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Adding Closed Unbounded Subsets of ω2

with Finite Forcing

William J. Mitchell

Abstract An outline is given of the proof that the consistency of a κ+-Mahlo

cardinal implies that of the statement that I [ω2] does not include any stationary

subsets of Cof(ω1). An additional discussion of the techniques of this proof

includes their use to obtain a model with no ω2-Aronszajn tree and to add an

ω2-Souslin tree with finite conditions.

1 Introduction

In [15], Definition 2.1 Shelah defined the approachability ideal I [κ+] as follows.

Definition 1.1 For any sequence A = 〈 aα : α < κ+ 〉 of sets, let B(A) be the set

of ordinals λ < κ+ such that there is a set c ⊂ λ with

(i) otp(c) = cf(λ),

(ii)
⋃

c = λ, and

(iii) { c ∩ ξ : ξ < λ } ⊂ { aα : α < λ }.

Then I [κ+] is the set of subsets of κ+ which are contained, up to a nonstationary set,

in some set B(A).

Shelah proved in [15], Theorem 4.4 that if κ is regular then κ+ ∩ Cof(<κ) ∈ I [κ+],
where we write Cof(η), or Cof(<η), for the set of ordinals ν such that cf(ν) = η

or cf(ν) < η, respectively. It is consistent that Cof(κ) 6∈ I [κ+]: an example is

given by the model of [11] in which there are no ω2-Aronszajn trees, and others are

given by Proposition 2.11 and Theorem 4.1 of this paper. Shelah asked whether it

is consistent that every subset of Cof(ω1) in I [ω2] is nonstationary. The following

theorem answers this question.

Theorem 1.2 If it is consistent that there is a cardinal κ which is κ+-Mahlo, then

it is consistent that I [ω2] does not contain any stationary subset of Cof(ω1).
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The fact that a κ+-Mahlo cardinal κ is necessary is due to Shelah, and a proof is given

in [12], Theorem 13. In this paper we will outline the proof of Theorem 1.2, describe

the techniques involved, and discuss some of their variations and limitations. A full

proof of Theorem 1.2 is given in [13].

2 Adding One Closed Unbounded Set

A strategy for the proof of Theorem 1.2 is straightforward: Let κ be κ+-Mahlo, and

for each α < κ+ define Bα := { λ < κ : λ is fα(λ)-Mahlo }, where fα is some

function chosen so that α = [ fα]NS. The statement that κ is κ+-Mahlo implies

that each of the sets Bα is stationary, and the forcing will add κ+ many new closed

unbounded sets Dα ⊂ Bα. The forcing should preserve ω1 and κ while collapsing

all intermediate cardinals so that κ becomes ω2 in the generic extension. A further

constraint is given by the following observation of Shelah, which implies that the

forcing must add new reals.

Proposition 2.1 If 2ω ≤ ω2 then I [ω2] contains a stationary subset of Cof(ω1).

Proof Let A = 〈 aν : ν < ω2 〉 enumerate [ω2]
ω. To see that B(A) ∩ Cof(ω1) is

stationary, let C ⊂ ω2 be closed and unbounded and pick a chain 〈 Mν : ν < ω1 〉
of elementary submodels of Hω3

of size ω1 such that ω1 ∪ {A, C} ∈ M0 and

〈 Mα : α < ν 〉 ∈ Mν+1 for each ν < ω1.

Set αν = sup(Mν ∩ ω2) and α =
⋃

ν<ω1
αν . Then α ∈ C ∩ Cof(ω1) since

C ∈ M0, so it will be sufficient to show that α ∈ B(A). To this end, set

c = { αν : ν < ω1 } and note that if ξ < ω1 then c ∩ αξ = { αν : ν < ξ } ∈ Mξ+1

since 〈 Mν : ν < ξ 〉 ∈ Mξ+1. Since A ∈ M0 ⊂ Mξ+1 we have [ω2]
ω ∩ Mξ+1 =

{ aν : ν ∈ Mξ+1 } ⊂ { aν : ν < αξ+1 }, so the set c witnesses that α ∈ B(A). �

We begin the search for the appropriate forcing by studying the known methods for

adding a new closed, unbounded subset D of ω1. There are two of these: one with

finite conditions and one with countable conditions. The one using finite conditions

first appeared in [3], page 926, and the form we describe is essentially due to Abra-

ham [1]. The conditions are pairs p = (I p, O p), where I p ∈ [ω1]
<ω and O p is

a finite set of half open intervals (η′, η] satisfying the constraint that if λ ∈ I p and

(η′, η] ∈ O p then λ /∈ (η′, η]. A condition p forces λ ∈ Ḋ if and only if λ ∈ I p

and p 
 λ /∈ Ḋ if and only if λ ∈ (η′, η] for some (η′, η] ∈ O p . The forcing using

countable conditions, which first appeared in [2], has as conditions closed, bounded

subsets c of ω1 ordered by end extension.

These two methods suggest three possible ways to force a new closed unbounded

subset of ω2:

1. use finite conditions p = (I p, O p) as in the forcing at ω1, except that the

ordinals are in ω2 instead of ω1;

2. use countable conditions p = (I p, O p); this is like the first alternative, ex-

cept that I p and O p are countable;

3. generalize the second alternative for ω1 by using as conditions closed,

bounded subsets of ω2.

The third alternative is the most common method and the obvious choice; however

neither it nor the second alternative add new reals, and Proposition 2.1 implies that

ω3 new reals are needed. Furthermore both of these alternatives use the continuum



Closed Unbounded Subsets 359

hypothesis, so it is difficult to devise a suitable iterated forcing which alternates either

forcing with a separate forcing to add the required new reals.

This leaves the first alternative, but that collapses ω1. To see this, let D be

the closed and unbounded set added by this forcing and define, for ξ < ω2,

σ(ξ) = sup{ ν < ω1 : ω1 · ξ + ν ∈ D }. If p is any condition then

p 
 σ(ξ) = ω1 if ω1 · (ξ + 1) ∈ I p,

p 
 σ(ξ) = 0 if ∃(η′, η] ∈ O p (η′ < ω1 · ξ & ω1 · (ξ + 1) ≤ η), and

p 
 σ(ξ) ≤ ν if ∃(η′, η] ∈ O p (ω1 · ξ + ν < η′ & ω1 · (ξ + 1) ≤ η)

for each ν < ω1. For any other ordinal ξ , and for any ordinal ν < ω1, there is p′ < p

such that p′ 
 ν < σ(ξ) < ω1. Hence it is forced that there are unboundedly many

ordinals ξ < ω2 such that 0 < σ(ξ) < ω1, and if we let A be the set containing the

first ω-many of these ordinals then { σ(ξ) : ξ ∈ A } is unbounded in ω1.

In order to avoid this collapse, we modify the forcing by using a variation of

Todorčević’s method of forcing with models as side conditions. This forcing Pω2

to add a closed unbounded subset of ω2 was independently discovered by Friedman

[4], and his proof has been translated by Morgan [14] into Koszmider’s technique of

using a morass for forcing with models as side conditions.

We state the following definition under the assumption V = L and take the count-

able models in the side condition A
p to be 61-elementary substructures of Lω2

. This

can be extended to more general contexts, for example, by taking the models to be

substructures of Lω2
[A] where A ⊂ ω2 codes 2ω.

If V = L then the countable models M which are used in Definition 2.2 in the

set A
p of side conditions may be taken to be 61-elementary substructures of Lω2

.

More generally, if we assume 2ω ≤ ω1 then we could take the models to be of the

form Lω2
[A] where A is a fixed subset of ω2 such that 2ω ⊂ Lω2

[A].

Definition 2.2 The conditions in the forcing Pω2
are triples p = (I p, O p,Ap).

The sets I p and O p are as in the finite forcing for ω1 except that the ordinals are

taken from ω2, and A
p is a finite set of countable models M .

A condition p = (I p, O p,Ap) must satisfy the following conditions:

1. if λ ∈ I p and (η′, η] ∈ O p then λ /∈ (η′, η];
2. if (η′, η] ∈ O p and M ∈ A

p then either η′, η ∈ M or else (η′, η] ∩ M = ∅;

3. suppose M, M ′ ∈ A
p;

(a) either M ∩ M ′ ∈ M or else M ∩ M ′ = M ∩ Lδ , where δ = sup(M ∩ M ′),

(b) lim(M) ∩ lim(M ′) = lim(M ∩ M ′).

The set Pω2
is ordered by (I ′, O ′,A′) ≤ (I, O,A) if I ′ ⊃ I , O ′ ⊃ O, and A

′ ⊃ A.

Of course, clause 3(a) also holds with M and M ′ switched. Clause 1 is taken di-

rectly from the forcing at ω1. Clause 2 states that if M ∈ A then any requirement

(η′, η] ∈ O p either is a member of M or else does not affect the forcing P ∩ M in

M . Clause 3 is more complex, but it is motivated by similar considerations which

are made precise in the next definition.

Definition 2.3 If P is a forcing order and X is a model then a condition p is

strongly X-generic if p forces that Ġ ∩ X is a V -generic subset of P ∩ X , where Ġ

is a name for the generic subset.
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This should be contrasted with Shelah’s notion of an X-generic condition, which

only requires that p forces that Ġ ∩ X is X-generic. The importance of strong gener-

icity in our construction is largely due to Lemma 2.10 below, but in the meantime we

will need the following combinatorial characterization. We assume that the forcing

P is closed under meets; that is, any pair p, q of compatible conditions in P has a

greatest lower bound p ∧ q ∈ P .

Proposition 2.4 A condition p ∈ P is strongly X-generic if and only if for all

conditions q compatible with p there is a condition q|X ∈ P ∩ X such that every

condition r ≤ q|X in P ∩ X is compatible with q ∧ p. �

Thus, strong X-genericity of a condition p means that any effect which a condition

q ≤ p has on the forcing inside X can be specified by a condition q|X which is a

member of X . In Lemma 2.6 we will see that ({λ}, ∅, ∅) is strongly Lλ-generic, and

(∅, ∅, {M}) is strongly M-generic. Clause 2 is necessary for the latter: any interval

(η′, η] ∈ Oq such that M ∩ (η′, η] 6= ∅ will affect the forcing in M , and hence must

be included in Oq|M .

M M ′

Figure 1 Clause 2 of
Definition 2.2

Clause 3(b) asserts that two models M and M ′ in

A
p look like Figure 2, with a common part M ∩ M ′ at

the bottom and finitely many disjoint intervals above.

The figure shows the second alternative of clause 3(a),

in which M ∩ M ′ is an initial segment of both M and

M ′.

For Theorem 1.2 we need to modify Definition 2.2

in two ways. We need new closed unbounded subsets

of the κ+-Mahlo cardinal κ instead of ωV
2 . For this

we simply require the cardinals in I p and endpoints of

intervals from O p be taken from κ , and (assuming V =

L) we take the models M ∈ A
p to be 61-elementary substructures of Lλ for some

inaccessible cardinal λ ≤ κ . The other change is that the new closed unbounded set

is to be a subset of a given stationary set B , or rather of the set B∗ := B ∪Cof(ω). To

obtain this forcing PB we modify Definition 2.2 as follows. The countable models M

used in the forcing PB may be taken to be as in Definition 2.2, except that M ≺1 Lκ

(or M ≺1 Lκ [A]) instead of M ≺1 Lω2
. For the forcing of Section 3 we use

the additional assumption that M is closed under cardinal successor, which can be

ensured by using the set of cardinals as a predicate.

Definition 2.5 PB is the set of triples p = (I p, O p,Ap) satisfying the three

clauses of Definition 2.2 such that

1. if λ ∈ I p and cf(λ) > ω then λ ∈ B;

2. if M ∈ A
p and λ ∈ I p ∩ sup(M) then min(M \ λ) ∈ B;

3. if M, M ′ ∈ A
p and δ = sup(M ∩ M ′) then min(M \ δ) ∈ B if δ /∈ M , and

min(M \ λ) ∈ B whenever either δ < λ ∈ M ′ and λ < sup(M).

The last two clauses of Definition 2.5 are pictured in Figure 2, where the black circles

represent ordinals which are required by these two clauses to be in B . To see the

significance of these clauses, note that no interval (η′, η] ∈ O p can contain any of

the black ordinals: in the case of clause 2 the interval would have to be a member of

M , and hence would also include λ; while in the case of clause 3 the interval would

have to be a member of M ∩ M ′, and that is impossible since η > sup(M ∩ M ′). As
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a consequence, if µ is one of the black ordinals then no condition p0 ≤ p can force

that D ∩ µ is bounded in µ. Hence p forces that µ is a limit point of D, and since D

is intended to be closed it follows that p should force that µ ∈ D. Since cf(µ) > ω

it follows that µ must be in B .

M ∈ A
p

d λ ∈ I p

t ∈ B .

M ,

t ∈ B

t ∈ B

M ′ ∈ A
p

t ∈ B

t ∈ B

Figure 2 Clauses 2 and 3

of Definition 2.5

This consideration also explains

clause 3(b) of Definition 2.2: since all of

the black ordinals are forced by p to be in D,

and hence are effectively in I p , it is necessary

that there be only finitely many of them.

Figure 2 can also be viewed in connection

with strong genericity: the inclusion of λ in

I p has consequences for the forcing inside M ,

since there are intervals (η′, η] ∈ M which in-

clude λ. Strong genericity requires that there

be a condition p|M in P ∩ M with the same

consequences, and this requires that µ be in-

cluded in I p|M . Thus, again, µ should be in B . Similarly, in the case of clause 2,

the inclusion of M ′ in A
p has consequences for the forcing inside M . Some of these

consequences are enforced by including M ∩ M ′ in A
p|M when this is a member of

M , and the rest are enforced by including the black ordinals in I p|M .

Lemma 2.6 If λ ∈ B is inaccessible then the condition ({λ}, ∅, ∅) is strongly

Lλ-generic, witnessed by the function mapping q = (I q , Oq ,Aq ) ≤ ({λ}, ∅, ∅) to

q|Lλ :=
(

I q ∩ Lλ, Oq ∩ Lλ, { M ′ ∩ Lλ : M ′ ∈ A
q }

)

.

Any condition of the form (∅, ∅, {M}) is strongly M-generic, witnessed by the func-

tion mapping q = (I q , Oq ,Aq ) ≤ (∅, ∅, {M}) to

q|M :=
(

(I q ∩ M) ∪ I ′, Oq ∩ M, { M ∩ M ′ : M ′ ∈ A
q & M ∩ M ′ ∈ M }

)

,

where I ′ is the set of ordinals in M specified in clauses 2 and 3 of Definition 2.5.

It is not difficult to show that the indicated functions witness strong genericity, but it

is somewhat tedious to verify that the triple q|M is actually a condition.

Lemma 2.7 If p = (I p, O p,Ap) is a condition, then so is p′ := (I ′, O p,Ap),

where I ′ the smallest set of ordinals which contains I p and all the ordinals required

to be in B by clauses 2 and 3 of Definition 2.5, together with sup(M) and the ordinals

sup(M ∩ λ) for each λ ∈ I ′.

To give the flavor of what is involved, we present the case with the fewest subcases,

namely, the case proving that p′ satisfies clause 2 of Definition 2.5.

Proof of one case Suppose that λ ∈ I p and M ∈ A
p . In order to verify that

η := min(M \ λ) can be added to I p , we need to verify that µ := min(M ′ \ η) ∈ B

for each M ′ ∈ A
p . The argument involves three subcases:

1. If M ′ ∩ [λ, η) = ∅ then µ = min(M ′ \ λ), which is required to be in B since

λ ∈ I p and M ′ ∈ A
p .

2. If η ≥ sup(M ∩ M ′) then µ is required to be in B by clause 3 of Definition 2.5,

since M and M ′ are in A
p .

3. If η < sup(M ∩ M ′) and M ′ ∩[λ, η) 6= ∅ then M ′ ∩ M is not an initial segment

of M ′, so it must be that M ′ ∩ M ∈ M ′ and M ′ ∩ M is an initial segment of M . In

particular η ∈ M ′, so µ = η ∈ B . �
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As an easy consequence of Lemma 2.6 we can verify that the generic extension has

the desired cardinals.

Lemma 2.8 The forcing PB is proper and hence preserves ω1. If B ⊂ κ is a

stationary set of inaccessible cardinals then PB also preserves κ .

Proof The first statement is immediate. To prove the second statement, suppose

p 
 ḣ : ω1 → κ . Since B is stationary, there is X ≺ Lκ+ such that {p, ḣ} ⊂ X and

X ∩ Lκ = Lλ for some inaccessible cardinal λ ∈ B . Then Lemma 2.6 implies that

p′ := (I p ∪ {λ}, O p,Ap) is a condition extending p such that p′ 
 range(ḣ) ⊂ λ.

�

Another crucial fact is that the forcing PB behaves like the forcing at ω1.

Lemma 2.9 Suppose that p is a condition, and p′ is as given by Lemma 2.7. Then

for any ordinal λ < κ

p 
 λ ∈ Ḋ if and only if λ ∈ I p′

p 
 λ /∈ Ḋ if and only if ∃(η′, η] ∈ O p (λ ∈ (η′, η]).

Sketch of proof The first statement is the definition of D. To prove the second

statement, we need to show that if λ /∈ I p′
then there is an interval (µ′, µ] with

µ′ < λ ≤ µ such that (I p′
, O p ∪{(µ′, µ]},Ap) is a condition. By taking the interval

(µ′, µ] small enough we can arrange that I p′
∩(µ′, µ] = ∅ and that M∩(µ′, µ] = ∅

for each M ∈ A
p such that λ /∈ M and M ∩ λ is bounded in λ. Now if M and M ′

are any two of the remaining members of A
p then we must have λ < sup(M ∩ M ′),

and it follows that on the relevant interval either M and M ′ are equal, or else one is

a member of the other. Thus we can take the interval (µ′, µ] to be a member of the

smallest of these models, and hence a member of all of them. �

Note that Lemma 2.9 implies that D is closed, and also implies that { λ : p 
 λ ∈ Ḋ }

is equal to the set I p′
of Lemma 2.7.

Before explaining how the forcing PB is used in the proof of Theorem 1.2, we

need to present a general lemma which explains the importance of strong genericity.

This lemma can be compared with the main lemma in the original construction [11]

of a model with no ℵ2-Aronszajn tree, and also with Hamkins’s “key lemma” of

[6] and [7], Lemma 13, which states that forcing with a δ-closure point satisfies

the δ+ approximation property. All of these can be easily proved using the idea of

Lemma 2.10.

Lemma 2.10 Suppose that P is a forcing notion with meets, G ⊂ P is generic, and

X is a model having a strongly X-generic condition p ∈ G such that the witnessing

function satisfies (q ∧ q ′)|X = q|X ∧ q ′|X whenever the conditions q, q ′, and p

are compatible. Further suppose that the set of countable models M having strongly

M-generic conditions is stationary; that is, for any cardinal θ with P ∈ Hθ and any

set a ∈ Hθ there is a countable model M ≺ Hθ with a ∈ M such that for each

p ∈ P ∩ M there is a strongly M-generic condition q ≤ p.

Let h : µ → V be a function in V [G] such that h↾x ∈ V [G ∩ X] for every

x ∈ ([µ]ω)V . Then h ∈ V [G ∩ X].

Proof Pick a countable model M ≺ Hθ , for some θ large enough, so that

ḣ, X, p, P ∈ M; and let q ≤ p be strongly M-generic. By extending q if necessary



Closed Unbounded Subsets 363

we can assume that there is a P ∩ X-term σ̇ such that q 
 ḣ↾ sup(M ∩ ω1) = σ̇ . I

claim that

M |H ∀r ≤ q|M∀ν < µ∀x
(

r 
 ḣ(ν) = x H⇒ (r |X ∧ q|M) 
 ḣ(ν) = x
)

. (1)

It will follow by elementarity that the same sentence holds in V , which implies that

h can be computed from G ∩ X .

If the sentence (1) does not hold for some ν, x ∈ M and some r ≤ q|M in P ∩ M

then there is a condition r ′ ≤ (r |X ∧ q|M) in P ∩ M such that r ′ 
 ḣ(ν) 6= x . Now

r ∧ q 
 σ̇ (ν) = ḣ(ν) = x

so (r ∧ q)|X 
 σ̇ (ν) = x ; and similarly (r ′ ∧ q)|X 
 σ̇ (ν) 6= x . But this is

impossible since

(r ′ ∧ q)|X = r ′|X ∧ q|X ≤ r |X ∧ q|X = (r ∧ q)|X,

where the inequality uses the observation that r ′ ≤ r implies that r ′ = r ′ ∧ r and

hence r ′|X = (r ′ ∧ r)|X = r ′|X ∧ r |X ≤ r |X . �

Finally we are able to verify that the forcing PB provides one step in the construction

of a model where I [ω2] includes no stationary subsets of Cof(ω1).

Proposition 2.11 If B ⊂ { λ < κ : λ is inaccessible } is stationary and G ⊂ PB is

generic then the following two statements are true in V [G]:

Cof(ω1) \ B is nonstationary (2)

{ λ ∈ B : B ∩ λ is not stationary in V } ∈ I [ω2]. (3)

Furthermore, if in V { λ ∈ B : B ∩ λ is stationary } is stationary, then the following

property holds in V [G]:

{ λ ∈ B : B ∩ λ is stationary in V } /∈ I [ω2]. (4)

Proof Statement (2) is immediate, since the closed unbounded set D = ḊG is

contained in B ∪ Cof(ω).

For statement (3), suppose that λ ∈ B but B ∩ λ is nonstationary in λ, and let Cλ

be a closed and unbounded subset of λ such that Cλ ∩ B = ∅. Then c := Cλ ∩ D

is closed and unbounded in λ and must have order type ω1 since D ∩ Cof(ω1) ⊂ B

implies that Cλ ∩ D has no members of uncountable cofinality. Furthermore, if

β < λ then c ∩ β ∈ Lβ ′ [Cλ, D ∩ β], where β ′ = β+L
< λ. It follows that

B0 := { λ ∈ B : λ ∩ B is nonstationary } is in B(A) where A is an enumeration of

[κ]ω ∩ L[〈 Cλ : λ ∈ B0 〉, D].
For the final statement (4), suppose we are given a name Ȧ for a sequence

A = 〈 aν : ν < κ 〉 of sets in [κ]ω, and let E be the closed unbounded set of

ordinals λ < κ such that ({λ}, ∅, ∅) 
 ∀ν < λ Ȧ↾ν ∈ V [G ∩ Vλ]. I claim

that B ∩ λ is nonstationary for any ordinal λ ∈ B ∩ E ∩ D ∩ B(A). To see this,

let c ⊂ λ witness that λ ∈ B(A), so that c is a cofinal set of order type ω1 and

c ∩ β ∈ { aν : ν < λ } ⊂ V [G ∩ Lλ] for each β < λ. Since λ ∈ D ∩ B the strongly

Lλ-generic condition ({λ}, ∅, ∅) is a member of G, and hence Lemma 2.10 implies

that c ∈ V [G ∩ λ]. However, G ∩ Lλ is a generic subset of PB ∩ Lλ = PB∩λ, and

because of the set c this forcing collapses λ. It follows by Lemma 2.8 that B ∩ λ is a

nonstationary subset of λ. �
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3 Adding κ
+-many Closed Unbounded Sets

Assume that κ is Mahlo and let G ⊂ PB be generic where B is the set of inaccessible

cardinals below κ . Then according to Lemma 2.11 the set { λ : cfV (λ) = ω1 },
which generates the restriction of I [κ]V to Cof(ω1), becomes nonstationary in V [G];
however, the set of inaccessible but non-Mahlo cardinals of V is a new stationary

member of I [ω2]
V [G]. If κ is at least 2-Mahlo then the set of Mahlo cardinals below

κ is a stationary set which is not a member of I [ω2]
V [G], and this allows the process

to be repeated. After κ+ many repetitions every member of I [ω2] will have been

made nonstationary.

This summary is a little misleading, as the forcing used to prove Theorem 1.2

is not an iterated forcing, but rather is more like a product forcing. Before de-

scribing the forcing, we recall what we expect it to accomplish: we defined

Bα = { λ < κ : λ is fα(λ)-Mahlo }, and we intend to add a closed, unbounded

subset Dα ⊂ Bα for each α < κ+. The sequence of sets 〈 Dα : α < κ+ 〉 will be

continuously diagonally decreasing, that is, Dα+1 ⊂ Dα and Dα = △α′<α Dα′ :=
{ λ < κ : λ ∈

⋂

{ Dα′ : α′ ∈ πα“λ } } for limit ordinals α. Here fα is a function

representing α modulo the nonstationary ideal, [ fα]NS = α, and πα is a function

mapping κ onto α.

The sequences of functions 〈 fα : α < κ+ 〉 and 〈πα : α < κ+ 〉 used in the last

paragraph must be fixed in advance. The construction used to do so is somewhat

delicate, using �κ and minimal walks to find sets Aα,ξ ⊂ α for each ordinal ξ < λ

so that (among other things)

(i) α =
⋃

ξ<λ Aα,ξ ,

(ii)
∣

∣Aα,ξ

∣

∣ = |ξ |,
(iii) ξ ′ < ξ H⇒ Aα,ξ ′ ⊂ Aα,ξ , and

(iv) if α′ ∈ Aα,ξ ∪ lim(Aα,ξ ) then Aα′,ξ = Aα,ξ ∩ α′.

The coherence property (iv) is critical: it gives us a tree ordering ≺ξ on κ+ for each

ξ < κ , defined by putting α′ ≺ξ α if α′ ∈ Aα,ξ .

The full forcing P∗ has conditions which are, as in the forcing PB to add a single

closed unbounded set, triples p = (I p, O p,Ap) of finite sets. The first two coordi-

nates are straightforward: a member of I p is a pair (α, λ) which forces that λ ∈ Dα ,

and hence λ ∈ Dα′ for all α′ ≺λ α, while a member of O p is a pair (α, (η′, η]) which

forces that (η′, η] ∩ Dα = ∅, and hence λ /∈ Dα′ whenever η′ < λ ≤ η and α ≺λ α′.

The definition of the third component, Ap , is more complicated, and this note will

only attempt to give a first approximation, by taking the members of A
p to be pairs

(M, α) where M ⊂ Lκ is as in the forcing PB and α < κ+. The effect of having the

pair (M, α) in A
p is that M is used as in Section 2 to control the forcing for Dα′ , for

each ordinal α′ ∈ πα“M .

The approximation given above does cover the models for which strong genericity

holds.

Lemma 3.1 Suppose N2 ≺ Lκ+ is transitive and contains κ , N1 ≺ N2 is a model

with κ ∈ N and N ∩ Lκ is transitive, and N0 ≺ N2 is a countable model. Set

α2 := sup(N2), α1 := sup(N1), and α0 := sup(N0), and assume that Ni ∩ lim(Cαi )

is cofinal in αi for i = 0, 1, 2. Then
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(

∅, ∅, ∅

)

is strongly N2-generic, (5)
(

(α1, sup(N1 ∩ κ)), ∅, ∅

)

is strongly N1-generic. (6)
(

∅, ∅, {(N0 ∩ Lκ , α0)}
)

is strongly N0-generic, (7)

It is easy to see that there are stationarily many models of each of the three types.

Clause (5) implies that the full forcing P has the κ+-chain condition and hence

preserves κ+ and larger cardinals. Clause (6) implies that P does not collapse κ ,

and with a little more analysis it shows that the forcing to add just α2 new closed,

unbounded subsets of κ does not collapse κ so long as κ is at least α2 + 1-Mahlo.

Finally, clause (7) implies that P does not collapse ω1.

We will conclude this section by indicating briefly how Lemma 3.1 is used to

complete the proof of Theorem 1.2. Suppose that A = 〈 aν : ν < κ 〉 is a sequence of

countable subsets of ω2 in V [G]; we will show that B(A)∩Cof(ω1) is nonstationary.

Let Ȧ be a name for A, and fix N2 as in Lemma 3.1 so that Ȧ is in N2. Then by

clause (5) it is forced that Ȧ ∈ V [G ∩ N2], and that G ∩ N2 is a generic subset of

P ∩ N2.

Set α := sup(N2). For λ < κ let N1(λ) be the Skolem hull in N2 of λ∪{κ, Ȧ, Cα},
and let E be the closed unbounded subset of cardinals λ < κ such that λ = N1(λ)∩κ .

For λ ∈ E set α(λ) := sup(N1(λ)), and note that Cα(λ) = Cα ∩ α(λ) ⊂ N1(λ). We

claim that Cof(ω1) ∩ E ∩ Dα+1 ∩ B(A) = ∅. To see this, let λ be a cardinal of

uncountable cofinality in E ∩ Dα+1. Then {(α, λ), ∅, ∅} ∈ G, and by clause (5) it

follows that A↾λ ∈ V [G ∩ N1(λ)]. This implies, as in the proof of Lemma 2.11, that

λ /∈ B(A): if c ⊂ λ is a set of order type ω1 such that every initial segment is in

A↾λ = { aν : ν < λ } then Lemma 2.10 implies that c ∈ V [G ∩ N1(λ)]. Hence λ

is collapsed in V [G ∩ N1(λ)]; however, P ∩ N1(λ) is isomorphic to the forcing to

add fα(λ) new closed unbounded subsets of λ, and this does not collapse λ because

λ ∈ Dα+1 ∩ Cof(ω1) ⊂ Bα+1, so λ is fα(λ) + 1-Mahlo.

4 Variations, Limitations, and Generalizations

We will begin this section by mentioning three other applications of the techniques

of Section 2 and (in one case) Section 3: a simpler model with no ω2-Aronszajn

trees, a forcing which adds an ω2-Souslin tree with finite conditions, and a model

in which I [ω2] is not 1-generated. Following this we will discuss some limitations

of the method, and a final section will then look at possible generalizations of this

method to larger cardinals.

4.1 Aronszajn trees We begin by showing how the use of models as side condi-

tions, together with strong genericity, gives an alternative model for the main theo-

rem of [11]. It may be noted that the model in Section 2 also gives such a model;

however, the following proof is substantially simpler than either of these: the forcing

is done using only the side conditions.

Theorem 4.1 If κ is a Mahlo cardinal, then there is a generic extension in which

there are no special ω2-Aronszajn trees. If κ is a weakly compact cardinal, then there

is a generic extension in which there are no ω2-Aronszajn trees.

Proof For this proof, we will use the term “model” to mean a countable set

M ≺1 Lκ . The conditions of Pκ are finite sets A of models such that for each
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M, M ′ ∈ A one of the following conditions holds:

M ∩ M ′ ∈ M or ∃λ ∈ M M ∩ M ′ = M ∩ Lλ or M ∩ M ′ = M. (8)

The ordering on Pκ is given by A
′ ≤ A if and only if A

′ ⊃ A.

First we observe that this forcing does collapse all ordinals ν < κ onto ω1,

since if G is a generic set then condition (8) implies that the set X = { M ∩ ν :
M ∈ G & ν ∈ M } is linearly ordered by ∈. Since each member of X is countable

and ν =
⋃

X , this implies that |ν| ≤ ω1 in the generic extension.

Proposition 4.2 If Lλ ≺1 Lκ and cf(λ) > ω then ∅ is strongly Lλ-generic, and

any condition {M} is strongly M-generic.

Proof The function used to verify strong genericity is the following.

A|X = { M ∩ X : M ∈ A & M ∩ X ∈ X }

where X is either Lλ or M . The verification that A|X is a condition uses the obser-

vation that if M ′ is any member of A then ω(M ′ ∩ X) ∩ M ′ ⊂ (M ′ ∩ X).

Now suppose that B ≤ A|X is in X ∩ Pκ ; we will show that A ∪ B is a

condition. To verify the condition (8), suppose that N ∈ A and N ′ ∈ B. Then

N ∩ N ′ = (N ∩ X) ∩ N ′. If X = Lλ, or if X = M and M ∩ N ∈ M , we have

N ∩ X ∈ B, so N and N ′ satisfy (8) because N ∩ X and N ′ do so in B. In the

remaining case, when X = M and M ∩ N is an initial segment of M , the fact that

N ′ ∈ M implies that N ∩ N ′ is an initial segment of N ′, so N ∩ N ′ is a member of

N ∩ M and hence of N . �

It follows that this forcing preserves the cardinals ω1 and κ : ω1 because the forcing

is proper, and κ because the strong Lλ-genericity, together with the inaccessibility of

κ , implies that the forcing has the κ-chain condition.

We now proceed exactly as in [11]. First suppose that κ is Mahlo and that the con-

dition A forces “Ṫ is an ω2-Aronszajn tree with specializing function σ̇ : T → ω1”.

Pick X ≺ Lκ+ so that {A, σ̇ , Ṫ } ∈ X and X ∩ Lκ = Lλ for some inaccessible car-

dinal λ < κ . Then T ↾λ and σ ↾(T ↾λ) are each in V [G ∩ X]. Pick any node of T of

height λ, let b be the branch of T below that node, and let τ = (σ ↾g)−1; that is, τ is

the partial function defined by τ (ν) = n if n is a node in b such that σ(n) = ν. Then

every initial segment of b and σ is in V [G ∩ X], and hence τ↾ξ ∈ V [G ∩ X] for any

ξ < ω1. It follows by Lemma 2.10 that τ ∈ V [G ∩ X], but this is impossible because

Pκ ∩ Lλ = Pλ, which has the λ-chain condition because of the inaccessibility of λ.

Now suppose that κ is weakly compact, and A forces “Ṫ is a ω2-Aronszajn tree”.

By the 51
1 indescribability of κ there is X ≺ Lκ+ with {A, Ṫ } ⊂ X such that

X ∩ Lκ = Lλ for some inaccessible cardinal λ < κ and A forces in P ∩ X that

“Ṫ has no branch of length λ”. Since T has height κ it has a node at level λ, which

determines a branch b through T ↾λ. Every initial segment of b is determined by a

node of T ↾λ, and hence is in V [G∩X]. It follows by Lemma 2.10 that b ∈ V [G∩X],
but this contradicts the choice of X . �

4.2 Forcing a Souslin Tree We now give a forcing P which adds a ω2-Souslin

tree using finite conditions.

Definition 4.3 Conditions in P are triples p = (d,<,A) such that

1. d is a finite subset of ω2 × ω1, and < is a tree order on d ∪ {0} with root 0

such that α′ < α whenever (α′, ν′) < (α, ν);
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2. if M ∈ A, α, α′ ∈ M ∪ lim(M), ν ∈ M , and (α′, ν′) < (α, ν) then ν′ ∈ M;

3. if M ∈ A, and (α, ν) and (α′, ν′) are in M ∩ d , then their meet, the largest

node in the tree (d,<) which is below both (α, ν) and (α′, ν′), is also in M;

4. if α ∈ M ∈ A, α′ = sup(M ∩ α), and ν ∈ M then (α′, ν) <p (α, ν) if either

pair is in d;

5. if M, M ′ ∈ A then

(a) either M ∩ M ′ ∈ M or M ∩ M ′ is an initial segment of M , and

(b) lim(M) ∩ lim(M ′) = lim(M ∩ M ′).

The order on P is (d ′,<′,A′) ≤ (d,<,A) if d ′ ⊃ d , <′ ⊃ <, and A
′ ⊃ A.

We will write levels(d) = { α : ∃ν (α, ν) ∈ d }, and we will use b
p
α,ν for the branch

below (α, ν), that is, b
p
α,ν(α

′) = ν′ if and only if (α′, ν′) < (α, ν).

Definition 4.4 p = (d,<,A) is complete if domain(b
p
α,ν) = levels(d) ∩ α for

all (α, ν) ∈ d , and sup(M ∩ λ) ∈ levels(d) and min(M \ λ) ∈ levels(d) for each

λ ∈ levels(d) and M ∈ A.

A somewhat complicated combinatorial proof using induction on α < ω2 proves the

following lemma.

Lemma 4.5 For any condition p and any pair (α, ν) ∈ ω2 ×ω1 there is a complete

condition p′ ≤ p with (α, ν) ∈ d p′
.

If the proof to the previous lemma is done carefully it is then straightforward to prove

the following strong genericity lemma.

Lemma 4.6 Any condition (∅, ∅, {M}) is strongly M-generic. If X ≺1 Lω2
is

transitive and ω-closed then (∅, ∅, ∅) is strongly X-generic, with witnessing func-

tion

(d,<,A)|X :=
(

d ∩ X,< ∩X, { M ∩ X : M ∈ A }
)

.

Furthermore, suppose that p = (d,<,A) is complete and λ ∈ levels(d), and that

r = (dr ,<r ,Ar ) ≤ p|X is in P ∩ X. Set λ′ := sup(levels(d)∩ X), and suppose that

(λ, ν) ∈ d and (α, ξ) ∈ dr with (λ′, b
p
λ,ν(λ

′)) <r (α, ξ). Then there is a common

extension q of p and r such that (λ′, b
p
λ,ν(λ

′)) <q (α, ξ) <q (λ, ν).

Theorem 4.7 Suppose that G ⊂ P is generic and T =
⋃

{ <p: p ∈ G }. Then T

is an ω2-Souslin tree with domain ω2 × ω1 ∪ {0}.

Proof It is straightforward to prove that T is a tree with domain ω2 × ω1 ∪ {0}, so

it suffices to prove that every antichain in T has size at most ω1. For this, let p be

a condition forcing that Ȧ is an antichain, let X ≺ Lω3
be a model of size ω1 with

{ Ȧ, p} ∪ ω1 ⊂ X , and let λ := sup(X ∩ ω2).

I claim that p 
 Ȧ ⊂ X . To see this it will be sufficient to verify that every node

(λ, ν) ∈ T is comparable with some node (α, ξ) ∈ A∩X . To this end suppose q ≤ p

is a complete condition with (λ, ν) ∈ dq and set λ′ := sup(X ∩ levels(dq)). Since

q is complete there is some ν′ such that (λ′, ν′) <q (λ, ν). Now choose r ≤ q|X in

P ∩ X such that r forces for some (α, ξ) that (α, ξ) ∈ Ȧ and (α, ξ) is comparable

with (λ′, ν′). Then Lemma 4.6 implies that there is a common extension q ′ of r and

q such that (α, ξ) <q ′
(λ, ν). �
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4.3 Generating I[ω2] The third application is closer to the construction of Sec-

tions 2 and 3.

Theorem 4.8 If it is consistent that there is a κ+-Mahlo cardinal then it is consis-

tent that there is no set B ∈ I [ω2] such that I [ω2] is generated by {B} ∪ NSω2
.

In Shelah’s terminology this means that I [ω2] is not 1-generated. Notice that this im-

plies that I [ω2] is not generated by fewer than ω3 of its members, since the diagonal

union of any ω2 members of I [ω2] is also a member of I [ω2].
The proof of Theorem 4.8 will be given in detail elsewhere, and we will only

give a brief discussion here. The ideal I [ω2] in the generic extension is generated

by the sets κ \ Bα for α < κ+. Consider Lemma 2.11, which states that adding

the set Dα in the forcing of Section 3 makes κ \ Bα nonstationary and adds the set

Bα+1 \ Bα to I [ω2]. In that model the first effect was intended; however, the sec-

ond was an undesirable side effect which could be mitigated, using the third clause

stating that Bα+1 /∈ I [ω2], by adding a closed and unbounded subset Dα+1 of Bα+1.

In the current argument the second effect is desired, and it is the first which is an

undesirable side effect. To avoid this the forcing PB of Section 2 is replaced with

a forcing which adds a �-like sequence EC of closed unbounded subsets of ordinals

λ ∈ Bα. This sequence, like the generic closed unbounded set C of Section 2, adds

{ λ ∈ B : B ∩ λ is not stationary in λ } to I [ω2], but unlike C it preserves all station-

ary subsets of κ .

4.4 Limitations Some consideration of the limitations of these techniques may

help to guide a search for future applications. The first of these is the fact which

motivated their discovery: the construction makes the continuum hypothesis false.

Sy Friedman has conjectured that this might be avoided by using a morass as dis-

cussed later to require that M ∼= M ′ whenever M and M ′ are members of A such

that M ∩ ω1 = M ′ ∩ ω1, and then designing the conditions so that this isomorphism

extends to one between M[G ∩ M] and M ′[G ∩ M ′]; however, this proposal appears

to be difficult to carry out.

A related fact, that every new countable set in V [G] is added by a Cohen real,

essentially rules out the use of these techniques for questions involving the topology

of the reals. This is a consequence of the fact that there is a stationary set of count-

able models M having strongly generic conditions: if ḟ is a name for a countable

sequence, M is a countable model with ḟ ∈ M , and p is strongly M-generic, then

p 
 ḟ ∈ V [M ∩ G]. The set M ∩ G is a generic subset of P ∩ M , which is an

atomless countable forcing and hence is equivalent to Cohen forcing.

A third limitation is that the new closed unbounded set C is a subset of a stationary

set of the form B ∪ Cof(ω), that is, any ordinal of countable cofinality is allowed to

be a member of C . This restriction can be slightly weakened: essentially the same

construction can be used to add a closed unbounded subset of any stationary set

B ⊂ ω2, provided that B is mutually stationary in the sense that there is a stationary

set of countable models M such that sup(M ∩ λ) ∈ B for every λ ∈ M ∩ B . Work

of Stanley [17] indicates that the general problem of deciding which subsets of ω2

can contain a closed unbounded set in a larger model does not have an easy answer;

for example, Friedman [5] uses Stanley’s results to show that if 0♯ exists then 0♯ is

constructible from the set of B ∈ P
L(ωL

2 ) such that ω2 \ B is nonstationary in some

model M satisfying ωM
2 = ωL

2 .
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5 Larger Cardinals

There are two possible approaches for extending these techniques to larger cardinals.

The first is relatively straightforward, at least for cardinals of the form κ++ where κ

is regular, but seems unlikely to be useful for singular cardinals. It is still not known

if the second approach will work, even for simple applications, but if it does then it

would be more promising for questions involving singular cardinals.

The more straightforward approach is to increase the size of the conditions: for

a regular cardinal κ we can add a closed unbounded subset of κ++ by using as

conditions triples (I, O,A) which are as before except that I, O, and A each have

cardinality less than κ and the members M ∈ A satisfy |M| = κ and <κ M ⊂ M .

The techniques of Section 3 have not been checked in this case, but by using a µ+-

Mahlo cardinal µ > κ this should give a generic extension in which cardinals up to

κ+ are preserved, µ becomes κ++, and I [κ++] contains no nonstationary subsets of

Cof(κ+).

It is unclear whether this idea could be modified to work at κ+ where κ is a regular

limit cardinal. It seems quite unlikely that it could be applied at κ+, or even at κ++,

when κ is singular.

The approach described above would not add new bounded subsets of κ , but

would make 2κ = κ++. A second possible approach, which would add a closed

unbounded subset of a successor cardinal κ+ while making 2ω = κ+, would use

finite conditions as in Section 2, but would allow A to include models of any car-

dinality less than κ . Preliminary investigations of this possibility have suggested

that the allowable sets A would need to have properties similar to those coming up

in higher gap morasses, and it might even be simplest to explicitly take the models

from such a morass. Little progress has been made so far using this approach, which

is complicated by the fact that no description of the sets from even a gap 2 morass is

known.

The use of models which are members, or at least resemble members, of a morass,

has a number of precedents in the use of forcing with models as side conditions:

indeed most published work using this technique, except those in which the cardinal

ω2 is collapsed, can be viewed as taking models from an ordinary gap-1 morass. A

clear example explicitly using sets from a simplified morass is given by Koszmider

in [9]. Koszmider’s approach is very similar to that used in this paper: on the one

hand the forcing in Section 2 can be done using a morass in his style, and on the

other hand the author has written a note [10] using the method of this paper to prove

Koszmider’s result.

There seems to be no obvious reason why this technique could not be applied,

through the use of a gap-ω morass, to the study of I [ω+
ω ]. It might seem that the

third of the limitations described earlier would block such an approach: we noted

that in order to use the forcing of Section 2 to add a new closed, unbounded subset

of a set B ⊂ ω2 the set B must essentially contain Cof(ω) ∩ ω2. Under the proposed

extension to the successor µ+ of a singular cardinal, B would have to include all or-

dinals of any cofinality less than µ, and this would seem to say that B must contain

essentially all of µ+. If we start with enough cardinal strength, however, it may be

possible to operate as in Section 2, adding a closed unbounded subset of an appro-

priate cardinal κ larger than µ while collapsing the intermediate cardinals so that κ

becomes µ+. It might be hoped that in the resulting model I [µ+] would be generated
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by the set { λ < κ : cfV (λ) < µ }, while { λ < κ : cfV (λ) = λ & cfV [G](λ) = η }
is stationary for each regular cardinal η < µ. Such a model would fit in nicely with

the fact, due to Shelah ([16], also see Kojman [8]) that if µ is singular then for every

regular cardinal η < µ there is a stationary subset of µ+ ∩ Cof(µ) in I [µ+].
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