Mayberry fusing two senses of ‘anti-operationalism’ which are

in fact conceptually distinct. The first of these, associated with what I have named

above ‘Thesis 2’, commits one to the philosophical position that appeals to mathe-

matical operations such as counting or calculating must ultimately be discharged by

appeals to more fundamental notions. The second of these, associated with what I

have named above ‘Thesis 3’, commits one to the position that an “operationalist”

conception of natural number “is the central fallacy that underlies all our thinking in

the foundations of mathematics” (p. xvii). But, as I have argued above, the fallacy

at issue here is one which is avoided by a number of operationalists in the sense of

Thesis 2, and besets many set-theorists of the “standard” Cantorian persuasion.

Rather than denominating the fallacy Mayberry describes in Thesis 3 as ‘opera-

tionalist’, it would be better to recognize it as one involving the conflation of cer-

tain operationalist and certain ontological commitments, an “iterationist” fallacy, as

Mayberry has alternatively suggested. In particular, the assumption that “the” natural

numbers can be described operationally is one which besets only those who would

simultaneously make use of an operational description of counting and identify this

operation with an unproblematic ontological commitment to that object to which the

term ‘the natural numbers’ would refer. As is clear from the examples of Mayberry,

on the one hand, and of Yessenin-Volpin and Isles on the other, this conflation can

be cleared up by recognizing that an operational description of counting does not

amount to a definite description of “the” natural numbers, but in either of two ways.
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In Mayberry’s case this point is made by showing that the natural numbers can only

be derived from a conception of abstract finite collections by invoking a controversial

axiomatic commitment (namely, Cantor’s axiom of infinity), and that in the absence

of such a commitment no such categorical object can be derived. In the cases of

Yessenin-Volpin and Isles, the recognition that the operation of counting does not

endow one with a unified sense of number leads, instead, in the direction of develop-

ing alternative natural number notation systems without any further analysis of the

operation of counting in terms of more fundamental notions. As such, the position is

operationalist in precisely the sense which Mayberry criticizes in Thesis 2.

The comparative advantages and disadvantages of these two approaches must be

left for another time; my point here is simply to argue that there are competing ir-

reconcilable perspectives which may contribute to the investigation of the founda-

tions of mathematics insofar as it recognizes the centrality of Mayberry’s Thesis 3.

Given that there are such competing perspectives, the debate about the foundations

of mathematics should not be restricted to one about the proper set-theoretic char-

acterization of the distinction between the finite and the infinite, but should instead

be the broader foundational debate about this distinction, and closely related ones,

in which set-theoretic foundations participate on a common playing field with other

foundational perspectives.

As we have seen, on the issue of the noncategoricity of the natural numbers (or

at least the foundational requirement that their categoricity be demonstrated) and

the importance of this recognition for the foundations of mathematics, Mayberry is

largely allied with such figures as Isles, Vopenka, and Nelson. If we refer to the

common target of their criticisms as “the iterationist fallacy,” adopting the locution

suggested by Mayberry and which this reviewer would strongly recommend, then we

may see, as Mayberry has stressed in correspondence, that he sees “Isles and Nelson

more as allies than as opponents” (August 3, 2003). Disentangling Mayberry’s cri-

tique of the iterationist fallacy from his critique of operationalism as a philosophical

position would go some way toward establishing the grounds on which this reviewer

would recommend that the foundations of mathematics currently be investigated: on

the one hand, in terms of the competing perspectives of set-theoretic foundations

and operationalism, on the other hand in terms of a foundational denial or promotion

(i.e., demonstration) of the categoricity of the natural numbers. Three of the four

possible combinations seem not only prima facie conceptually coherent but indeed

have all been developed: Mayberry has outlined two distinct alternative set-theoretic

foundations which avert the iterationist fallacy, one of which foundationally supports

the categoricity of the natural numbers (CST) and one of which denies it (EST), and

Yessenin-Volpin, Isles and others have taken an operationalist approach which rec-

ognizes the iterationist fallacy and which explicitly argues against the categoricity

of the natural numbers. Mayberry’s recognition of the deeper sense in which Isles

and Nelson serve as allies would be an affirmation that for Mayberry the critique

of the iterationist fallacy is currently more pressing, if not more important, than the

question of ontological, set-theoretic foundations versus what I would refer to as a

“praxiological,” operational orientation.3 However, it must be conceded by the op-

erationalist that Mayberry’s program has behind it the weight of a well-developed,

indeed, canonical tradition of set-theoretic foundations, and so provides the most

powerful source currently available for the critique of the iterationist fallacy. This
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reviewer, for one, finds Mayberry’s argument persuasive that the removal of this fal-

lacy is the most pressing task facing mathematical foundations today.

Notes

1. This point has been stressed by Mayberry in personal correspondence with the author of

this review.

2. Some foundationally-oriented category-theoretists might conceivably be unhappy with

this claim on independent grounds, but I think they would be wrong to object since, what-

ever “category-theoretic foundations” might turn out to be, I would favor an approach to

them which de-emphasized any ontologically foundational role for categories. Making

categories do such work ultimately amounts, I believe, to dressing sets up in categorical

clothing, and hence does no justice to what is truly powerful in the category-theoretic

approach. But these overtly programmatic remarks must, unfortunately, await another

occasion for their defense.

3. Mayberry has insisted, rightly I think, that his theory is constructive “in a very strong

sense” (August 3, 2003), and so I have accepted his label ‘operationalism’ to refer to

positions that have historically been characterized in the context of the foundations of

mathematics as constructivist. Ultimately, however, I think there are regards in which

the positions outlined by Yessenin-Volpin, Isles, and Nelson, among others, are more

accurately characterized as praxiological rather than operational. In particular, I do not

think they fall prey to some of the traditional objections to operationalism. But I must

defer a fuller discussion of this point for now.
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