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Finite and Physical Modalities

Mauro Gattari

Abstract The logic Kf of the modalities of finite, devised to capture the notion
of ‘there exists a finite number of accessible worlds such that . . . is true’, was
introduced and axiomatized by Fattorosi. In this paper we enrich the logical
framework of Kf : we give consistency properties and a tableau system (which
yields the decidability) explicitly designed for Kf , and we introduce a shorter
and more natural axiomatization. Moreover, we show the strong and suggestive
relationship between Kf and the much older logic of the physical modalities of
Burks.

1 Introduction

The logic Kf of the modalities of finite is an extension of K by the operator ♦f (and
dual �f ) whose truth condition is ‘there exists a finite number of accessible worlds
such that . . . is true’. This logic was introduced in Fattorosi Barnaba [5], where an
extension of K with three axioms was proved to be complete. Kf was devised by
Fattorosi Barnaba to get a finitary syntactical treatment of the finite (with respect to
the set of worlds which are accessible from a fixed one) in modal logic, in the strong
sense of a system with formulas of finite length and a finite set of axioms.

In this paper we enrich the logical framework of Kf . First, in Section 4, we intro-
duce the notion of consistency property for Kf , which extends the one of K (Fitting
[6]) with a single clause. The main result we prove is the satisfiability theorem: if
C is a consistency property for Kf and 1 ∈ C is a finite set of formulas, then 1
is satisfiable (in Kf ). Second, in Section 5, we introduce a tableau system for Kf ,
denoted by TKf , which extends the one of K [6] with a single rule. We show that
CTKf =

{
1 ; no tableau for 1 is closed

}
is a consistency property for Kf and we

get, via the satisfiability theorem, the completeness of TKf . This yields a decision
procedure for Kf . Third, in Section 6, we give a shorter axiomatization of Kf , de-
noted by HKf (‘H’ simply stands for ‘Hilbert’), obtained by replacing two axioms
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of the original axiom system [5] with a single (and more natural) one. We show
that CHKf = {1 ; 1 6`HKf ⊥} is a consistency property for Kf and we get, via the
satisfiability theorem, the completeness of HKf .

In Section 7 we introduce the logic of physical modalities and we show that this
logic is equivalent to Kf . The logic of physical modalities aims at formalizing two
distinct notions of necessity: the logical necessity, symbolized by �, and the physical
necessity, symbolized by � f . The basic relation between these two notions is that
what is logically necessary is physically necessary too. This is formalized by the
axiom link �A → � f A. Unfortunately there is no general agreement on the other
principles which these two notions fulfill. Perhaps the most controversial axiom is
T f

= � f A → A. In his calculus ([1], [2]), Burks included this axiom in order to
formalize the logic of physical modalities correctly, but other authors disagreed. The
problem is that it is not clear how to understand the notion of ‘physical necessity’.
For example, if it was ‘deducibility from scientific laws’, then it could be argued
against T f (see Montague [7] and Pizzi [9]) and in favor of the system of Montague
[7] where T f is rejected.

Anyway, these are philosophical questions and, at least in the present paper, we
can ignore them. Indeed, Kf is proved to be equivalent to the “minimal” logic of
physical modalities, which only admits the axiom link. This logic, which we denote
by K f , is a bimodal version of K with the axiom link. That is, on the syntactic side it
contains a copy of K for � and another for � f , plus the axiom link. On the semantic
side, we have birelational models (W, R, R f , V ) such that R f

⊆ R, and we state
the truth condition of ♦ f as ‘there exists a physically accessible world such that . . .
is true’, where ‘physically accessible’ means accessible via R f .

The proof of equivalence between Kf and K f will be given in a few lines. It
turns out that our axiomatization of Kf is nearly identical to the one of K f . This will
lead to an obvious correspondence between the formulas of the two systems which
preserves validity: let A be a formula of Kf , define A2 by replacing each occurrence
of ♦f and �f in A with ¬♦ f and ¬� f, respectively. It will be easy to show that A
is valid in Kf if and only if A2 is valid in K f .

The equivalence between Kf and K f can improve the understanding of these
modalities. The notion of ‘physically necessary’ has inspired lots of mathematicians
and philosophers; therefore our equivalence provides the modalities of finite with a
richer mathematical and philosophical background. For instance, in Section 7, we
suggest that one can provide ♦f with the intuitive meaning of ‘it is not reproducible’.
On the other hand, since the right understanding of the notion of ‘physically neces-
sary’ has been controversial, our results provide a further source of inspiration to go
deeper into this notion.

In Appendix A we give a practical application of the equivalence. We show that a
question on one system can have an illuminating translation (via the map A 7→ A2)
into the other. That is, we show that the axioms given in [5] correspond to well-
known theorems of normal systems. This will yield a syntactic proof of the equiva-
lence between our axiomatization of Kf and the original one introduced in [5].

2 The Logic K fff of the Modalities of Finite

The language of Kf , denoted by L(Kf ), contains a denumerable set of propositional
variables, denoted by V(Kf ), the propositional constants >, ⊥, the truth functional
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connectives ∧, ∨, →, ¬, and the modal operators ♦, �, ♦f , �f . The set of formulas
of Kf , F (Kf ), is defined inductively as usual. We use p, q, . . . to range over V(Kf ),
A, B, . . . to range over F (Kf ), and 0, 1, . . . , 00, 10, . . . to range over subsets of
F (Kf ). With A ↔ B we abbreviate (A → B) ∧ (B → A).

A model of Kf is a triple (W, R, V ), where W is a nonempty set, R is a binary
relation on W , and V is a valuation of V(Kf ) on W . We use M to range over models
of Kf . Fixed M, we assume M = (W, R, V ) and let x, y, . . . range over W .

The truth relation |H
M is defined as usual, plus the following clauses:

x |H
M ♦f A iff

∣∣{y ; x Ry and y |H
M A

}∣∣ < ω;

x |H
M �f A iff

∣∣{y ; x Ry and y 6|H
M A

}∣∣ ≥ ω.

The truth set of A in M is ‖A‖
M

= {x ; x |H
M A} and with respect to

x is ‖A‖
M
x = {y ; x Ry and y |H

M A}. Let ‖1‖
M

=
⋂

A∈1 ‖A‖
M and

‖1‖
M
x =

⋂
A∈1 ‖A‖

M
x .

A (1) is true in M if ‖A‖
M

= W (‖1‖
M

= W ) and satisfiable in M if ‖A‖
M

6= ∅
(‖1‖

M
6= ∅). A (1) is valid in Kf if it is true in every model of Kf and satisfiable

in Kf if it is satisfiable in some model of Kf . With KfKfKf we denote the set of valid
formulas.

3 Unifying Notation

We extend the unifying notation given in Smullyan [10] and Fitting [6] to include ♦f
and �f . α, β, π , and ν-formulas and their components α1, α2, β1, β2, π0, and ν0 are
defined as in [6]. Moreover, f and i-formulas and their components are defined as
follows.

f f0

♦f A A
¬�f A ¬A

i i0

¬♦f A A
�f A ¬A

We use α, β, π, ν, f, i to range over formulas of the corresponding type. For each
type, a corresponding truth condition holds. In particular, the clauses for f and i-
formulas are the following:

x |H
M f iff

∣∣{y ; x Ry and y |H
M f0

}∣∣ < ω;

x |H
M i iff

∣∣{y ; x Ry and y |H
M i0

}∣∣ ≥ ω.

The length of A, l(A), is the number of occurrences of symbols in A, and the modal
length, lm(A), is the number of occurrences of ♦, �, ♦f , and �f . The satisfiability
theorem will be proved by induction on C(A) = (lm(A), l(A)), the complexity of A,
lexicographically ordered. It is easy to see that the complexity of the component(s)
is less than the complexity of the formula. Notice also that C(¬ f0) < C( f ).

Next, we introduce the notion of T-closure of a set of formulas. Let Sub(A) be
the set of subformulas of A, define Sub(1) =

⋃
{Sub(A) ; A ∈ 1}. The T-closure

of 1, denoted by [1], is defined as follows:

[1] = Sub(1) ∪ {¬B ; B ∈ Sub(1)} ∪ {¬¬B ; B ∈ Sub(1)}.

This notion is designed to fulfil the following property.

Proposition 3.1 Letting λ be an α or β-formula, and letting µ be a π , ν, f , or
i-formula, the following clauses are satisfied:
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(i) if λ ∈ [1] then λ1 ∈ [1] and λ2 ∈ [1];
(ii) if µ ∈ [1] then µ0 ∈ [1] and ¬µ0 ∈ [1].

Proof We show only µ = f ; the other cases are similar. If f ∈ [1], then for some
B ∈ Sub(1), f = B or f = ¬B or f = ¬¬B. If f = ♦f A, the only possibility
is f = B; hence ♦f A ∈ Sub(1), f0 = A ∈ Sub(1), and ¬ f0 = ¬A ∈ [1].
If f = ¬�f A there are two possibilities: if f = B then ¬�f A ∈ Sub(1),
A ∈ Sub(1), f0 = ¬A ∈ [1], and ¬ f0 = ¬¬A ∈ [1]; if f = ¬B, then
�f A = B ∈ Sub(1), A ∈ Sub(1), f0 = ¬A ∈ [1], and ¬ f0 = ¬¬A ∈ [1]. �

4 Consistency Properties for K fff

We introduce the following notation: if λ denotes α or β, and µ denotes π , ν, f ,
or i , then 1λ

= {λ ; λ ∈ 1}, 1µ
= {µ ; µ ∈ 1}, 1µ0 = {µ0 ; µ ∈ 1}, and

1¬µ0 = {¬µ0 ; µ ∈ 1}. Moreover, with the string X0, X1, . . . , Xn , where X i is
either a formula or a set of formulas, we denote the union 10 ∪11 ∪· · ·∪1n , where
1i = {X i } if X i is a formula and 1i = X i otherwise.

Definition 4.1 A consistency property for Kf is a family C of sets of formulas that
satisfies the following clauses: for every 1 ∈ C,

(c0) 1 is not closed (that is, ⊥ 6∈ 1, ¬> 6∈ 1, and for every A, A 6∈ 1 or
¬A 6∈ 1);

(cα) if α ∈ 1 then 1, α1, α2 ∈ C;
(cβ) if β ∈ 1 then 1, β1 ∈ C or 1, β2 ∈ C;
(cπ ) if π ∈ 1 then 1ν0 , π0 ∈ C;
(ci) if i ∈ 1 and 1′ is a finite subset of 1 then 1ν0 , i0, 1

′¬ f0 ∈ C.

Therefore, the notion of consistency property for Kf extends the one of K [6] with
clause (ci).

Define CM =
{
1 ; 1 is satisfiable in M

}
and CKf =

{
1 ; 1 is satisfiable in Kf

}
.

These families are consistency properties for Kf . It can be easily proved by virtue
of the following lemma.

Lemma 4.2 If 1, i is satisfiable and 1′ is a finite subset of 1 then 1ν0 , i0, 1
′¬ f0

is satisfiable.

Proof Suppose that 1, i is satisfiable. Then there exists M such that ‖1, i‖M
6= ∅.

Let x ∈ ‖1, i‖M. Then x ∈ ‖1‖
M and x ∈ ‖i‖M. Since x ∈ ‖1‖

M, if f ∈ 1
then |‖ f0‖

M
x | < ω. Since x ∈ ‖i‖M, we get |‖i0‖

M
x | ≥ ω. Let 1′ be a finite

subset of 1. If f ∈ 1′ then |‖ f0‖
M
x | < ω, and because 1′ is finite we get

|
⋃

f ∈1′ ‖ f0‖
M
x | < ω. Therefore |‖i0‖

M
x | ≥ ω and |

⋃
f ∈1′ ‖ f0‖

M
x | < ω. We

conclude ∅ 6= ‖i0‖
M
x −

⋃
f ∈1′ ‖ f0‖

M
x ⊆ ‖1ν0 , i0, 1

′¬ f0‖
M, that is, 1ν0 , i0, 1

′¬ f0

is satisfiable. �

We are going to prove the satisfiability theorem; that is, if C is a consistency property
for Kf and 1 is a finite set of C, then 1 is satisfiable in Kf . We give the proof in
three parts.

4.1 The extension of a consistency property

Lemma 4.3 Let C be a consistency property for Kf and let C′ be the family of all
subsets of elements of C. Then C′ is a consistency property for Kf ; moreover, C′

extends C and is closed under subsets.
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Proof That C′ satisfies clauses (c0) – (cπ ) is proved in [6]. Moreover, that C ⊆ C′

and C′ is closed under subsets is clear. It remains to show clause (ci). Let 1 ∈ C′.
Suppose that i ∈ 1 and let 1′ be a finite subset of 1. By definition of C′ there
exists 0 ∈ C such that 1 ⊆ 0. Thus i ∈ 0 and 1′ is a finite subset of 0. By (ci)
0ν0 , i0, 1

′¬ f0 ∈ C. Since 1ν0 ⊆ 0ν0 , we have 1ν0 , i0, 1
′¬ f0 ⊆ 0ν0 , i0, 1

′¬ f0 ∈ C;
by definition of C′ we get 1ν0 , i0, 1

′¬ f0 ∈ C′. �

A family C of sets is said to be of finite character provided for every 1, 1 ∈ C
if and only if each finite subset of 1 is in C. If C is of finite character then each
element of C has a maximal extension in C [6]. Maximal elements of a consistency
property are important because they enjoy the following closure property: let 8 be
such an element; if α ∈ 8 then α1 ∈ 8 and α2 ∈ 8, and if β ∈ 8 then β1 ∈ 8 or
β2 ∈ 8.

Lemma 4.4 Let C′ be a consistency property for Kf closed under subsets and let
C′′ be the family of all sets 1 such that all finite subsets of 1 are in C′. Then C′′ is
a consistency property for Kf ; moreover, C′′ extends C′ and is of finite character.

Proof That C′′ satisfies clauses (c0) – (cπ ), extends C′, and is of finite character is
proved in [6]. It remains to show clause (ci). Suppose that i ∈ 1 ∈ C′′. We show
that 1ν0 , i0, 1

¬ f0 ∈ C′′. We have to prove that every finite subset of 1ν0 , i0, 1
¬ f0

is in C′. Let 0 be a finite subset of 1ν0 , i0, 1
¬ f0 . Then there exists a finite subset 1̂

of 1 such that 0 ⊆ 1̂ν0 , i0, 1̂
¬ f0 ; moreover, we can assume i ∈ 1̂ (otherwise take

1̂, i). By definition of C′′ 1̂ ∈ C′, by (ci) 1̂ν0 , i0, 1̂
¬ f0 ∈ C′, and by closure under

subsets 0 ∈ C′. Now, let 1′ be a finite subset of 1 and let 0 be a finite subset of
1ν0 , i0, 1

′¬ f0 . Then 0 is a finite subset of 1ν0 , i0, 1
¬ f0 ∈ C′′; hence 0 ∈ C′. �

Theorem 4.5 Any consistency property for Kf may be extended to a consistency
property for Kf of finite character.

Proof By Lemmas 4.3 and 4.4. �

Consistency properties CTKf , CKf , CM, and CHKf are all closed under subsets.
Moreover, CTKf is of finite character because a tableau for Kf is a finite tree.
CHKf is of finite character too, by compactness of the deducibility relation. In
contrast to this, CKf and CM are not of finite character because Kf is not compact:
there exist sets of formulas that are unsatisfiable but all of whose finite subsets are
satisfiable [5].

4.2 The restriction of a consistency property

Theorem 4.6 Let C be a consistency property for Kf closed under subsets. The
restriction C|[1] = {0 ∩ [1] ; 0 ∈ C} is a consistency property for Kf ; moreover,
if C is of finite character then C|[1] is of finite character too.

Proof Since C is closed under subsets we have (∗) C|[1] ⊆ C. Moreover, we have
that (∗∗) if 0 ∈ C and 0 ⊆ [1] then 0 ∈ C|[1]. We show clause (ci). The other
clauses are proved similarly. Let 0 ∈ C|[1]. Suppose that i ∈ 0 and let 0′ be a finite
subset of 0. By (∗) 0 ∈ C, by (ci) 0ν0 , i0, 0

′¬ f0 ∈ C. In order to apply (∗∗) we have
to prove that 0ν0 , i0, 0

′¬ f0 ⊆ [1]. That’s easy: since 0 ∈ C|[1] we have 0 ⊆ [1]

and by Lemma 3.1 we get that if ν ∈ 0 then ν ∈ [1] and ν0 ∈ [1]; since i ∈ 0 we
have i ∈ [1] and i0 ∈ [1]; since 0′

⊆ 0 we have that if f ∈ 0′ then f ∈ [1] and
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¬ f0 ∈ [1]. Now suppose that C is of finite character and assume that each finite
subset of 0 is in C|[1]. By (∗) each finite subset of 0 is in C, by the finite character
of C, 0 ∈ C. Moreover, 0 ⊆ [1]; in fact, if A ∈ 0 then {A} is a finite subset of 0
and so {A} ∈ C|[1]. By (∗∗) the thesis follows. �

4.3 The satisfiability theorem

Lemma 4.7 Let C be a consistency property for Kf of finite character and let 1 be
a finite set of C, then there exists a countable set W (1) of occurrences of maximal
elements of C that satisfies the following clauses:

(i) if π ∈ 1 then there exists 8 ∈ W (1) such that π0 ∈ 8;
(ii) if ν ∈ 1 then for every 8 ∈ W (1), ν0 ∈ 8;

(iii) if f ∈ 1 then |{8 ∈ W (1) ; ¬ f0 6∈ 8}| < ω;
(iv) if i ∈ 1 then |{8 ∈ W (1) ; i0 ∈ 8}| = ω.

Proof W (1) is defined in three steps.
1. If π ∈ 1 then 1ν0 , π0 ∈ C and there exists a maximal extension

1ν0 , π0 ⊆ 8π ∈ C. Let W1(1) be the set of all 8π with π ∈ 1.
2. If i ∈ 1 then (1 is finite) 1ν0 , i0, 1

¬ f0 ∈ C and there exists a maximal
extension 1ν0 , i0, 1

¬ f0 ⊆ 8i ∈ C. Let W2(1) be the set consisting, for
every i ∈ 1, of denumerably many occurrences of 8i .

3. Let W (1) be the set of all occurrences in W1(1) and W2(1).
Since 1 is finite, we have that W1(1) is finite and W2(1) is countable, so we get
that W (1) is countable. The clauses of the theorem are easily proved:

(i) if π ∈ 1 then π0 ∈ 8π ∈ W1(1);
(ii) if 8 ∈ W (1) then 1ν0 ⊆ 8;

(iii) let f ∈ 1; if 8 ∈ W2(1) then ¬ f0 ∈ 8 so that {8 ∈ W (1) ; ¬ f0 6∈ 8} =

{8 ∈ W1(1) ; ¬ f0 6∈ 8} ⊆ W1(1) which is a finite set;
(iv) if i ∈ 1 then i0 ∈ 8i which occurs denumerably many times in W2(1).

�

Theorem 4.8 (Satisfiability Theorem) Let C be a consistency property for Kf . If 1
is a finite set of C then 1 is satisfiable in a denumerable model.

Proof By Theorem 4.5 there exists a consistency property C′ of finite character
that extends C. By Theorem 4.6 C′

|[1] is a consistency property for Kf of finite
character. Moreover, since 1 is finite so also is [1] and the same is true for ev-
ery element of C′

|[1]. Therefore, for every 0 ∈ C′
|[1] there exists a countable set

W (0) of occurrences of maximal elements of C′
|[1] that satisfies clauses (i) – (iv) of

Lemma 4.7.
We construct a model of Kf . Let 80 be a maximal extension of 1 ∈ C′

|[1].
Let us define W0, W1, . . . inductively by the clauses W0 = {80} and Wn+1 =⋃̇

{W (8) ; 8 ∈ Wn}. Let W =
⋃̇

{Wn ; n < ω}. W is a countable set of maximal
elements of C′

|[1]. Let us define 8R9 if and only if 9 ∈ W (8) and V (8, p) = t
if and only if p ∈ 8. M = (W, R, V ) is a model of Kf .

We prove that if 8 ∈ W and A ∈ 8 then 8 |H
M A. The proof is by induction on

(lm(A), l(A)) lexicographically ordered.

Base We prove the statement for literal formulas:
(p) if p ∈ 8 then V (8, p) = t and so 8 |H

M p;
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(¬p) if ¬p ∈ 8 then by (c0) p 6∈ 8 so that V (8, p) = f and 8 |H
M

¬p.

We skip the easy cases of the propositional constants (>, ¬>, ⊥, ¬⊥).

Inductive Step

(α) If α ∈ 8 then by maximality α1 ∈ 8 and α2 ∈ 8; by inductive hypothesis
(l(αi ) < l(α) and lm(αi ) ≤ lm(α)) 8 |H

M α1 and 8 |H
M α2; hence 8 |H

M α.
(β) Similar to the previous case.
(π ) If π ∈ 8 then by clause (i) of Lemma 4.7 there exists 9 ∈ W (8) such

that π0 ∈ 9; hence there exists 9 ∈ W such that 8R9 and π0 ∈ 9; by
inductive hypothesis (lm(π0) < lm(π)) there exists 9 ∈ W such that 8R9
and 9 |H

M π0; therefore 8 |H
M π .

(ν) If ν ∈ 8 then by clause (ii) of Lemma 4.7, for every 9 ∈ W (8), ν0 ∈ 9;
hence for every 9 ∈ W such that 8R9 ν0 ∈ 9; by inductive hypothesis
(lm(ν0) < lm(ν)) for every 9 ∈ W such that 8R9 9 |H

M ν0; therefore
8 |H

M ν.
( f ) If f ∈ 8 then by clause (iii) of Lemma 4.7 |{9 ∈ W (8) ; ¬ f0 6∈ 9}| < ω;

hence |{9 ∈ W ; 8R9 and ¬ f0 6∈ 9}| < ω; we note that if ¬ f0 ∈ 9 then
by inductive hypothesis (lm(¬ f0) < lm( f )) 9 |H

M
¬ f0; that is, 9 6|H

M f0;
therefore {9 ∈ W ; 8R9 and 9 |H

M f0} ⊆ {9 ∈ W ; 8R9 and ¬ f0 6∈ 9}

and this is a finite set; therefore 8 |H
M f .

(i) If i ∈ 8 then by clause (iv) of Lemma 4.7 |{9 ∈ W (8) ; i0 ∈ 9}| = ω;
hence |{9 ∈ W ; 8R9 and i0 ∈ 9}| = ω; by inductive hypothesis
(lm(i0) < lm(i)) |{9 ∈ W ; 8R9 and 9 |H

M i0}| = ω; therefore 8 |H
M i .

Therefore, each formula of 1 is true in 80. �

Corollary 4.9 If a finite set of formulas is satisfiable, then it is satisfiable in a
denumerable model.

Proof Let 1 be finite and satisfiable in Kf . Then 1 is a finite set of CKf . By
Theorem 4.8 1 is satisfiable in a denumerable model. �

5 Tableaux for K fff

An extension rule is presented in the form

1

10 11 . . . 1n
(r).

It is trivial if 1 = 10 = · · · = 1n .
Let T , T ′ be trees of sets of formulas. We say that T ′ is an r-extension of T if

1 occurs in T as a leaf and T ′ is obtained from T by extending such an occurrence
with the n + 1 children 10, 11, . . . ,1n .

Definition 5.1 A tableau for Kf is a tree of sets of formulas defined inductively by
the following clauses:

(i) the tree with the only node 0 is a tableau for Kf ;
(ii) if T is a tableau for Kf and T ′ is an α, β, π , or i-extension of T then T ′ is a

tableau for Kf , where the extension rules are the following:
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1, α

1, α, α1, α2
(α)

1, β

1, β, β1 1, β, β2
(β)

1, π

1ν0 , π0
(π)

1, i
1ν0 , i0, 1′¬ f0

(i), where 1′ is a finite subset of 1;

(iii) nothing else is a tableau for Kf .

Therefore, the tableaux of Kf extend those of K [6] with rule i .
We use T , T ′, . . . to range over tableaux for Kf . We say that T is satisfiable if

some leaf of it is satisfiable and T is closed if each leaf of it is closed (where 1 is
closed if ⊥ ∈ 1 or ¬> ∈ 1 or there exists A such that A ∈ 1 and ¬A ∈ 1). Clearly,
a closed tableau cannot be satisfiable. A proof in TKf of A is a closed tableau for
¬A (that is, with root {¬A}). A formula is a theorem of TKf if there exists a proof
of it. With TKfTKfTKf we denote the set of theorems of TKf .

Let us show the correctness of TKf , that is, TKfTKfTKf ⊆ KfKfKf .

Lemma 5.2 If T is satisfiable and T ′ is an α, β, π , or i-extension of T then T ′ is
satisfiable.

Proof Cases α, β, and π are proved in [6]; Case i follows by Lemma 4.2. �

Theorem 5.3 If 0 is satisfiable and T is a tableau for 0 then T is satisfiable.

Proof By Lemma 5.2 and by induction on the complexity of a tableau. �

Theorem 5.4 (Correctness of TK fff ) A theorem of TKf is valid in Kf .

Proof If A is not valid then ¬A is satisfiable; by Theorem 5.3, a tableau for ¬A is
satisfiable and cannot be closed. �

The completeness of TKf , that is, KfKfKf ⊆ TKfTKfTKf , follows from the Satisfiability The-
orem 4.8. Define CTKf =

{
1 ; no tableau for 1 is closed

}
; it is easy to prove that

CTKf is a consistency property for Kf .

Theorem 5.5 (Completeness of TK fff ) A valid formula in Kf is a theorem of TKf .

Proof If A 6∈ TKfTKfTKf then {¬A} ∈ CTKf . By Theorem 4.8, ¬A is satisfiable; hence
A 6∈ KfKfKf . �

Thus, we have a complete tableau system for Kf , which yields a decision procedure.

Theorem 5.6 (Decidability of K fff ) Kf is decidable.

Proof If 0 is finite, define its complexity as c(0) = max{lm(A) ; A ∈ 0}. It
turns out that c(0, α) = c(0, α, α1, α2), c(0, β) = c(0, β, β1) = c(0, β, β1),
c(0, π) > c(0ν0 , π0), and c(0, i) > c(0ν0 , i0, 0

¬ f0). Let 1 be finite and let T
be a tableau for 1 free of trivial extensions. Let X = 00, 01, . . . , 0n be a branch of
T . Consider the sequence c(00), c(01), . . . , c(0n). The maximum number of π and
i extensions that we can meet along X is c([1]) = c(1) and, by absence of trivial ex-
tensions, the maximum number of α and β consecutive extensions that we can meet
along X is |[1]

α
|+2|[1]

β
|. Therefore, n ≤ c(1)·(|[1]

α
|+2|[1]

β
|). Thus, the depth

of a tableau for ¬A free of trivial extensions is at most lm(A) ·(|[¬A]
α
|+2|[¬A]

β
|).

This provides a limit for the number of different tableaux for ¬A free of trivial ex-
tensions. �
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6 Axiomatization of K fff

In this section we introduce our axiomatization of Kf (the original one given in [5]
is reported in Appendix A), denoted by HKf , and we prove its completeness.

HKf is defined by the following axioms and rules:

PL tautologies of L(Kf )
K� �(A → B) → (�A → �B)

K�f ¬�f (A → B) → (¬�f A → ¬�f B) MP A A → B
B

AL �A → ¬�f A RN� A
�A

D♦ ♦A ↔ ¬�¬A

D♦f ♦f A ↔ ¬�f ¬A

A is a theorem of HKf , in symbols `HKf A, if there exists a proof of A in HKf . We
denote by HKfHKfHKf the set of theorems of HKf . We adopt the notions of deducibility in
HKf of A from 1, in symbols 1 `HKf A, and consistency in HKf of 1, in symbols
ConHKf 1, as defined in Chellas [4]. Notice that these notions are designed to allow
the deduction theorem.

The correctness of HKf is easily proved by induction on the length of a proof in
HKf .

Theorem 6.1 (Correctness of HK fff ) A theorem of HKf is valid in Kf .

Let us prove the completeness of HKf . We first state (without proof) some derived
rules and theorems of HKf .

Proposition 6.2 HKfHKfHKf is closed under

RN�f
A

¬�f A
RK�f

A1 ∧ · · · ∧ An → A
¬�f A1 ∧ · · · ∧ ¬�f An → ¬�f A

REP
B ↔ B ′

A ↔ A[B/B ′]
EXC ϕ A ↔ ¬ϕ∗

¬A,

(where ϕ is any finite—possibly empty—sequence of occurrences of ¬, �, ♦, �f , and
♦f , and ϕ∗ denotes the result of interchanging � and ♦, �f , and ♦f , throughout ϕ.)

Lemma 6.3 CHK f = {1 ; ConHK f 1} is a consistency property for Kf .

Proof Cases (c0) – (cπ ) are standard; we prove (ci). Let 1 ∈ CHKf . Sup-
pose that i ∈ 1, 1′ is a finite subset of 1, but 1ν0 , i0, 1

′¬ f0 6∈ CHKf . Then
1ν0 , i0, 1

′¬ f0 `HKf ⊥. By compactness of the deducibility relation there exists a
finite subset 1′′ of 1 such that 1′′ν0 , i0, 1

′¬ f0 `HKf ⊥. Consider the following
proof:



434 Mauro Gattari

1. 1′′ν0 , i0, 1
′¬ f0 ` ⊥ Hypothesis

2. `
∧

1′′ν0
∧

1′¬ f0 → ¬i0 1, Deduction Theorem, PL
3. `

∧
¬�f 1

′′ν0
∧

¬�f 1
′¬ f0 → ¬�f ¬i0 2, RK�f

4. ` �ν0 → ¬�f ν0 AL
5. `

∧
�1′′ν0

∧
¬�f 1

′¬ f0 → ¬�f ¬i0 3, 4, PL
6. ` �ν0 ↔ ν Easy
7. ` ¬�f ¬ f0 ↔ f Easy
8. ` ¬�f ¬i0 ↔ ¬i Easy
9. `

∧
1′′ν

∧
1′ f

→ ¬i 5, 6, 7, 8, 9, REP
10. 1′′ν, 1′ f

` ¬i 9, Deduction Theorem

By weakening 1 ` ¬i . But i ∈ 1 implies 1 ` i . Therefore ConHKf 1 and we get
the contradiction 1 6∈ CHKf . �

Theorem 6.4 (Completeness of HK fff ) A valid formula in Kf is a theorem of HKf .

Proof If A 6∈ HKfHKfHKf then {¬A} ∈ CHKf . By Lemma 6.3 and Theorem 4.8, ¬A is
satisfiable; hence A 6∈ KfKfKf . �

7 The Logic K fff of Physical Modalities

In this section we introduce the logic K f of physical modalities, and we show the
equivalence between Kf and K f .

The language of K f is obtained from L(Kf ) by replacing ♦f and �f with ♦ f and
� f . A model of K f is a 4-tuple M = (W, R, R f , V ) where (W, R, V ) is a model
of Kf and R f

⊆ R. The truth relation |H
M is defined as usual, plus the following

clauses:

x |H
M ♦ f A iff there exists y such that x R f y and y |H

MA
;

x |H
M � f A iff for every y, if x R f y then y |H

M A.

The notions of truth and satisfiability in M and those of satisfiability and validity in
K f are defined as before.

Let us introduce the axiom system of K f , which we denote by HK f . It is defined
by PL (the tautologies of L(K f )), D♦, D♦ f , K�, plus the following two axioms,

K� f � f (A → B) → (� f A → � f B),

AL �A → � f A,

and the rules MP and RN�.
The completeness of HK f is a standard result; see, for instance, Carnielli and

Pizzi [3].

Theorem 7.1 (Correctness and Completeness of HK fff ) A formula is a theorem of
HK f if and only if it is valid in K f .

Now look at HKf and HK f . We can indeed say they are almost identical. The
next step should be obvious and, as we claimed in the introduction, the proof of
equivalence will follow easily. Let A be a formula of Kf . Define A2 by replacing
each occurrence of ♦f and �f in A with ¬♦ f and ¬� f , respectively. This map is
an invariant for theorems of our systems.

Theorem 7.2 A is a theorem of HKf if and only if A2 is a theorem of HK f .
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On the semantic side, by Theorems 7.1, 6.1, and 6.4, we get that a formula is valid
(satisfiable) in Kf if and only if A2 is valid (satisfiable) in K f .

Thus, we have a simple truth-preserving translation between the formulas of the
two systems.1 This proves the equivalence between Kf and K f . Notice that this is
easy by virtue of our axiomatization of Kf , whereas the original axiomatization of
[5] (reported in Appendix A) does not give us any clue of the map.

Our translation A 7→ A2 and the proved equivalence can give us a better under-
standing of the modalities we are dealing with. For instance, the intuitive meaning of
♦f A can be ‘A is not reproducible’, and Theorem 7.2 establishes that ‘A is physically
possible’ if and only if ‘A−2 is reproducible’ (formally, ♦ f A is satisfiable in K f if
and only if ¬♦f A−2 is satisfiable in Kf , where A−2 is any formula B of Kf such
that B2

↔ A is valid in K f ). This idea can be supported as follows. If M is a model
of K f and x |H

M B, then we can build a model M′ of Kf such that x |H
M′ B−2. The

construction proceeds by induction on the complexity of A. Assume that B = ♦ f A.
Then there is y such that x R f y and y |H

M A; in M′ we make ω-copies of y which
are accessible from x . Then the construction proceeds; for instance, if A = ♦C ,
then there is z such that y Rz and z |H

M C ; in M′ we make a single copy of z ac-
cessible from y. We omit the long formal treatment. Intuitively, we may think of A
as describing a phenomenon of nature, which is physically possible at world x , and
we may think of y as that “portion” of x which contains the causes that determine
A. Now think of a scientist who observes the phenomenon A and tries to distinguish
its causes. He tries to isolate the factors that influence the course of A. If he suc-
ceeds he may build a copy of y and reproduce the phenomenon. The experiment can
then be repeated. He builds another copy of y and reproduces A, and so on. A is
reproducible. Formally, he builds up a model of ¬♦f A−2.

Finally, consider again T f
= � f A → A, which intuitively states ‘if A is phys-

ically necessary then A is true’. We said in the introduction that the system of
Burks [1] and [2] extends K f with T f , whereas the system of Montague [7] (which
also extends K f ) rejects this axiom. We do not want to discuss the legitimacy of this
axiom; we only want to suggest that this axiom (and any other additional axiom) may
be analyzed in the setting of the modalities of finite. That is, the counterpart of T f

in Kf is T f = ¬�f A → A, which intuitively states ‘if ¬A is not reproducible then
A’. Clearly, Theorem 7.2 holds for the extended systems HKf + T f and HK f

+ T f .

Appendix A Equivalence between H and HK fff : Syntactic Proof

Let us denote by H the original axiomatization of Kf given in [5]. H differs from
HKf for K�f and AL, in place of which there are

A1. �(A → B) → (♦f B → ♦f A),
A2. ♦f A ∧ ♦f B → ♦f (A ∨ B),
A3. ¬♦A → ♦f A.

We can say our axiomatization improves the original one: it is shorter and clearer.
Of course, by Theorems 6.1, 6.4, and the completeness of H (proved in [5]), there
are proofs of A1, A2, and A3 in HKf , and there are proofs of K�f and AL in H.
We have these proofs. We can therefore give a syntactic proof of the equivalence
between our axiomatization and the original one.

Theorem A.1 HHH = HKfHKfHKf . Syntactic proof.
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Proof First, we show that HHH ⊆ HKfHKfHKf . A3 is easily proved by �¬A → ¬�f ¬A
(AL) and EXC. The proof of A1 is the following.

1. (A → B) ∧ ¬B → ¬A PL
2. ¬�f (A → B) ∧ ¬�f ¬B → ¬�f ¬A 1, RK�f
3. ¬�f (A → B) → (¬�f ¬B → ¬�f ¬A) 2, PL
4. ¬�f (A → B) → (♦f B → ♦f A) 3, EXC, REP
5. �(A → B) → ¬�f (A → B) AL
6. �(A → B) → (♦f B → ♦f A) 4, 5, PL

The proof of A2 is the following.

1. ¬A ∧ ¬B → ¬(A ∨ B) PL
2. ¬�f ¬A ∧ ¬�f ¬B → ¬�f ¬(A ∨ B) 1, RK�f
3. ♦f A ∧ ♦f B → ♦f (A ∨ B) 2, EXC, REP

Now we show that HKfHKfHKf ⊆ HHH. AL is easily proved by ¬♦¬A → ♦f ¬A (A3) and
EXC. The proof of K�f is the following.

1. ♦f ¬(A → B) ∧ ♦f ¬A → ♦f (¬(A → B) ∨ ¬A) A2
2. (¬(A → B) ∨ ¬A) ↔ (B → ¬A) PL
3. ♦f ¬(A → B) ∧ ♦f ¬A → ♦f (B → ¬A) 1, 2, REP
4. �(¬B → (B → ¬A)) → (♦f (B → ¬A) → ♦f ¬B) A1
5. ¬B → (B → ¬A) PL
6. �(¬B → (B → ¬A)) 5, RN�
7. ♦f (B → ¬A) → ♦f ¬B 4, 6, PL
8. ♦f ¬(A → B) ∧ ♦f ¬A → ♦f ¬B 3, 7, PL
9. ♦f ¬(A → B) → (♦f ¬A → ♦f ¬B) 8, PL

10. ¬�f (A → B) → (¬�f A → ¬�f B) 9, EXC, REP
�

Let us see how we got these proofs. In Kf , axioms A1, A2, and A3 capture three
basic properties of the finite in modal logic (with respect to the set of worlds which
are accessible from a fixed one). Via our map A 7→ A2, these axioms may be
analyzed in K f . Clearly, axiom A3 corresponds to AL, whereas A1 and A2 corre-
spond (modulo AL and PL) to two well-known theorems of normal systems: K♦ f

= � f (A → B) → (♦ f A → ♦ f B) and C♦ f = ♦ f (A ∨ B) → (♦ f A ∨ ♦ f B). Of
course, K♦ f and C♦ f are theorems of HK f , since HK f contains a copy of K with
respect to these symbols. Thus, by virtue of Theorem 7.2, our proofs in HKf of A1
and A2 were obtained by standard proofs in HK f of K♦ f and C♦ f . This approach
was also successfully applied in finding the proof of K�f in H.

Note

1. Notice that the map A 7→ A2 is not surjective (think of ♦ f p), but we can proceed as
follows: let B be a formula of K f ; define B′ by replacing each occurrence of ♦ f and
� f in B with ¬¬♦ f and ¬¬� f , respectively. Then B ↔ B′ is valid in K f and B′ is
in the range of A 7→ A2.
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