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Finite Tree Property for First-Order Logic
with Identity and Functions

Merrie Bergmann

Abstract The typical rules for truth-trees for first-order logic without functions

can fail to generate finite branches for formulas that have finite models—the rule

set fails to have the finite tree property. In 1984 Boolos showed that a new rule

set proposed by Burgess does have this property. In this paper we address a

similar problem with the typical rule set for first-order logic with identity and

functions, proposing a new rule set that does have the finite tree property.

1 Introduction

Here is a typical pair of truth-tree rules for quantified formulas:1

Rule 1 Universal quantifications

(∀x)P

P(a/x)

Rule 2 Existential quantifications

(∃x)P

P(a/x),

with a being a constant that is new to the branch

where P(a/x) denotes a substitution instance of the quantified formula, that is, the

formula that results from uniformly replacing x in P with a. Owing to its interaction

with the universal quantification rule, the rule for existential quantifications may

lead exclusively to infinite truth-trees for some formulas that nevertheless have finite
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models. Here is the start of a tree for ‘(∀x)(∃y)Gxy’.

(∀x)(∃y)Gxy

(∃y)Gay

Gab

(∃y)Gby

Gbc

(∃y)Gcy

Gcd

This tree will never have a finite completed open branch. An open branch is one that

contains no pair of contradictory formulas P and ∼ P , and a completed branch is

one on which the relevant rule has been applied to each compound formula and that

includes, for each universal quantification (∀x)P and each constant a occurring on

the branch, the substitution instance P(a/x). The problem here is that the new con-

stant introduced by the existential quantification rule must then be used to instantiate

the universal quantification, yielding a new existentially quantified formula. Yet not

only is the formula ‘(∀x)(∃y)Gxy’ satisfiable, it is satisfiable in a single-member

domain.

In 1984 Boolos proved that an alternative rule for existential quantifications (pro-

posed by Burgess) guarantees the finite tree property, that is, the existence of a finite

completed open branch for any finitely satisfiable formula:2

Rule 3 Existential quantifications (revised)
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P(an/x)P(an−1/x)· · ·P(a1/x)

(∃x)P

where a1, . . . , an−1 are the constants that already occur on the branch contain-

ing (∃x)P and an is a constant that does not already occur on the branch.

This rule generates the following tree (among others) for the previous formula:

(∀x)(∃y)Gxy

(∃y)Gay
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The left branch is complete (although the right branch is not) and open.
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It is a nice result that this new rule guarantees the finite tree property while pre-

serving soundness and completeness. But when first-order logic is augmented to

include identity and complex terms with function symbols, the obvious tree rules

reintroduce the problem. The rule for universal quantifications is generalized to al-

low instantiation to any closed term, and we add the following rule.

Rule 4 Identity formulas

P, t1 = t2
P(t1 :: t2)

with P being a literal formula.3

This rule states that if a branch contains a literal formula P and an identity formula

t1 = t2, then any formula P(t1 :: t2), where P(t1 :: t2) is the result of replacing one

or more occurrences of t1 in P with t2 or vice versa, may be added to the branch.

Completed open branches are redefined to require that universal quantifications be

instantiated to every closed term on their branches and that the identity formula rule

be exhaustively applied, and to prohibit formulas of the form ∼ t = t (as well as

pairs of formulas P and ∼ P).

Whereas such a system is sound and complete, the finite tree property fails. Con-

sider the tree,

(∀x)P f (x)

P f (a)

P f ( f (a))

P f ( f ( f (a)))

...

where each substitution instance introduces a new closed term f (. . .). This branch is

bound to be infinite, despite the formula’s satisfiability in a single-member domain.

2 A New Rule Set

We can, however, guarantee the finite tree property by making the following four

modifications to the existing rule set.

Modification 2.1 We restrict the rule for universal quantifications so that only

constants are used in instantiations (and complete branches require only such in-

stantiations).

This halts the process exemplified in the previous tree after ‘P f (a)’ has been added.

But now consider the following tree for the formula ‘(∀x)Fx & ∼F f (a)’.

(∀x)Fx & ∼F f (a)

(∀x)Fx

∼F f (a)

Fa

The universal quantification has been instantiated with the sole constant occurring on

the branch, and the one branch of this tree is open. But the formula is unsatisfiable.
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Indeed, ‘∼F f (a)’ is inconsistent with ‘(∀x)Fx’, but the modified rule for universal

quantifications does not allow instantiating ‘(∀x)Fx’ with the complex term ‘ f (a)’

to produce ‘F f (a)’.

Modification 2.2 To compensate for weakening the rule for universal quantifi-

cations, therefore, we introduce an additional rule that bears obvious affinities to

Burgess’s rule:

Rule 5 Complex terms
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b1 = f (a1, . . . , an) bm = f (a1, . . . , an) bm+1 = f (a1, . . . , an)· · ·

P[ f (a1,...,an)]

where P[ f (a1,...,an)] is a formula containing a closed term f (a1, . . . , an) whose ar-

guments a1, . . . , an are constants; b1, . . . , bm are the constants that already occur

on the branch on which this formula occurs; and bm+1 is a constant that does not

already occur on the branch.

This rule ensures that each complex term is asserted to denote the same object as

some constant. The above tree is thus extended as follows, with neither branch open:

(∀x)Fx & ∼F f (a)

(∀x)Fx

∼F f (a)

Fa
Q
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a = f (a)

∼Fa

b = f (a)

Fb

∼Fb

The last formula on the left is the result of substituting ‘a’ for ‘ f (a)’ in ‘∼ F f (a)’,

and the last two formulas on the right instantiate ‘(∀x)Fx’ with ‘b’ and substitute

‘b’ for ‘ f (a)’ in ‘∼ F f (a)’.

The rules’ requirement, that the arguments a1, . . . , an in the term f (a1, . . . , an)

be constants, is not unduly restrictive. It just means that sometimes the rule must

be applied several times before reaching formulas in which all complex terms have

been eliminated.
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The rule for identity formulas can also lead to infinite branches for formulas with

finite models, as in the following example.

a = f (a)

f (a) = f ( f (a))

f ( f (a)) = f ( f ( f (a)))

...

Here we have repeatedly substituted the term on the right side of a formula in place

of the term on the left side in the very same formula.

Modification 2.3 To prevent such infinite branches, we restrict the substitutions

that are permitted by the identity formula rule.

Rule 6 Identity formulas (revised)

P

a = t

P(a//t)

where P is literal formula, a is a constant, and t is a closed term, and P(a//t)

is the result of substituting a for one or more occurrences of t in P.

The restriction prevents the repeated substitutions in the preceding tree. Here is a

completed tree for the formula ‘a = f (a)’ using the modified identity rule.

a = f (a)

a = a

Modification 2.4 We define a completed branch to be a branch such that

(a) each nonliteral formula has had the appropriate rule applied to it,

(b) each universal quantification has been instantiated with each constant occur-

ring on that branch, and

(c) the complex term rule and identity formula rules have been exhaustively ap-

plied.

The definition of open branches remains the same. The single branch on the preced-

ing tree now counts as a completed open branch, demonstrating the satisfiability of

‘a = f (a)’.

It is easily shown that the new system of tree rules is sound, that is, every tree

constructed for a satisfiable formula will have at least one open branch. The system

is also complete. To establish a Hintikka completeness proof,4 we first define a

Hintikka set of formulas Ŵ for our new system as a set with the following properties.

i. There is no formula P such that {P,∼P} ⊆ Ŵ.

ii. If ∼∼P ∈ Ŵ then P ∈ Ŵ.

iii. If P & Q ∈ Ŵ then {P, Q} ⊆ Ŵ.

iv. If ∼(P & Q) ∈ Ŵ then {∼P,∼Q}
⋂

Ŵ 6= ∅.

v. If (∀x)P ∈ Ŵ then for at least one constant a, P(a/x) ∈ Ŵ, and

{P(b/x) : b is a constant that occurs in a formula of Ŵ} ⊆ Ŵ.

vi. If ∼(∀x)P ∈ Ŵ then for at least one constant a,∼P(a/x) ∈ Ŵ.

vii. If (∃x)P ∈ Ŵ then for at least one constant a, P(a/x) ∈ Ŵ.

viii. If ∼(∃x)P ∈ Ŵ then for at least one constant a,∼P(a/x) ∈ Ŵ, and

{∼P(b/x) : b is a constant that occurs in a formula of Ŵ} ⊆ Ŵ.
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ix. No formula ∼ t = t is a member of Ŵ.

x. If a = t ∈ Ŵ, where a is a constant, and P ∈ Ŵ, where P is a literal formula,

then every formula P(a//t) is also a member of Ŵ.

xi. If a complex term f (a1, . . . , an) in which a1, . . . , an are individual constants

occurs in any formula in Ŵ, then for at least one constant b,

b = f (a1, . . . , an) ∈ Ŵ.

Every completed open branch of a tree in our system is obviously a Hintikka branch.

We now establish that every Hintikka set Ŵ (in our new sense) has a model M.

The model is defined as follows.

Definition 2.5 Let p be the function that maps the alphabetically ith constant of

the language to the integer i. Define a second function q as follows: q(a) = p(a′)

if a′ is the alphabetically earliest constant such that a′ = a ∈ Ŵ, and q(a) = p(a)

otherwise. The domain for M is the image under q of the set of individual constants

occurring in members of Ŵ. For each constant a occurring in some sentence in

Ŵ, M(a) = q(a). For all other constants a, M(a) is the smallest positive integer

in the domain. For each n-place predicate F (other than the identity predicate),

M(F) = {〈M(a1), . . . , M(an)〉 : Fa1, . . . , an ∈ Ŵ}. For each n-place functor f ,

M( f ) = {〈d1, . . . , dn, dn+1〉: either

(a) there exist constants a1, . . . , an, an+1 such that di = M(ai ), 1 ≤ i ≤ n + 1,

and an+1 = f (a1, . . . , an) ∈ Ŵ, or

(b) there are no such constants and dn+1 is the smallest member of the domain}.

We note that the construction of M( f ) for each functor f assigns to f a function,

and not merely a relation, over the domain. This is guaranteed by the way we defined

the function q and by property (x) of Hintikka sets.

Given properties (x) and (xi) of Hintikka sets, it is straightforward to prove that

(∗) If a Hintikka set Ŵ contains a literal formula P with a closed

term f (t1, . . . , tn) then there is some constant a such that

M(a) = M( f (t1, . . . , tn)) and Ŵ contains each formula P(a//t).

That every member of a Hintikka set Ŵ is true on the associated model M can then

be established with straightforward induction using the defining properties of Hin-

tikka sets and the following basis. If P is an atomic formula Ft1 . . . tn , it follows

from (∗) that Ŵ also contains a formula Fa1 . . . an such that ai is a constant and

M(ti ) = M(ai ), 1 ≤ i ≤ n. Since Fa1 . . . an ∈ Ŵ, 〈M(a1), . . . , M(an)〉 ∈ M(F)

by the definition of M, and so both Fa1 . . . an and Ft1 . . . tn are true on M. If P

is an atomic formula t1 = t2, then it follows from (∗) that Ŵ also contains a sen-

tence a1 = a2 such that a1 and a2 are constants, M(a1) = q(a1) = M(t1), and

M(a2) = q(a2) = M(t2). Let q(a1) be p(b1) and let q(a2) be p(b2). It follows by

the definition of q that b1 = a1 ∈ Ŵ, with b1 alphabetically earlier than or identical

to a1, and it thus follows by property (x) that b1 = a2 ∈ Ŵ. By the definition of

q also, b2 is the alphabetically earliest constant such that b2 = a2 ∈ Ŵ. Now b1

cannot be alphabetically earlier than b2, since b1 = a2 ∈ Ŵ. Further, by property (x),

b2 = b1 ∈ Ŵ and so b2 = a1 ∈ Ŵ; hence b2 cannot be alphabetically earlier than b1

since q(a1) is p(b1). Thus, b1 and b2 are the same constant and so q(a1) = q(a2).

Consequently M(t1) = M(a1) = M(a2) = M(t2), and t1 = t2 is true on M.

The new rule system guarantees the existence of at least one tree with a finite

completed open branch for any finitely satisfiable formula, with the usual alternation
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of rules generating such a tree: first apply the rules for truth-functional compounds

and existential quantifications, then exhaustively apply the rule for universal quan-

tifications, then the rule for complex terms, then the rule for identity statements, and

repeat.

The proof of this guarantee extends Boolos’s proof of the same result for first-

order logic without functions. Let M be a finite model for P with a size n domain. A

model N for P is M-good if for some m ≤ n, there are m constants a1, . . . , am not

occurring in P such that N assigns distinct values to a1, . . . , am and N differs from

M at most in the values assigned to these constants. M itself is M-good, with m = 0.

A branch of a tree for P is M-good if all of its formulas are true in an M-good model

for P .

Boolos proved that each rule of the tree subsystem excluding the complex term

rule is such that the result of applying the rule to a formula(s) on an M-good branch

results in at least one extended branch that is M-good. But we can show that the com-

plex term rule has this property as well: Assume that the complex term rule is applied

on an M-good branch whose M-good model is N. Then the branch contains a for-

mula with a closed complex term f (a1, . . . , an), where a1, . . . , an are all constants,

such that b1 = f (a1, . . . , an), . . . , bm = f (a1, . . . , an), and bm+1 = f (a1, . . . , an)

are entered on distinct continuations of that branch. We consider two possibilities.

1. If any one (or more) of b1 = f (a1, . . . , an), . . . , bm = f (a1, . . . , an) is true

on N, then N is an M-good model for the corresponding continuation of the

branch since no new constants have been introduced.

2. If none of b1 = f (a1, . . . , an), . . . , bm = f (a1, . . . , an) is true on N, then,

because bm+1 does not already occur on the branch, bm+1 = f (a1, . . . , an)

is true on a model N′ that is just like N except that N′(bm+1) = u, where u

is the member of the domain such that 〈N(a1), . . . , N(an), u〉 is a member of

N( f ). This member u is not assigned to any other constant bi that occurs on

the branch but not in P (else it would follow that bi = f (a1, . . . , an) is true

on N, which contradicts our assumption). Thus N′ is also M-good.

Any tree for a formula P with a finite model M will always contain at least one

M-good branch since the initial tree consisting of the formula P is itself an M-good

branch. And, as Burgess notes, an M-good branch contains at most a finite number

of formulas. For such a branch can contain no more than n + p constants, where p

is the number of constants occurring in P , and with only finitely many constants at

hand the tree rules can generate at most finitely many new formulas. This establishes

the finite tree property for first-order logic with identity and functions.

Notes

1. See Bergmann et al. [1] and Smullyan [5] for examples of complete rule sets.

2. The rule and the proof appear in [2].

3. That is, an atomic formula or its negation. The restriction is not necessary but makes the

system—as well as its metatheory—simpler.

4. See [1] for such a proof. “Hintikka sets” were first studied by Hintikka in [3] and [4].



180 Merrie Bergmann

References

[1] Bergmann, M., J. Moor, and J. Nelson, The Logic Book, McGraw-Hill, New York, 1998.

179

[2] Boolos, G., “Trees and finite satisfiability: Proof of a conjecture of Burgess,” Notre Dame

Journal of Formal Logic, vol. 25 (1984), pp. 193–97. Zbl 0561.03004. MR 85f:03005.

179

[3] Hintikka, J. , “Form and content in quantification theory,” Acta Philosophica Fennica,

vol. 8 (1955), pp. 7–55. Zbl 0067.00103. MR 16,1079b. 179

[4] Hintikka, J., “Notes on the quantification theory,” Societas Scientiarum Fennica.

Commentationes Physico-Mathematicae, vol. 17 (1955), no. 12, 13 pp. Zbl 0067.25002.

MR 22:4633. 179

[5] Smullyan, R. M., First-Order Logic, Dover Publications, Inc., New York, 1995. Corrected

reprint of the 1968 original. Zbl 0172.28901. MR 95j:03001. 179

Department of Computer Science
Smith College
McConnell Hall 214
Northampton MA 01063
bergmann@cs.smith.edu

http://www.emis.de/cgi-bin/MATH-item?0561.03004
http://www.ams.org/mathscinet-getitem?mr=85f:03005
http://www.emis.de/cgi-bin/MATH-item?0067.00103
http://www.ams.org/mathscinet-getitem?mr=16,1079b
http://www.emis.de/cgi-bin/MATH-item?0067.25002
http://www.ams.org/mathscinet-getitem?mr=22:4633
http://www.emis.de/cgi-bin/MATH-item?0172.28901
http://www.ams.org/mathscinet-getitem?mr=95j:03001
mailto:bergmann@cs.smith.edu

	1. Introduction
	2. A New Rule Set
	Notes
	References

