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Some Open Questions for Superatomic
Boolean Algebras

Juan Carlos Martinez

Abstract  In connection with some known results on uncountable cardinal se-
quences for superatomic Boolean algebras, we shall describe some open ques-
tions for superatomic Boolean algebras concerning singular cardinals.

1 Superatomic Boolean Algebras

A superatomic Boolean algebra is a Boolean algebra in which every subalgebra
is atomic. Suppose that B is a Boolean algebra. It is a well-known fact that B is
superatomic if and only if its Stone space S(B) is scattered. For every ordinal «,
the «-derivative of S(B) is defined by induction on « as follows. S(B)? = S(B);
if o = B+ 1, S(B)* is the set of accumulation points of S(B)?; and if « is
a limit, S(B)* = ﬂ{S(B)ﬁ : B < a}. Then, S(B) is scattered if and only
if S(B)* = @ for some «. This process can be transferred to the Boolean al-
gebra B, obtaining in this way an increasing sequence of ideals I, which are
defined by transfinite induction as follows. We put Iy = {0}; if o = B + 1,
I, = theideal generatedby Ig U {b € B : b/lIgisanatomin B/Ig}; and if « is
alimit, Iy, = J{Ig : B < a}. Then B is superatomic if and only if there is an
ordinal « such that B = I,. As usual, we abbreviate ‘superatomic Boolean algebra’
as ‘sBA’.

2 Open Questions

Suppose that B is an sBA. We define the height of B by ht(B) = the least ordinal
o such that B/I, is finite. For every o < ht(B), we denote the cardinality of the
set of atoms of B/, by ‘wdy (B)’. The cardinal sequence of B is then defined by
CS(B) = (wdy(B) : @ < ht(B)). If k is an infinite cardinal and « is a nonzero
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ordinal, we say that B is a (k, «)-sBA, if ht(B) = o and wdg(B) =< « for every
B < a.

The countable sequences of cardinals that arise as cardinal sequences of super-
atomic Boolean algebras were characterized by La Grange on the basis of ZFC set
theory (see Koppelberg [6]). However, the situation becomes more complicated
when we want to gain insight into uncountable cardinal sequences. In [3], it was
shown by Juhdsz and Weiss that there is an (w, a)-sBA for any o < wy. This result
is, in a sense, the best possible, since it is known that the existence of an (@, w,)-sBA
is independent of ZFC (see Baumgartner and Shelah [1] and Just [4]). Yet it is not
known whether there exists an (w1, w2)-sBA. Nevertheless, it was proved in Koepke
and Martinez [5] that under V = L, there is a (k, k7)-sBA for every regular cardi-
nal k. Also, it was shown in Martinez [7] that if « is an infinite cardinal such that
k=¥ = K, then there is a cardinal-preserving partial order that forces the existence
of a (k, @)-sBA for every @ < « . It is not known whether these results can be
extended to singular cardinals. So the following question appears to be open.

Question 2.1 Let k be a specific singular cardinal, for example, k = R,,. Is it
consistent with ZFC that there exists a (k, k*)-SBA ?

Another interesting class of superatomic Boolean algebras with an uncountable car-
dinal sequence is the class of the so called thin-thick Boolean algebras. Suppose
that B is an sBA. Let x be an uncountable cardinal. We say that B is k-thin-thick
if ht(B) = k + 1, wdy(B) < « for every a < k, and wd,(B) > «*. And we say
that B is «-very thin-thick if ht(B) = k™ + 1, wdy(B) < « for every a < «™, and
wd,+(B) > kT, It was shown by Baumgartner in [1] that the consistency of the
existence of an inaccessible cardinal implies the consistency of the nonexistence of
an w1-thin-thick sBA. However, it was shown by Weese in [9] that GCH implies the
existence of a «-thin-thick sBA for every infinite cardinal «. In contrast with this
result, it can be easily checked that under GCH we have that, for any infinite car-
dinal «, there is no «-very thin-thick sBA. Nevertheless, it was proved in [5] that if
k=¥ = K and there is a simplified (« ™, 1)-morass, then there is a cardinal-preserving
partial order that forces the existence of a k-very thin-thick sBA. However, we do not
know whether the cardinality assumption “k =% = «” can be omitted in this theorem.
Thus the following problem is open.

Question 2.2 Let k be a specific singular cardinal. Is it consistent with ZFC that
there exists a k-very thin-thick superatomic Boolean algebra ?

Also, the following general question seems to have some interest.

Question 2.3 For a specific singular cardinal k, what are the cardinal sequences
0 = (kg : @ < k) such that it is consistent with ZFC that there is a superatomic
Boolean algebra B with CS(B) = 60?7

With respect to Question 2.3, we hope to prove in a future paper that if GCH holds
and 0 = (ky : @ < k) is such that x, > «k for each o < «, then there is a cardinal-
preserving partial order that forces the existence of an sSBA B with CS(B) = 6.
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On the other hand, in [8], Ruyle studied the notion of a PCF structure—a refine-
ment of the notion of partial order introduced by Baumgartner in [ | ]—in which some
conditions are added in order to reflect the fundamental properties of the PCF opera-
tor on {w, : n > 1}. Then every PCF structure T has associated with it a superatomic
Boolean algebra B = B(T) which satisfies that |B| = |T'| and wdy (B) < |o + |
for every ¢ < ht(B) (see [8]). The interest of the notion of a PCF structure lies
in the fact that in the proof of Shelah’s theorem that 2% < R, if R, is a strong
limit cardinal, it is shown by means of a combinatorial argument that there is no PCF
structure of size > w4 (see Burke and Magidor [2] and [8]). Then one could improve
Shelah’s bound on 28« to R, by showing that in ZFC there is no PCF structure of
size w3. In [8], it was proved by Ruyle that it is consistent with ZFC that there is a
PCF structure 7' such that B(T) is an (w, wz)-sBA, and so we cannot hope to im-
prove Shelah’s bound on 2% to 8, at least by using the original argument given by
Shelah. In [8], it was also proved that for any ordinal @ < @, an (@, @)-sBA can be
constructed in ZFC from a PCF structure. However, the following question remains
open.

Question 2.4 s it consistent with ZFC that there is a PCF structure whose asso-
ciated superatomic Boolean algebra is an (w3, w3)-sBA ?

If we could answer Question 2.4 in the affirmative, we could not hope to use PCF
theory to improve Shelah’s bound on 2%¢ to R,,,,.
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