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Automorphisms of Homogeneous Structures

A. Ivanov

Abstract We give an example of a simple ω-categorical theory such that for
any finite set of parameters the corresponding constant expansion does not satisfy
the PAPA. We describe a wide class of homogeneous structures with generic
automorphisms and show that some natural reducts of our example belong to
this class.

1 Introduction

Let T be a first-order theory over a countable language. It is assumed that models of
T are elementary substructures of a sufficiently saturated monster model C. We use
A, B, C to denote subsets of C, assumed to be much smaller than C.

Property PAPA is defined as follows. Whenever (A1, σ1) ⊆ (A2, σ2), (A3, σ3),
where A1, A2, A3 are algebraically closed (in T eq) substructures of Ceq and
σi ∈ Aut(Ai ), there exists an eq-algebraically closed substructure B of Ceq,
σ ∈ Aut(B), and automorphism-preserving embeddings (A2, σ2) → (B, σ ) and
(A3, σ3) → (B, σ ) which agree on A1. We say that the PAPA holds for finite struc-
tures if it holds under the additional assumption that A1, A2, A3 are acl-generated
by finite sets.

The PAPA is assumed in a construction from Chatzidakis and Pillay [1] which
assigns a model companion TA (if it exists) to the theory of all structures (M, σ )
(σ ∈ Aut(M)) for models M of T . The theory ACFA of algebraically closed fields
with a generic automorphism (Chatzidakis and Hrushovski [2]) is an example of such
TA.

Below we give an example of a simple ω-categorical theory such that for any
finite set of parameters A, the corresponding constant expansion does not satisfy the
PAPA. The question if such an example exists was formulated by Kikyo at Simplton
2002 (Lumini).
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Our example has some additional interesting properties. We will see that for any
tuple ā the stabilizer of ā in Aut(M) does not have generic automorphisms. On
the other hand, the example is a reduct of a structure constructed by the Fraissé
method. The corresponding class K of finite structures satisfies property FAP defined
as follows.

Let L be a countable relational language, and K a class of finite L-structures.
We say that K has the free amalgamation property (FAP), if given A, B1, B2 ∈ K
and embeddings fi : A → Bi , there is C ∈ K containing B1 and an embedding
h : B2 → C , such that h( f2(x)) = f1(x) for all x ∈ A, h(B2) ∪ B1 = C ,
h(B2) ∩ B1 = f1(A) and no tuple of B1 ∪ h(B2) which satisfies a relation of L
meets both h(B2) \ B1 and B1 \ h(B2). (It is clear that the embeddings fi define C
uniquely.)

The second result of the paper states that if the class of finite substructures of
a countable homogeneous structure M has the FAP, then M has generic automor-
phisms. As a consequence we obtain that all finite reducts (= reducts to finite lan-
guages) of the theory without the PAPA presented in the paper have local generics.

Below we use the following notation. If ā is a tuple from a model M , we often
abuse notation by writing ā ∈ M . If r(x̄) is a type, we denote by r(M) the set of
tuples from M which realize r . For any structure M and A ⊆ M , define Aut(M/A)
to be the group of automorphisms of M which fix A pointwise.

2 Example

The example is based on some reducts of the random graph (Thomas [4]). This idea
is not new; it was applied in examples of theories without the PAPA (in their basic
language) found by Tsuboi and anounced at Simplton 2002.

Let L0 = {R1, R2, . . . , Rn, . . .} be a relational language, where each Ri has arity
2i . The structure M0 is built by a Fraissé construction, so we first specify a class
K of finite L0-structures. In each C ∈ K each relation Rn determines a symmetric
graph on the set (denoted by (C

n )) of unordered n-element subsets of C . It is easy to
see that K is a free amalgamation class: given A, B1, B2 ∈ K with B1 ∩ B2 = A,
define C ∈ K as B1 ∪ B2, such that no tuple c̄1c̄2 ∈ C which satisfies Rn meets both
B2 \ B1 and B1 \ B2. Let M0 be the corresponding universal homogeneous structure.
Note that Th(M0) is ω-categorical and admits elimination of quantifiers.

Claim 2.1 The theory of M0 is supersimple of SU-rank 1.

Proof of Claim 2.1 Let ϕ(x̄, b̄), |x̄ | = l, be a quantifier-free formula and
(b̄i : i < ω) be an indiscernible sequence of tp(b̄). We may assume that ϕ(x̄, b̄)
implies x̄ ∩ b̄ = ∅. Then any set Bn =

⋃
{b̄i : i ≤ n} can be extended by a tuple

c1, . . . , cl satisfying all ϕ(x̄, b̄i ), i ≤ n. Since M0 is universal homogeneous, the
tuple c̄ can be found in M0. We now see that any nonalgebraic type does not divide
over ∅; thus M0 is simple of SU-rank 1. �

Let M be the reduct of M0 to the language L = {T1, . . . , Tn, . . .} of 3n-relations
where a triple of n-element sets C1, C2, and C3 satisfies Tn if and only if it contains
0 or 3 edges with respect to Rn . By Thomas’s classification of reducts of the random
graph [4] any automorphism of the relation of Tn is an automorphism of Rn or maps
Rn onto its complement.
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Claim 2.2 Let R′
n be the relation which is the complement of Rn on the set of all

pairs C 6= D with C, D ∈ (M
n ): (C, D) ∈ Rn ↔ (C, D) 6∈ R′

n . Then the structure
M0 is isomorphic with M ′

0 = (M, R1, . . . , Rn−1, R′
n, Rn+1, . . .) and the structure

M is the reduct of M ′

0 obtained by the same definition as M is obtained from M0.

Proof of Claim 2.2 To prove the claim it suffices to note that any structure from K
is embeddable into M ′

0 and for every pair A < A′ from K with A′
∩ M ′

0 = A there
exists an A-embedding of A′ into M ′

0. Both conditions follow from the fact that M0
is universal homogeneous. The second statement of the claim is obvious. �

By Claim 2.1 the structure M is supersimple. It is easy to see (by genericity) that for
all ā and A, tp(ā/A) ` tp(ā/acleq(A)) with respect to both Th(M0) and Th(M).
Universality of M0 also implies triviality of acl in Th(M) and that for every finite
A ⊂ M any automorphism of A uniquely determines its extension to acleq(A); this
allows us to avoid acl in the PAPA.

Let ā = (a1, . . . , an) ⊂ M . Since M0 is universal homogeneous, there are ele-
ments b, c1, d1, . . . , c4, d4 ∈ M0 \ ā so that

M0 |H

∧
i=3,4

(tp(ci c7−i/ā) = tp(bci/ā) = tp(bdi/ā))∧

[tp(c1c3/ā) = tp(c3c4/ā) = tp(c2c4/ā) = tp(d3d4/ā) =

= tp(d1d3/ā) = tp(d2d4/ā) = tp(c4d4/ā) 6= tp(c1c2/ā)]∧∧
i=3,4

∧
j=3,4

(tp(c4d4/ā) = tp(ci d j/ā) = tp(d j ci/ā) = tp(ci d5− j/ā))∧

∧
{tp(c1c2/ā) = tp(uv/ā) : {u, v} is a two-element subset of

{b, c1, d1, . . . , c4, d4} not arising in the equalities above }∧
{tp(U/ā′) = tp(V/ā′) : U and V are subsets of{b, c1, d1, . . . , c4, d4}

of the same size and ā′ is a proper subtuple of ā}.

(We suggest that the reader draw a graph on {b, c1, d1, . . . , c4, d4} where c3, c4 forms
an edge (corresponding to Rn+1).) It is clear that the pairs c1c2 and c3c4 have the
same type over ā with respect to the sublanguage {Rn+2, Rn+3, . . .}. We also assume
that for any pair C1, C2 with C1 ∪ C2 = c3c4ā, the corresponding pair C ′

1 and C ′

2
(obtained by replacing ci by c5−i ) satisfies Rn+1 if and only if (C1, C2) 6∈ Rn+1.
The same property is assumed for d1, d2, d3, d4.

Let R′

n+1 be obtained from Rn+1 as in Claim 2.2 (by complementing). Since the
structure M ′

0 = (M, R1, . . . , Rn, R′

n+1, Rn+2, . . .) is isomorphic with M0, the type
of c3c4 over ā in M0 is the same as the type of c1c2 over ā in M ′

0 (by our construction
mutually corresponding subtuples from c3c4ā and c1c2ā satisfy the same relations).
Applying the last statement of Claim 2.2 we see that the type of c3c4 over ā in M is
the same as the type of c1c2 over ā in M .

Since M0 is universal homogeneous the configuration above can be chosen so
that there is an automorphism β of M fixing āb and taking c1c2c3c4d1d2d3d4 to
c4c3c1c2d4d3d1d2 (then in our picture edges are replaced by non-edges). We claim
that there is no graph R on the set of (n + 1)-element subsets of ābc1d1 . . . c4d4
which induces Tn+1 and is preserved by β. To see this suppose that R is such
a relation and R coincides with Rn+1 on āb, āc3, āc4 (the opposite case is sim-
ilar). Then any pair from āb, āc1, āc2 forms an R-edge and there are no other
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edges in āb, āc1, āc2, āc3, āc4 (by the Tn+1-structure on this set). Since the triple
āb, āc1, ād1 belongs to Tn+1 and āb, āc1 forms an R-edge, we see that āc1, ād1
and any pair from the triple āb, ād1, ād2 (and from the triple āb, ād3, ād4) forms an
R-edge.

Since any triple of the form āb, āci , ād j , i, j ∈ {1, 2}, belongs to Tn+1, any pair
of the form āci , ād j , i, j ∈ {1, 2}, forms an R-edge. Since β preserves R we also
have that any pair of the form āci , ād j , i, j ∈ {3, 4}, forms an R-edge.

Since any triple of the form ādi , ādi+2, āc j , i ∈ {1, 2}, j ∈ {3, 4}, belongs
to Tn+1 and any pair of the form āci , ād j , i, j ∈ {3, 4}, belongs to R, the pairs
ād1, ād3 and ād2, ād4 form R-edges. This implies that the triples āb, ād1, ād3 and
āb, ād2, ād4 belong to Tn+1. This is a contradiction with the definition of our con-
figuration.

Let α be the identity on some bb′ā and β be defined on ābc1d1 . . . c4d4 as above.
Let (C, γ ), γ ∈ Aut(C), be an amalgamation of α and β and C be embeddable into
M over āb. As we noted above any automorphism of (C, Tn+1) extending α must
preserve Rn+1. On the other hand, any automorphism of (C, Tn+1) extending β must
map Rn+1 onto R′

n+1. This shows that α and β cannot be amalgamated. Thus the
PAPA does not hold.

3 Generic Automorphisms of Finitely Homogeneous Structures

For a countable structure M we study Aut(M) as a closed subgroup of Sym(ω).
Here we consider Sym(ω) as a complete metric space by defining d(g, h) =

6{2−n
: g(n) 6= h(n) or g−1(n) 6= h−1(n)}. An automorphism α ∈ Aut(M)

is generic if its conjugacy class in Aut(M) is comeager. If the conjugacy class is
comeager in some nonempty open set, then α is called locally generic. We will
consider only countable universal homogeneous structures. There are a number
of results stating the existence of generic automorphisms for such structures. We
mention the papers Herwig and Lascar [3] and Truss [5].

It is easy to see that the example of Section 2 does not have local generics. Indeed,
for any ā ∈ M and sufficiently large n the subgroup of Aut(M/ā) consisting of
automorphisms preserving Rn is normal in Aut(M/ā) of index 2. This shows that
Aut(M/ā) does not have generic automorphisms. Since cosets of such subgroups
form a base of the space Aut(M), we see that Aut(M) does not have local generics.

Nevertheless, the following theorem implies that finite reducts of that structure
have local generics (see the discussion after the proof).

Theorem 3.1 Let M be a universal homogeneous structure over a countable re-
lational language L, and suppose that the class K of finite structures which embed
into M has the FAP. Then M has generic automorphisms.

Proof Truss has shown in [5] that if the set P of all finite partial maps in the struc-
ture M extendible to automorphisms of M contains a cofinal subset P′ closed under
conjugacy and having the amalgamation property and the joint embedding property
then there is a generic automorphism.

Let K be the class of all finite structures embeddable into M . Let Ka be the class
of all pairs (A, α) where A ∈ K and α is an isomorphism between substructures of
A extendible to an automorphism of M . Let Kper ⊂ Ka consist of pairs where α is
an automorphism of A. We want to show that Kper is cofinal in Ka and satisfies the
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joint embedding and the amalgamation properties. Then we can apply the theorem
of Truss formulated in the previous paragraph.

We start with cofinality. Let (A0, α0) ∈ Ka and D0 = Dom(α0). Let (A1, α1, D1)
be a copy of (A0, α0, D0). Identifying each d ′

∈ D1 with α0(d) for the correspond-
ing d ∈ D0 (where the original isomorphism between A0 and A1 maps d to d ′) con-
sider A0 ∪ A1 as the result of free amalgamation. Then α0 and α1 agree on D0 ∩ D1
(under the identification above α1 acts on this intersection as α0(d) → α2

0(d)). In
A0 ∪ A1 the map α0 can be naturally extended to α′

0 : A0 → A1 (by the isomor-
phism between A0 and A1) so that A1 becomes the range of the map. Note that for
any a ∈ A0 \ D0, α′

0(a) ∈ A1 \ A0.
Taking the next copy (A2, α2, D2) and naturally identifying D2 with α1(D1) de-

fine the corresponding free amalgamation. In the obtained structure we can now ex-
tend the map α′

0 to a map A0 ∪ A1 → A1 ∪ A2 so that it agrees with α1 on D1 (and α0
on D0). Continuing this procedure we eventually find a number n, structure C ∈ K
(C = A0 ∪· · ·∪ An) and a partial isomorphism γ : A0 ∪· · ·∪ An−1 → A1 ∪· · ·∪ An
such that A0 is contained in Dom(γ n) as a substructure, γ extends all αi , i ≤ n, and
for any d ∈ A0 ∩ An , γ n(d) = d (then α0 and αn agree on D0 ∩ Dn). We can arrange
that A0 ∩ An and A1 ∩ An are the same and consist of all d ∈ D0 such that for some
i , γ i (d) = d . Let β be the isomorphism from A0 onto An induced by γ n .

Let C ′
= A′

0∪· · ·∪A′
n be a copy of C = A0∪· · ·∪An and γ ′ be the corresponding

copy of γ . The isomorphism β naturally induces isomorphisms β1 : A′

0 → An and
β2 : A′

n → A0. Moreover, β1 ∪ β2 is an isomorphism between substructures of C ′

and C . By free amalgamation we obtain a structure defined on C ′
∪ C . Note that

the partial maps induced by γ and γ ′ on A0 ∪ An and A′

0 ∪ A′
n , respectively, agree

under the identification β1 ∪ β2 (this follows from the property that α0 and αn agree
on D0 ∩ Dn and that γ (A0) ∩ An = A0 ∩ An). So γ and γ ′ define an automorphism
δ on the obtained structure.

We now verify the amalgamation (the joint embedding) property in Kper. Let
(A, α), (B, β), (C, γ ) ∈ Kper, A = B ∩ C and α agree with β and γ on A. Then
β ∪ γ is a permutation of the structure B ∪ C obtained by free amalgamation. Since
the relations of the structure are just the unions of the corresponding relations from
B and C , we see that β ∪ γ is an automorphism.

As a result Kper satisfies all the conditions of Theorem 2.1 from [5]. �

Let M be the structure from Section 2. If M ′ is the reduct of M to {T1, . . . , Tn},
then for any 2n-element tuple ā the automorphisms of (M ′, ā) coincide with auto-
morphisms of (M ′, R1, . . . , Rn, ā) (they cannot map Ri to its complement). Since
the latter structure has the FAP, by Theorem 3.1 the structure (M ′, ā) has generics.
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