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The Role of Quantifier Alternations
in Cut Elimination

Philipp Gerhardy

Abstract Extending previous results from work on the complexity of cut elim-

ination for the sequent calculus LK, we discuss the role of quantifier alternations

and develop a measure to describe the complexity of cut elimination in terms of

quantifier alternations in cut formulas and contractions on such formulas.

1 Introduction

In this note we will present an extension of results on the complexity of cut elimi-

nation in the sequent calculus LK first developed in Gerhardy [1] and subsequently

published in Gerhardy [2]. There it is shown how the complexity of cut elimination

primarily depends on the nesting of quantifiers in cut formulas and contractions on

ancestors of such cut formulas. A more complicated proof of the role of quantifier

nestings was first given by Zhang in [4].

In this note we extend the analysis and develop a measure that describes with suf-

ficient accuracy the role of quantifier alternations in cut elimination. The measure

will be slightly more complicated than the notion of nested quantifier depth, nq f ,

described in [2], but will generalize with similar ease to incorporate the role of con-

tractions. An earlier, more complicated treatment of the role of quantifier alternations

by Zhang can be found in [5]. Though leading to comparable results, the measure of

the cut complexity described in [5] is far more complicated than the one presented in

this note. For another attempt at defining a measure capturing quantifier alternations,

albeit without accompanying proof of cut elimination, see Visser [3]. Neither Zhang

nor Visser treats the role of contractions in the complexity of cut elimination.
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2 Previous Results

Let LK be the sequent calculus as defined in [2], that is, with multiplicative rules

and with no implicit contractions. Let | · | denote the depth and || · || the size of for-

mulas and proofs, in the latter case not counting weakenings and contractions. Let

nq f (·), dq f (·), and cnq f (·) denote the nested quantifier depth, the deepest quanti-

fied formula (informally, the largest number of propositional connectives one has to

“peel off” to get to a quantifier) and the contracted nested quantifier depth, respec-

tively, as defined in [2].

In [2] the following results are proved.

Lemma 2.1 (Refined Reduction Lemma) Let ϕ be an LK-proof of a sequent Ŵ ⊢ 1

with the final inference a cut with cut formula A. Then, if for all other cut formulas

B,

1. nq f (A) ≥ nq f (B) and dq f (ϕ) = dq f (A) > dq f (B), then there exists a

proof ϕ′ of the same sequent with dq f (ϕ′) ≤ dq f (ϕ) − 1 and |ϕ′| ≤ |ϕ| + 1,

2. nq f (ϕ) = nq f (A) > nq f (B) and dq f (A) = 0, then there exists a proof ϕ′

of the same sequent with nq f (ϕ′) ≤ nq f (ϕ) − 1 and |ϕ′| < 2 · |ϕ|.

If the cut formula A is atomic and both subproofs are cut-free, then there is a cut-free

proof ϕ′ of the same sequent with |ϕ′| < 2 · |ϕ|.

Lemma 2.2 Let ϕ be an LK-proof of a sequent Ŵ ⊢ 1. If dq f (ϕ) = d > 0, then

there is a proof ϕ′ of the same sequent with dq f (ϕ′) = 0 and |ϕ′| ≤ 2d · |ϕ|.

Lemma 2.3 Let ϕ be an LK-proof of a sequent Ŵ ⊢ 1. If dq f (ϕ) = 0 and

nq f (ϕ) = d > 0, then there is a proof ϕ′ of the same sequent with nq f (ϕ′) ≤ d − 1

and |ϕ′| < 2|ϕ|.

Theorem 2.4 (First Refined Cut Elimination Theorem) Let ϕ be an LK-proof of a

sequent Ŵ ⊢ 1. If nq f (ϕ) = d > 0, then there is a proof ϕ′ of the same sequent and

a constant c, depending only on the propositional nesting of the cut formulas so that

nq f (ϕ′) ≤ d − 1 and |ϕ′| ≤ 2c·|ϕ|.

Corollary 2.5 Let ϕ be an LK-proof of a sequent Ŵ ⊢ 1 and let nq f (ϕ) = d.

Then there is a constant c, depending only on the propositional nesting of the cut

formulas, and a proof ϕ′ of the same sequent where ϕ′ is cut-free and |ϕ′| ≤ 2
c·|ϕ|
d+1 .

Lemma 2.6 (Contraction Lemma) Let ϕ be an LK-proof of a sequent Ŵ ⊢ 1,

with nq f (ϕ) > cnq f (ϕ). Then there is proof ϕ′ of the same sequent with nq f (ϕ′)

= cnq f (ϕ′) and ||ϕ′|| ≤ ||ϕ||. As a consequence also |ϕ′| ≤ 2|ϕ|.

Theorem 2.7 (Second Refined Cut Elimination Theorem) Let ϕ be an LK-proof

of a sequent Ŵ ⊢ 1. Then there is a constant c depending only on the proposi-

tional nesting of the cut formulas and a cut-free proof ϕ′ of the same sequent where

|ϕ′| ≤ 2
c·|ϕ|
cnq f (ϕ)+2.

The main work is to prove the Refined Reduction Lemma and the Contraction

Lemma from which the remaining results follow easily.

To sum up, first it is shown that the complexity of cut elimination primarily de-

pends on the nesting of quantifiers in cut formulas, whereas the elimination of the

propositional connectives has a negligible contribution to the complexity of cut elim-

ination. As mentioned above, this result was also shown by Zhang in [4]. Moreover,
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if for a cut formula none of the direct ancestors has been contracted, then the cut

can be eliminated with low complexity by a mere rearrangement of the proof that

does not increase the size of the proof. Thus the nonelementary complexity of cut

elimination was shown to depend only on the nested quantifier depth of cut formulas

whose ancestors, of sufficient quantifier depth, also have been contracted.

3 Quantifier Alternations

In Section 3.4 of [2] it is discussed that blocks of ∀,∧-connectives, respectively,

∃,∨, can be eliminated together, and it is shown that eliminating such a block from

a cut formula at most doubles the depth of the proof. In [2] the following lemma is

proved.

Lemma 3.1 Let ϕ be a proof of a sequent Ŵ ⊢ 1 with the last inference a cut. Let

the cut formula be constructed from formulas B1, . . . Bn by the connectives ∀ and ∧

only (respectively, ∃ and ∨). Then we can replace that cut by a number of smaller

cuts with cut formulas Bi . For the resulting proof ϕ′ we have |ϕ′| < 2 · |ϕ|.

This lemma immediately suggests a bound on cut elimination based on the number

of alternations between such blocks. We propose the following cut elimination strat-

egy: first we eliminate as many outermost propositional connectives as possible, next

we eliminate all outermost ∀,∧ and ∃,∨ blocks. Repeating this we eventually arrive

at a cut-free proof. By the Refined Reduction Lemma and subsequently Lemma 2.2,

both of which can easily be adapted to some measure of the number of quantifier

alternations instead of nq f , we see that the first step, eliminating propositional con-

nectives, is not critical for the complexity of cut elimination. However, defining a

new appropriate complexity measure for this cut elimination strategy is not trivial, as

can also be seen by the complicated measure defined by Zhang [5] in order to prove

a comparable result.

We want to define a measure aq f , the alternating quantifier depth. First con-

sider the following very naïve approach: Let us restrict the logical connectives to

∀, ∃,∧, and ∨ and let us count the propositional connectives ∧,∨ as the quantifiers

∀, ∃. Defining the aq f as the number of alternations between quantifier blocks in

cut formulas would not give the desired result. Alternations between propositional

connectives ∧,∨, which can be eliminated easily, would be perceived as alternations

between quantifiers ∀, ∃, which are expensive to eliminate. Thus this definition of

aq f would lead to a bound on cut elimination much worse in such situations than

the bound already achieved via the nested quantifier depth nq f .

In general it turns out to be difficult to define, inductively on the formula, a mea-

sure of cut complexity that correctly captures the role of quantifier alternations. The

difficulty is to decide when to increase the alternating quantifier depth.

For example, when facing a formula composed of two subformulas and one of the

propositional connectives, for example, the connective ∨, it is nontrivial to decide or

predict whether the connective is part of a block of propositional connectives, and

hence relatively harmless with respect to the alternations already present in the two

subformulas, or marks the beginning of an ∃,∨ block and hence leads to an increase

in the number of alternations.

Consider the formula A :≡ B ∨ C , where the subformula C is assumed to be

purely ∀,∧:
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1. if B is purely ∃,∨ then

(a) aq f (A) should be 0—eliminate the ∨ (simple), then two blocks each

without alternations remain;

(b) aq f (∃x A) should be 1—all the ∃,∨ constitute one block, the ∀,∧ block

below constitutes the alternation;

(c) aq f (∀x A) should be 1—eliminate the ∀ (expensive), eliminate the ∨

(simple), eliminate the two alternation free blocks;

2. if B has an outermost ∃,∨ block and one ∀,∧ block below

(a) aq f (A) should be 1—eliminate the ∨ (simple), then one alternation re-

mains;

(b) aq f (∃x A) should be 1—all the ∃,∨ constitute one block, the ∀,∧

blocks below constitute the alternation;

(c) aq f (∀x A) should be 2—eliminate the ∀ (expensive), eliminate the ∨

(simple), and still one alternation remains in the subformula B .

The example demonstrates the problem of deciding inductively on the formula when

to increase the alternating quantifier depth. At the point of the propositional con-

nective we might not yet have sufficient information to decide whether to increase

or not. On the other hand postponing the decision until we meet the next quantifier

requires information on the exact structure of the subformulas that may no longer be

available.

The solution is to let the complexity measure mirror the intended cut elimination

strategy. This leads to defining the measure aq f for the cut complexity recursively

on the cut formula instead of inductively.

Definition 3.2 We define aq f as follows:

1. if A is atomic, purely ∃,∨, or purely ∀,∧ then aq f (A) = 0;

2. if A is composed of formulas B1, . . . , Bn (each with outermost connective a

quantifier) by propositional connectives only then aq f (A) = max{aq f (Bi )};

3. if A(:= ∀xC for some C) is composed of connectives ∀,∧ and formu-

las B1, . . . , Bn (each with outermost connective ∃,∨) then aq f (A) =

max{aq f (Bi )} + 1;

4. if A(:= ∃xC for some C) is composed of connectives ∃,∨ and formu-

las B1, . . . , Bn (each with outermost connective ∀,∧) then aq f (A) =

max{aq f (Bi )} + 1.

Moreover, we treat implication B → C as ¬B ∨ C , and negation ¬B simply flips

the polarity of other connectives below, that is, ∃,∨ 7→ ∀,∧ and vice versa.

With this definition of aq f for formulas, we define aq f for proofs.

Definition 3.3 aq f (ϕ) := sup{aq f (A) : A is a cut formula in ϕ}.

Also the notion of deepest quantified formula dq f defined in [2] can be adapted to

aq f yielding a version of the Refined Reduction Lemma with aq f instead of nq f .

Now it is easy to show the following theorem.

Theorem 3.4 Let ϕ be an LK-proof of a sequent Ŵ ⊢ 1 and let aq f (ϕ) = d. Then

there is a constant c, depending only on the propositional blocks of the cut formulas,

and a proof ϕ′ of the same sequent where ϕ′ is cut-free and |ϕ′| ≤ 2
c·|ϕ|
d+1 .

Proof As discussed the Refined Reduction Lemma can easily be adapted to the

measure aq f instead of nq f . It then follows that one can adapt Lemma 2.2 and
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Lemma 2.3 to the measure aq f . The theorem then follows easily from the cut elim-

ination strategy sketched above and the adaptions of Lemma 2.2 and Lemma 2.3 to

the measure aq f . �

The definition of caq f , the contracted alternating quantifier depth, is defined from

aq f in the same way cnq f is defined from nq f (see [2]). Thus also taking the role

of contractions into account we get the following theorem.

Theorem 3.5 Let ϕ be an LK-proof of a sequent Ŵ ⊢ 1. Then there is a constant

c depending only on the propositional blocks of the cut formulas and a cut-free proof

ϕ′ of the same sequent where |ϕ′| ≤ 2
c·|ϕ|

caq f (ϕ)+2 .

Proof The theorem follows easily from the above theorem and the Contraction

Lemma adapted to the measure aq f . �

In conclusion both theorems follow easily from the analysis of cut elimination pre-

sented in [2], in particular Lemma 3.1, and the cut elimination strategy described

above. As mentioned above a comparable result is proved in [5] but with a far more

complicated complexity measure and a more complicated proof.

Furthermore, as with the upper bounds on cut elimination presented in [2], the

bounds aq f and caq f are optimal with regard to Statman’s lower bound example,

that is, the upper and the lower bound coincide. Conversely, one can say that every

proof that yields an example of nonelementary cut elimination must use cut formulas

with alternating quantifiers and contractions in a way similar to Statman’s lower

bound example.

Finally, the exponential bound on cut elimination in the case of pure ∀,∧-cuts, re-

spectively ∃,∨-cuts, that is stated in [2], follows as a special case from these bounds.

4 Comparison with the Literature

In this section we will briefly discuss the measures for the number of quantifier al-

ternations proposed by, respectively, Zhang [5] and Visser [3].

The measure defined by Zhang uses two formula classes δ and δ′.

Definition 4.1 (Zhang [5]) A formula B is in δ(A) if and only if

1. A = B , or

2. A = C ∧ D and B ∈ δ(C) ∪ δ(D), or

3. A = ∀xC(x) and B ∈ δ(C(t)) for any term t .

Definition 4.2 (Zhang [5]) A formula B is in δ′(A) if and only if

1. B ∈ δ(A), and

2. B is either a disjunction of two formulas, or

3. B is an ∃-formula such that all terms occurring in B also occur in A.

Definition 4.3 (Zhang [5]) The cut complexity ρ(A) of a formula A is defined as

a polynomial in w as follows:

1. if δ′(A) is empty, then ρ(A) := w,

2. if δ′(A) = {Bi |1 ≤ i ≤ n} and there is a formula C such that ∀xC(x) ∈ δ(A)

and nq f (C) ≥ nq f (Bi ) for 1≤ i ≤n, then ρ(A) := (ρ(B1)⊕· · ·⊕ρ(Bn))·w,

3. if A = B ∧ C , δ′(A) = {Bi |1 ≤ i ≤ n} and there is no formula C

such that ∀xC(x) ∈ δ(A) and nq f (C) ≥ nq f (Bi ) for 1 ≤ i ≤ n, then

ρ(A) := (ρ(B) ⊕ ρ(C)) + 1,
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4. if δ′(A) = {A}, then ρ(A) := ρ(¬A),

where ⊕ is the operation of summing two polynomials by raising them to the same

degree and then taking the pointwise maximum over their coefficients.

The definition is somewhat similar to the definition of the alternating quantifier depth

aq f presented in this note, as the degree of the cut complexity polynomial corre-

sponds to our notion of aq f .

In detail, the first item in the definition covers the case when the formula is atomic,

purely ∀,∧ or (via the fourth item) purely ∃,∨. The second item corresponds to

eliminating a ∀,∧ block (or via the fourth item an ∃,∨ block), and hence here the

degree of the polynomial is increased. The third item corresponds to eliminating

in-between propositional connectives, which only adds a constant to the polynomial.

The proof of cut elimination given the cut complexity polynomial above proceeds

via several rather technical lemmas and uses an additional formula class δ∗.

Visser defines a measure “depth of quantifierchanges” via a three place function

̺ ([3], p. 281), where the first parameter is 0 when the formula under consideration

occurs positively and 1 if it occurs negatively, the second parameter is 0 when we are

in existential mode and 1 when we are in universal mode, while the last parameter is

the formula under consideration.

The definition of ̺ is as follows.

Definition 4.4 (Visser [3]) Let ̺(A) of a formula A be ̺(0, 0, A) and let

1. ̺(i, j, A) := 0 of A is atomic,

2. ̺(i, j, B ∧ C) = ̺(i, j, B ∨ C) := max{̺(i, j, B), ̺(i, j, C)},

3. ̺(i, j,¬B) := ̺(1 − i, 1 − j, B),

4. ̺(0, j, B → C) := max{̺(1, 1 − j, B), ̺(0, j, C)},

5. ̺(1, j, B → C) := max{̺(0, j, B), ̺(1, 1 − j, C)},

6. ̺(i, 0, ∃x B) := ̺(i, 0, B),

7. ̺(i, 1, ∃x B) := ̺(i, 0, B) + 1,

8. ̺(i, 0,∀x B) := ̺(i, 1, B) + 1,

9. ̺(i, 1,∀x B) := ̺(i, 1, B).

The merit of the measure defined by Visser is that it treats negation and implication

directly. Contrary to the measure defined by Zhang and the measure aq f defined

in this note, Visser’s ̺ makes no distinctions for the propositional connectives as to

whether they appear in existential or universal mode, that is, below an existential

or a universal quantifier. Thus the measure ̺ assigns the same “depth of quantifier-

changes” to the formulas

∀x(∀y P(x, y) ∨ ∀z Q(x, z))

and

∀x(∀y P(x, y) ∧ ∀z Q(x, z)).

However, one can show that the complexity of cut elimination for the two (cut) for-

mulas is not the same, that is, cut elimination for the second formula, which is purely

∀,∧, is simpler than cut elimination for the first formula ∀x(∀y P(x, y)∨∀z Q(x, z)),

which contains a disjunction.

Thus, although capturing the main ideas, namely, that cut elimination mainly de-

pends on quantifier alternations, the measure as it is defined in [3], is not optimal in

all cases to estimate the complexity of cut elimination.
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