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Sets without Subsets of Higher Many-One Degree

Patrizio Cintioli

Abstract Previously, both Soare and Simpson considered sets without subsets

of higher ≤T -degree. Cintioli and Silvestri, for a reducibility ≤r , define the

concept of a ≤r -introimmune set. For the most common reducibilities ≤r , a set

does not contain subsets of higher ≤r -degree if and only if it is ≤r -introimmune.

In this paper we consider ≤m -introimmune and ≤P
m -introimmune sets and ex-

amine how structurally easy such sets can be. In other words we ask, What

is the smallest class of the Kleene’s Hierarchy containing ≤r -introimmune sets

for ≤r ∈ {≤m ,≤P
m }? We answer the question by proving the existence of ≤m -

introimmune sets in the class 50
1
, bi-≤m -introimmune sets in 10

2
, and bi-≤P

m -

introimmune sets in 10
1
.

1 Introduction

Cintioli and Silvestri [6] considered infinite sets of words which do not contain sub-

sets of higher polynomial-time Turing degree. Let us briefly look at the motivation

for considering such sets. (The reader who is not familiar with the basic concepts of

Structural Complexity Theory and Recursion Theory might want to refer to the fol-

lowing: Balcázar et al. [4]; Bovet and Crescenzi [5]; Garey and Johnson [8]; Rogers

[13]; Odifreddi [12].)

In the fifties and sixties, Recursion Theory studied the notion of introreducibility,

a notion arising from questions surrounding retraceable sets. A set {a0 < a1 < · · · }

is retraceable if there exists a partial recursive function ϕ such that ϕ(a0) = a0 and

ϕ(an+1) = an , for every n ≥ 0. A set is said to be introreducible if it is Turing

reducible to every infinite subset (see Jockush [9]). In Dekker and Myhill [7] it was

proven that any retraceable set is introreducible. At this point, Jockush [9] asked just

which properties of retraceable sets extend to the introreducible ones. For example,

it was proven that for every set A, if both A and its complement are retraceable, then

A is recursive (Mansfield, see Odifreddi [12]).
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Question 1.1 Does this property hold for introreducible sets too? That is, is it true

that if a set and its complement are introreducible, then the set is recursive?

This question was answered in the affirmative by Seetapun and Slaman [15].

In [6] the authors take under consideration the above question about the introre-

ducible sets and formulate its counterpart in Structural Complexity Theory. This is

based on the notion of polynomial-time Turing reducibility. A set X is polynomial-

time Turing reducible to the set Y , in short X ≤P
T Y , if and only if there exists a

deterministic oracle Turing machine M that, with oracle Y , runs in polynomial time

and accepts X (equivalently, X ∈ PY ; Garey and Johnson [8] and Ladner et al. [11]).

Likewise, a set X is nondeterministically polynomial-time reducible to the set Y , in

short X ≤N P
T Y , if and only if there exists a nondeterministic oracle Turing ma-

chine M that, with oracle Y , runs in polynomial time and accepts X (equivalently,

X ∈ NPY ; [8] and [11]).

Definition 1.2 ([6]) A set is polynomial-time Turing introreducible, in short ≤P
T -

introreducible, if it is polynomial-time Turing reducible to every infinite subset.

Question 1.3 If we assume that a language and its complement are ≤P
T -

introreducible, is the language in P?

In contrast with the corresponding problem of Recursion Theory, this problem is

easily solvable. Indeed a stronger fact holds.

Theorem 1.4 ([6]) A language is ≤P
T -introreducible if and only if it is in P.

Sketch of Proof The proof is practically as follows: given a language L 6∈ P over

the alphabet {0, 1}, we construct by diagonalization an infinite subset B of L such

that L 6≤P
T B . Furthermore, the constructed set B is not in P. Besides this, the

construction does not provide any further structural information on B . So it could

be that L 6≤P
T B because B is structurally lacking. This raises the problem of the

existence of non-≤P
T -introreducible sets L witnessed by subsets structurally rich with

respect to L. For example, by subsets B of L with L ≤N P
T B . The existence of such

sets easily follows from the existence of an oracle C such that PC 6= NPC (see

Baker et al. [2]). Then we ask whether every non-≤P
T -introreducible language has

an infinite subset B with L 6≤P
T B and L ≤N P

T B . The answer to this question is

no and can be deduced from the existence of sets without subsets of higher Turing

degree. �

Theorem 1.5 (Soare [17]) There exists a set of natural numbers A such that, for

every B ⊆ A with |A − B| = ∞, A 6≤T B.

Corollary 1.6 There exists a non-≤P
T -introreducible language L such that for every

B ⊆ L, L ≤P
T B ⇔ L ≤N P

T B.

Proof Take the language L over the alphabet {0, 1} whose words are the numer-

als encoding the numbers in A of Theorem 1.5, and let B be a subset of L. If

|L − B| = ∞ then L 6≤N P
T B as L 6≤T B , hence L 6≤P

T B . If |L − B| < ∞ then, of

course, L ≤N P
T B and L ≤P

T B . �

In general, if ≤r is any kind of reducibility between sets or languages, we say that an

infinite set L is ≤r -introimmune if, for every B ⊆ L with |L − B| = ∞, it is L 6≤r B .
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If both L and L are ≤r -introimmune, then L is bi-≤r -introimmune. Essentially, for

the most common reducibilities ≤r , an ≤r -introimmune set does not contain sets of

higher ≤r -degree. This concludes our look at the motivation for considering infinite

sets of words which do not contain subsets of higher polynomial-time Turing degree.

Now, any ≤P
m-introimmune language is clearly not in P. Actually, it is even P-

immune [6]. Likewise, any ≤N P
m -introimmune language is NP-immune, and any

≤m-introimmune language is immune, hence not recursively enumerable [6]. Here,

≤N P
m is the nondeterministic version of ≤P

m .

However, given a generic reducibility ≤r we ask how structurally easy an ≤r -

introimmune or bi-≤r -introimmune set can be. With the locution “how structurally

easy can a set be” we mean principally, but not exclusively, What is the smallest class

of one of the main well-known hierarchies, such as the Polynomial Time Hierarchy

PH or the Kleene’s Hierarchy, containing such sets?

This question is not entirely new. For example, [17] proved that ≤T -introimmune

sets are 11
0-hard with respect to every arithmetic reducibility, and Simpson [16]

proved that ≤T -introimmune sets are 11
1-hard with respect to Turing reducibility

≤T . Here 11
0 and 11

1 denote, respectively, the classes of arithmetical and hyperarith-

metical sets.

In particular, our question includes the following question: Are there ≤P
m-

introimmune sets that belong to PH, or that are at least recursive? The existence of

an ≤P
m-introimmune set in PH implies P 6= PH. Hence, even if such set exists, its

existence is hard to prove.

Coming back to the general question, we consider the many-one reducibilities

≤m and ≤P
m . As previously stated, an ≤m-introimmune set cannot be recursively

enumerable. In this paper we prove the existence of an ≤m-introimmune set in the

class 50
1, the existence of a bi-≤m-introimmune set in the class 10

2, and the existence

of a bi-≤P
m-introimmune set in the class 10

1 of the Kleene’s Hierarchy.

These are the best possible results relative to the research of the smallest class of

Kleene’s Hierarchy containing such sets. Should the former result suggest that there

exists an ≤P
m-introimmune language in 5

p

1 = co-NP? We expect the answer to be

no.

2 Sets without Subsets of Higher Many-One Degree

We are going to exibit an ≤m-introimmune set in the class 50
1. This result is struc-

turally optimal relative to the classification in the Kleene’s Hierarchy, since any ≤m-

introimmune set is immune and, hence, not recursively enumerable. We start by

proving that every ≤m-introimmune set is immune.

Proposition 2.1 Every ≤m-introimmune set is immune.

Proof Let A ⊆ N be an ≤m-introimmune set and let us suppose that A is not

immune: this means that there exists an infinite recursive subset of A. Let W

be such an infinite recursive subset and let W ′ := A − W : it is W ′ ⊆ A and

|A − W ′| = |W | = ∞. We show that A ≤m W ′, contradicting the assumption

that A is ≤m-introimmune. Let us define f : N → N as follows: for all x ,

f (x) :=

{

b if x ∈ W ,

x if x 6∈ W ,
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where b is a fixed element in W ′. Now, f is recursive and, for every x , x ∈ A ⇔

f (x) ∈ W ′. �

Observe that the converse of Proposition 2.1 is not true. In fact, take A immune.

Then A ⊕ A = {2x : x ∈ A}∪ {2x + 1 : x ∈ A} is an immune, not ≤m-introimmune,

set because the recursive function f (2x) = 2x , and f (2x + 1) = 2x ≤m-reduces

A ⊕ A to its co-infinite subset 2A = {2x : x ∈ A}. Moreover, both A and A ⊕ A are

in the same ≤m-degree. However, it is easy to see that the ≤m-introimmune property

is recursively invariant. We will now prove the existence of an ≤m-introimmune set

in 50
1, first proving that every cohesive set is ≤m-introimmune.

Lemma 2.2 Every cohesive set is ≤m-introimmune.

Proof Let A be a cohesive set, let B ⊆ A with |A − B| = ∞, and let us sup-

pose that A ≤m B via a recursive function f . First of all, for every x ∈ A the

set {x, f (x), f ( f (x)), . . .} is finite, otherwise A would have an infinite recursively

enumerable subset, contradicting the cohesiveness of A. Let W := {x : x 6= f (x)}.

W is recursively enumerable, so A ∩ W is finite or A ∩ W is finite. The former is

impossible as B is a co-infinite subset of A, hence A ∩ W is finite. By the immu-

nity of A, for any x ∈ B there can be at most finitely many elements y such that

f (y) = x . Therefore, A contains infinitely many finite disjoint orbits given by f .

Moreover, such orbits are all contained in B . Let W ′ := {x : (∃n ≥ 2) f (n)(x) = x},

where f (n)(x) denotes the n-iterate of f (x). W ′ is recursively enumerable, with

A ∩ W ′ infinite and A ∩ W ′ infinite, since A ∩ W ′ ⊇ A − B . But this contradicts the

cohesiveness of A. �

We will see later that Lemma 2.2 cannot be reversed.

Corollary 2.3 There exists an ≤m-introimmune set in 50
1.

Proof Take a maximal set A. By definition A is recursively enumerable and its

complement is cohesive. So A is ≤m-introimmune and is in 50
1. �

We can be more precise on the position of an ≤m-introimmune set inside 50
1. First of

all, there do not exist ≤m-introimmune sets 50
1-complete with respect to ≤m . This is

because every 50
1-complete set with respect to ≤m is productive. Every productive

set is not immune and so, by Proposition 2.1, are not ≤m-introimmune. Second, there

are ≤m-introimmune sets 50
1-complete with respect to Turing reducibility ≤T . This

follows from the existence of a maximal set which is 60
1 -complete with respect to ≤T

(Yates [18]). Finally, not every ≤m-introimmune set in 50
1 is complete with respect

to ≤T . This follows from the existence of a maximal set which is not complete with

respect to ≤T (Sacks [14]).

We conclude this section showing the existence of bi-≤m-introimmune sets in

10
2. This is the best possible result, since the class 10

2 is the smallest class of the

Kleene’s Hierarchy that can contain such sets. In fact, by Proposition 2.1, a bi-≤m-

introimmune set cannot be in 60
1 ∪ 50

1. By the fact that there cannot be bicohesive

sets we conclude that Lemma 2.2 cannot be reversed.

Theorem 2.4 There exists a bi-≤m-introimmune set in 10
2.

Proof Let ϕ0, ϕ1, . . . be a fixed effective enumeration of all the unary com-

putable functions. Let f : N → N be the function defined by f (0) = 1 and
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f (n + 1) := maxu,v≤n+1{ f (n), ϕu(v)|ϕu(v) ↓} + 1, for every n ∈ N. Then f is an

increasing function that satisfies both of the following properties:

i. it is K -recursive, where K = {x ∈ N : ϕx(x) ↓}, and

ii. for every recursive function ϕn there exists a natural number m such that for

every m′ ≥ m, for every s ≤ m′, ϕn(s) < f (m′).

We recall here two technical definitions, the former from Balcázar and Schöning

[3] and the latter from Kämper [10]. We say that a function f is 1-1 a.e. if the set

{(x, y) : x 6= y ∧ f (x) = f (y)} is finite.

Definition 2.5 A set X ⊆ N is strongly bi-≤m-immune if and only if every ≤m-

reduction from X to any set Y ⊆ N is 1-1 a.e.

Observe that X is strongly bi-≤m-immune if and only if its complement is also

strongly bi-≤m-immune.

Definition 2.6 Let g : N → N be a function such that for every n ∈ N,

g(n) > n, and let X ⊆ N be an infinite set. Then X has g-gaps if and

only if for every natural number n there exists a natural number m such that

X ∩ {x ∈ N : n + m < x ≤ g(n + m)} = ∅. For every natural number n, we call

the set {x ∈ N : n < x ≤ g(n)} a g-gap.

We are going to construct, by a so-called finite-extension argument, a set A with the

following two properties:

1. A is strongly bi-≤m-immune, and

2. both A and A have f -gaps, where f is the function defined above.

To guarantee the first property (1) we construct A in such a way to satisfy the fol-

lowing requirements Ri , for i = 0, 1, . . .:

Ri : If {(x, y) : x 6= y ∧ ϕi (x) = ϕi (y)} is infinite, then there exist u 6= v

with ϕi (u) = ϕi (v), u ∈ A, and v 6∈ A.

To guarantee the second property (2), whenever the procedure finds an index that

can be diagonalized at some stage n, we insert an f -gap {x ∈ N : z < x ≤ f (z)}

into A and an f -gap {x ∈ N : f (z) < x ≤ f ( f (z))} into A, for an appropriate

natural number z. That is, we make sure that {x ∈ N : z < x ≤ f (z)} ∩ A = ∅

and {x ∈ N : f (z) < x ≤ f ( f (z))} ∩ A = ∅. The construction is by stages.

The set D contains the indices that could be diagonalized. For every z ∈ N let

GAP(z, f ) := {x ∈ N : z < x ≤ f ( f (z))}. At every stage, if the proce-

dure finds an index that can be diagonalized, then this index is removed from D,

the process stops for a moment and tries to insert {x ∈ N : z < x ≤ f (z)} and

{x ∈ N : f (z) < x ≤ f ( f (z))} into A and A, respectively, for some z ∈ N. The

only problem here is that the two f -gaps above could contain a word x for which an

index in D can be diagonalized. For this reason, the procedure enters the while loop

and looks for a natural number z for which GAP(z, f ) does not have this conflict.

Note that the while loop always ends, with D empty if necessary.
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Begin Construction

Stage 0. A := ∅, D := {0}, k(1) := 0.

Stage n > 0.

D := D ∪ {n};

If ∃i ∈ D and ∃x < k(n) such that ϕi (x) = ϕi (k(n)) then

begin let i0 be the smallest such index and let x0 be the smallest such number.

if x0 6∈ A then A = A ∪ {k(n)}; endif

D := D − {i0};

z := k(n);

GAP := GAP(z, f );

while ∃i ∈ D, ∃x ∈ GAP and ∃y < x such that ϕi (x) = ϕi (y) do

begin

let x0 be the smallest such number x ;

let i0 be the smallest such index i ;

let y0 < x0 be the smallest number such that ϕi0(y0) = ϕi0 (x0);

if y0 6∈ A then A := A ∪ {x0}; endif

D := D − {i0};

z := x0;

GAP := GAP(z, f )

endwhile

A := A ∪ {x : z < x ≤ f (z)}; {insert an f -gap into A};

k(n + 1) := f ( f (z)) + 1; {insert an f -gap into A};

end

else

k(n + 1) := k(n) + 1

endif

Go to stage n + 1.

End stage n.

End Construction

Set A is K -recursive, and hence in 10
2. First of all, we observe that there are infin-

itely many stages at which some index is diagonalized (e.g., all the constant func-

tions occur in the enumeration ϕ0, ϕ1, . . .). At every such stage n, the procedure

finds a natural number z ≥ k(n) and extends both A and A in such a way that

{x : f (z) < x ≤ f ( f (z))} ∩ A = ∅ and {x : z < x ≤ f (z)} ∩ A = ∅. As

k(0) < k(1) < · · · , it follows that both A and A have f -gaps.

We show only that A is ≤m-introimmune, since the same argument with A re-

placed by A shows that A is also ≤m-introimmune.

Let B ⊆ A with |A−B| = ∞, and let ϕ be a recursive function. If ϕ is not 1-1 a.e.

then ϕ does not ≤m-reduce A to B , because sooner or later ϕ will be diagonalized.

So let us suppose that ϕ is 1-1 a.e.

For every x ∈ A − B it is ϕ(x) 6= x and for every n ≥ 1 it is ϕ(n)(x) 6= x .

For every x ∈ A − B let Sx = {x, ϕ(x), ϕ(ϕ(x)), . . .}. ϕ is 1-1 a.e., hence

there are only finitely many x ∈ A − B with Sx finite. Let x0 ∈ A − B with

Sx0
= {x0, ϕ(x0), ϕ(ϕ(x0)), . . .} infinite. From (ii), and from the fact that A has

f -gaps, there exists m ≥ 0 such that the two conditions below hold:
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1. A ∩ {x ∈ N : x0 + m < x ≤ f (x0 + m)} = ∅, and

2. ∀s ≤ x0 + m, ϕ(s) < f (x0 + m).

Then there exists y ∈ Sx0
, y ≤ x0 + m, with y ∈ A and ϕ(y) 6∈ A, hence ϕ does not

≤m-reduce A to B . �

3 Sets without Subsets of Higher Polynomial-Time Many-One Degree

In this section we consider the polynomial-time many-one reducibility ≤P
m and dis-

cover a bi-≤P
m-introimmune recursive set. Of course, this result is the best possible

one inside the Kleene’s Hierarchy.

Theorem 3.1 There exists a bi-≤P
m-introimmune recursive set.

Proof Let T1, T2, . . . be a fixed effective enumeration of polynomial-time Turing

transducers on the alphabet {0, 1} computing every polynomial-time computable

function. Without loss of generality, we assume that the time bound of every Ti

is the polynomial pi(n) = ni + i , i = 1, 2, . . .. For every symbol a ∈ {0, 1}

and for every positive n ∈ N, an is the word aa · · · a with a occurring n times,

{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, . . .} is the set of all the words on the alphabet {0, 1},

and for every w ∈ {0, 1}∗ |w| denotes the number of symbols of w. With ≤lex we

denote the usual lexicographic order ε, 0, 1, 00, 01, 10, 11, . . . on {0, 1}∗, while with

<lex we denote the strict version of ≤lex. For every word w ∈ {0, 1}∗, succ(w) is the

next word in {0, 1}∗ with respect to ≤lex.

Let f : N →N be the function f (0)=1 and f (n+1) := maxi, j≤n+1{ f (n), pi ( j)}

+ 1, for every n ∈ N. Then f is an increasing computable function that satisfies the

following condition similar to condition (ii) of Theorem 2.4:

For every Turing transducer Tn of the above enumeration there exists a natural

number m such that for every word w with |w| ≥ m, for every word v with

|v| ≤ |w|, it holds that |Tn(v)| < f (|w|).

We introduce here the two previous technical definitions in the framework of words

on {0, 1} and polynomial-time computations.

Definition 3.2 A set X ⊆ {0, 1}∗ is strongly bi-≤P
m-immune if and only if every

≤P
m-reduction from X to any set Y ⊆ {0, 1}∗ is 1-1 a.e.

Definition 3.3 Let g : N → N be a function such that for every n ∈ N,

g(n) > n, and let X ⊆ {0, 1}∗ be an infinite set. Then X has g-gaps if and

only if for every natural number n there exists a natural number m such that

X ∩ {x ∈ {0, 1}∗ : n + m < |x | ≤ g(n + m)} = ∅. For every word z, and for every

word w of length g(|z|), we call the set {x ∈ {0, 1}∗ : z <lex x ≤lex w} a g-gap.

Similar to Theorem 2.4, we construct a set A ⊆ {0, 1}∗ with the following two

properties:

1. A is strongly bi-≤P
m-immune, and

2. both A and A have f -gaps, where f is the function defined above.

The construction of set A is by stages and is very similar to that of Theorem 1.5. In

particular, to guarantee the first property (1) we satisfy the following requirements

Ri , for i = 1, 2, . . .:

Ri : If {(x, y) : x 6= y ∧ Ti (x) = Ti (y)} is infinite, then there exist u 6= v

with Ti (u) = Ti (v), u ∈ A and v 6∈ A.
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To guarantee the second property (2), whenever the procedure finds an index that can

be diagonalized at some stage n, we insert an f -gap {x : z <lex x ≤lex 1 f (|z|)} into

A and an f -gap {x : 1 f (|z|) <lex x ≤lex 0 f ( f (|z|))} into A, for an appropriate word z.

For every z ∈ 6∗ let GAP(z, f ) := {x ∈ 6∗ : z <lex x ≤lex 1 f ( f (|z|))}.

Begin Construction

Stage 0. A := ∅, D := ∅, w(1) := ε.

Stage n > 0.

D := D ∪ {n};

If ∃i ∈ D and ∃x <lex w(n) such that Ti (x) = Ti (w(n)) then

begin let i0 be the smallest such index and let x0 be the smallest such word.

if x0 6∈ A then A = A ∪ {w(n)}; endif

D := D − {i0};

z := w(n);

GAP := GAP(z, f );

while ∃i ∈ D, ∃x ∈ GAP and ∃y <lex x such that Ti (y) = Ti (x) do

let x0 be the smallest such word x ;

let i0 be the smallest such index i ;

let y0 < x0 be the smallest word such that Ti0 (y0) = Ti0(x0);

if y0 6∈ A then A := A ∪ {x0}; endif

D := D − {i0};

z := x0;

GAP := GAP(z, f )

endwhile

A := A ∪ {x : z <lex x ≤lex 1 f (|z|)}; {insert an f -gap into A};

w(n + 1) := 0 f ( f (|z|))+1; {insert an f -gap into A};

end

else

w(n + 1) := succ(w(n))

endif

Go to stage n + 1.

End stage n.

End Construction

Set A is recursive. With a very similar argument to that of Theorem 2.4 it is possible

to show that A is bi-≤P
m-introimmune. �

We conclude observing that with a little change to the construction of Theorem 3.1

it is possible to show the existence of a sparse ≤P
m-introimmune recursive set. Recall

that a set X ⊆ {0, 1}∗ is sparse if and only if there exists a polynomial p such that

for every n ∈ N, |{x ∈ X : |x | ≤ n}| ≤ p(n).

Theorem 3.4 There exists a sparse ≤P
m-introimmune recursive set.

Actually, Ambos-Spies recently proved in [1] a much stronger result, showing the

existence of a sparse ≤P
T -introimmune set in EXPTIME.1

Theorems 3.1 and 3.4 produce optimal results inside Kleene’s Hierarchy. As re-

marked in the introduction, ≤P
m-introimmune sets cannot be members of the class P.



Sets without Subsets of Higher Many-One Degree 215

In fact, a very similar proof to that of Proposition 2.1 shows that ≤P
m-introimmune

sets are P-immune. The converse is not true: take an ≤P
m-introimmune (and sparse)

set A ⊆ {0, 1}∗ and consider A ⊕ A := {x0 : x ∈ A} ∪ {x1 : x ∈ A}. Then

A ⊕ A is P-immune (and sparse) but not ≤P
m-introimmune. Likewise to the sequen-

tial observation of Proposition 2.1, both A and A ⊕ A are in the same ≤P
m-degree,

and it is easy to see that the ≤P
m-introimmune property is p-isomorphic invariant.

That is, if L ⊆ {0, 1}∗ is a ≤P
m-introimmune language and f : {0, 1}∗ → {0, 1}∗ is

a polynomial-time computable permutation with f −1 polynomial-time computable,

then f (L) is also ≤P
m-introimmune.

As a further line of research, we propose, given a reducibility ≤r , the discovery

of an ≤r -introimmune set as down as possible in one of the resource bounded hi-

erarchies, such as the Polynomial Time Hierarchy, the Exponential Time Hierarchy,

or others. The work of Ambos-Spies [1] in this direction is excellent. However, the

existence of ≤
p
m-introimmune sets in PH is very hard to prove, if they exist, since it

implies the solution of the open problem P=?PH.

Note

1. EXPTIME =
⋃

c>0DTIME(2cn).
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