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Bounds on Weak Scattering

Gerald E. Sacks

In Memory of Jon Barwise

Abstract  The notion of a weakly scattered theory T is defined. T need not be
scattered. For each 4 a model of T, let sr(+A) be the Scott rank of 4. Assume
sr(A) < w'lA’ for all A a model of T'. Let 02T be the least ¥, admissible ordinal
relative to 7. If T admits effective k-splitting as defined in this paper, then
30 < 027 such that sr(+) < 0 for all 4 a model of 7.

1 Introduction

This paper has two themes less disparate than they seem at first reading:

1. extending classical descriptive set theoretic results that impose bounds on
suitably defined functions from w® into wy;

2. extending and clarifying some early results on Scott ranks of countable struc-
tures sketched in [15].!

Let F be a function, possibly partial, from w® into w. A typical classical bounding
theorem says the range of F is bounded by a countable ordinal if the graph of F
has a suitable definition. For example, the graph of F is E% with real parameter p;
in this formulation the graph of F is viewed as a subset of ®” x w; by requiring
each value of F to be a well ordering of w. Let F(X) ambiguously denote the well
ordering and also the ordinal represented by the well ordering. For each X, F(X) is
the unique solution of a 211 formula with parameters p, X. Consequently F(X) (the
well ordering) is hyperarithmetic in p, X, and so

F(X) <o, (1.1)
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6 Gerald E. Sacks

the least ordinal not recursive in p, X. The effective version of the theorem says that
the bound on the range of F is an ordinal less than a)f .

A recursion-theoretic approach to the effective bound originated by Kleene is as
follows. (See Sacks [16] for details.) Suppose

Vy <ol)EX)[F(X) > y]. (1.2)

Let R? be the linear ordering of m recursive in p via index e. Define W” to be the
set of all e such that RY is a well ordering. Then

e € WP «<— 3X3g[g is a 1-1 order-preserving map of R into F(X)].  (1.3)

But then W7 is Z} with parameter p. This last is false according to a Kleene hi-
erarchy result that says W7 is universal l'[{ with parameter p, hence not Z{ with
parameter p.

A model theoretic approach to effective bounds is the path taken in this paper. A
sketch may help to clarify later sections. Let A(p) be the least X admissible set
with p as a member. Let Z be a EIA(” ) definable set of sentences of L, coded by
elements of A(p) such that every model M of Z has the following properties:

1. The ordinals recursive in p form a proper initial segment of the ordinals in
the sense of M.

2. Thereis an X € M such that forall y < of, F(Xo) > 7.

3. p € M and M is a £ admissible structure.

Assume the range of F is not bounded by an ordinal below a)f . Then each A(p)-
finite subset of Z (i.e., each subset of Z that is a member of A(p)) is consistent, and
so Z has a model by Barwise Compactness. With the addition of “effective” type
omitting, as in Grilliot [5] or Keisler [7], Z has a model M that omits a)f but has
nonstandard ordinals greater than all standard ordinals less than wf . Then

a){”xo < a)f; (1.4)

otherwise, cu{7 is recursive in {p, Xo) and so a)f € M. But then a)f Xo _ a)f and
F(Xo) > a)f’Xo by property (2) of Z, which contradicts (1.1).

The search for a bounding theorem that extends the classical result seems hopeless
at first. An extension has to talk about an F that allows F(X) > wf’p , but wf’p , as
a function of X, is unbounded. Model theory comes to the rescue. Every countable
structure «+ has a Scott rank [17], sr(#4), an ordinal that can be as high as w’f" +1
(see Section 2 for elaboration).

Let T be a countable theory. A reasonable starting assumption on 7 is

VA[A = T —> sr(A) < o], (1.5)

An ingenious example (MA) devised by Makkai [11] shows that (1.5) is not enough.
Examination of (MA) and its illuminative extensions in Knight and Young [8] leads
to two further assumptions on 7. The first, effective k-splitting, is technical and per-
haps peripheral and is discussed further in Sections 9 and 10. The second, weakly
scattered, is central. The theory T), associated with (MA) satisfies (1.5) and has
properties similar to effective k-splitting. In addition for every X admissible count-
able a, Ty has a model A such that

ot = a = st(A). (1.6)
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Corollary 9.5 says if T is weakly scattered, satisfies (1.5), and has effective k-
splitting, then there is a countable bound on the Scott ranks of the countable models
of T; the effective version provides a bound less than the first X, admissible ordinal
relative to T in contrast to the classical case above, where the effective bound on the
range of F is less than a)f , the first X1 admissible ordinal relative to p.

The notion of weakly scattered is inspired by Morley’s concept of scattered. Let £
be a countable first-order language, £y a countable fragment of £, , and T C Lo
a theory (i.e., a set of sentences) with a model. For (a) and (b) below, let £ be
any countable fragment of £, , extending Lo, and 7’ any finitarily consistent,
w-complete theory contained in £ and extending 7. (The notions of finitary consis-
tency and w-completeness for fragments are reviewed at the beginning of Section 4.)
T is said to be scattered if and only if (a) and (b) hold.

(a) Foralln > Oand all T’, S, T’, the set of all n-types over T, is countable.
(b) For all £/, the set {T' | T’ C £’} is countable.

The above definition of scattered is equivalent to the one in Morley’s ground-
breaking [13]. T is said to be weakly scattered if and only if (a) holds. By [13], a
scattered theory can have at most ®w; many countable models. In contrast, a weakly
scattered theory can have 2“ many countable models.

Knight [9] has announced a counterexample to Vaught’s Conjecture (VC), a scat-
tered first-order theory with @w; many countable models. VC has a precise formula-
tion in Section 5.

In [15] the following bounding result was established: if T is scattered and sat-
isfies (1.5), then T has only countably many countable models; furthermore, every
countable model of T has a countable copy in L(f, T) for some S < O'2T, the least
a such that L(a, T) is £, admissible. Hence Vaught’s Conjecture holds for 7' if T
satisfies (1.5). The proofs given in [15] were somewhat sketchy, so missing details
needed in later sections of this paper are given in Sections 3 through 5. If Vaught’s
Conjecture is false, then results for scattered theories yield information about mod-
els of counterexamples to VC. Theorem 4.9(vii) says if VC fails for T, then T has
a model of cardinality w; not elementarily equivalent in the sense of £, . to any
countable model (Harnik and Makkai [6]). Theorem 5.3 describes an w1-sequence
of atomic and saturated models that every counterexample must possess. Section 5
includes a related absoluteness result implicit in Morley [13]: VC(T'), Vaught’s Con-

L(T)
jecture for T, is a EIL(w‘ T) predicate of T, hence, 221.

Steel [18], as reported in [11], used an assumption stronger than (1.5) to prove
VC(T). In Section 2 an arbitrary countable structure + is associated with a theory
Tai?"" contained in a countable fragment of £, canonically generated from 4. By

an argument of Nadel [14], 4 is a homogeneous model of T(;t"' Steel’s assumption
1

is equivalent to ‘for every + a model of T, T(Z‘;\, is w-categorical’. Assumption (1.5)
1

is equivalent to ‘for every 4 a model of T, +4 is an atomic model of T Cﬁ’. Sacks and
1

Young [12] produced a structure + such that -4 is an atomic model of Ta‘j’;, but Ta‘f;
1

1
is not w-categorical. (In addition, a)‘{" = cuICK and Ta‘ﬁ% is a A subset of L(a)]CK ).)
1

Sections 7 through 9 are devoted to bounding for weakly scattered theories.
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2 Scott Analysis and Rank

This section revisits [15] as promised in Section 1. Scott [17] showed that an arbi-
trary countable structure 4 with underlying first-order language £ can be character-
ized up to isomorphism by a single sentence of &£, . In essence there is a countable
fragment £ of L, such that »4 is the atomic model of T**, the complete theory
of # in L. Nadel [14] pointed the way to a canonical choice for £*.

The admissible set L(cu‘lA’, A) is Godel’s L relativized to + as an element’ and
chopped off at a)‘f‘“, the least y such that L(y, #) is £ admissible. Let

£ﬂw=£mwﬂL@ﬁA) (2.1)

(Ul s
Nadel [14] showed that

4 is a homogeneous model of its complete theory Tcﬁ © in OCC":A o (2.2)
1 1

It follows that + is the atomic model of its complete theory in
Lo N L@t +1, 4), (2.3)
since the types over T(jt" N realized in + are first-order definable over L(w‘lA’, 4) and

so become atoms of thé complete theory of 4 contained in (2.3).
A 2| recursion defines a canonical choice for £ and yields the definition of
Scott rank for A.
L L3 =L
2. L3 =U{Ly |6 < 2} for limit 4.
3. T(;‘" = complete theory of # in OCg"'.
4. £§“+1 = least fragment £ of L,  such that LT D ng'“, and for each
n > 0, if p(?) is a nonprincipal n-type of T(;A" realized in 4, then the con-
junction
AMF () | F () € p(R))
is a member of L.
Note that if 4 is isomorphic to B, then QC(;‘A’ = QC:;T” and Té‘A’ = Tng for all . For
some 0 < wj, all the n-types of T(;‘" realized in # are principal. To see this, fix y
and suppose some nonprincipal type py 41 of TyA+1 is realized in 4. Let p, be the
restriction of p, 1 to TyA. Since p, 11 is nonprincipal, there is a formula g(?) of
OC‘;“’ ', such that both

X [p, (X)) A G(X)]and IX [p, (X)) A =4(F)]

A > —
belong to Ty ‘1~ Then there are n-tuples b and ¢ of 4 such that

Ay (B)AG(B)] and A k= [py (T) A =G(T)].

Thus a distinction between Z) and ¢ is made by a formula of aC‘;" '+ but not by
any formula of GC:j"‘. Since 4 is countable, only countably many distinctions can be
made.

Let d 4 be the the least d < w; such that every distinction ever made is made by a
formula of OCSA’. Then

s is the atomic model of Tdﬁ il 2.4
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The Scott Rank of 4 is defined by
sr(oA) = least a [+ is the atomic model of T(;A]. 2.5)

If 4 is isomorphic to B, then sr(A) = sr(B). Nadel’s proof of (2.2), p. 273 of [14],
sketched below, also shows

A is a homogeneous model of TL?A' (2.6)
1

Hence dy4 < w‘f‘, and so
sr() < o + 1. (2.7)

. Lo, 4 . .
Note that £;§* and Ta‘A’ as functions of § < a)‘f", are X, @] ); that is, their graphs

are X1 definable subsets of L(a)f", A). Since the formulas of °CZ?="’ and Ta”)“‘f;,e are
1 1
“enumerated” in increasing order of complexity,

L(w?, A
LA, 2.8)

A A
OCwT,o and Tw_],& are A
— — A
To prove (2.6), let p (X)) be an n-type, and ¢g( X, y) an (n + 1)-type, of Taﬂ*’ and
1
a, _b) n-tuples of 4. Suppose p(¥) € ¢(%, y) and

A Ep(@) A p(B) Adyg(@, ). 2.9)

For homogeneity, a d € # is required so that A = q(?, d). Suppose no such d
exists. Let ¢g5(x, y) be the restriction of g (x, y) to QC(;‘A’. Then

L(wi,A)

{gs(x,y) |6 < o'}is | (2.10)

For each d € A, thereisad < cof" such that A = —'qg(_b), d). Since ¢ can be

A
defined as a Zf (@A) function of d, the X; admissibility of L(a)‘l’"’, ) implies there

isads < w‘f" such that A = Vy—gs, (Z), y). But then
A EVYy—q(d,y). @.11)

A typical use of Scott rank in conjunction with Barwise Compactness and Grilliot
type omitting is as follows.

Proposition 2.1 Suppose L(a, T) is countable and X1 admissible. If for each
B < a, T has a model of Scott rank > f, then T has a countable model such that

st(A) > o] = a. (2.12)

Note that the + of (2.12) must have Scott rank either o or o + 1 by (2.7). Forcing
the outcome to be o + 1 is a problem addressed in this paper but far from resolved.

3 Small AgF Sets

The following is one of many variations (e.g., Makkai [10]) on a theme initiated by
Barwise [2], an extension of a recursion theoretic fact needed for the enumeration
of models of both scattered and weakly scattered theories. The variation below was
mentioned and used in [15]. The recursion theoretic fact is as follows: if a set S
of reals is 211 and has cardinality less that 2, then there exists a hyperarithmetic
real H such that every member of § is Turing reducible to H; in addition, an index
for H can be computed uniformly from an index for S. The latter uniformity is
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key to establishing the X character of the enumeration of models in Sections 4 and
8. Recall that a AgF formula is a formula in the language of set theory with only
bounded quantifiers ‘(Vxey)’ and ‘(Juev)’. Let D(x, y) be a AgF lightface formula
and A a countable X admissible set. Suppose p, b € A. Define

Spb =1{x | xeV Ax € b A D(x, p)} (3.1

Theorem 3.1 If S, & A, then the cardinality of S, p, is 2°.

Proof Let the language £ consist of €, bounded quantifiers Vx € y and 3x € y,
an individual constant e for each e € A, and a special individual constant ¢ different
from all the es. Let Z be the following A‘[‘ set of sentences of L.

1. The atomic diagramof A:d e e<>d ec€e;d ¢ e < d ¢ eford, e € A.
2. ¢S b, D(c,p),andc # eforalle € A.

Suppose Z is not consistent in the sense of L, ,,. Then there is a zp € A such that
zo € Z and zg is not consistent. And zo consists of some Ay € A such that A is a
subset of the atomic diagram of A, and

cSh,D(cp), and{c#elee€ f} (3.2)
for some f € A. Since z( is inconsistent, there is a deduction E € A of
[cCbAD(pl—cef (33)

from Ag. Butthen S, € fandso S, € A.

Suppose Z is consistent. Then a Henkin-style construction in o many stages
yields a model of Z, hence, an actual ¢ € (S, , — A). At stage j, a sentence o of £
is considered, and o is either ¢ or —¢ solongas Z U {g; | i < j} is consistent. If
o0 is an infinite disjunction (e.g., o; begins with ‘Ix € ¢’), then some component of
o is added immediately.

The construction can be varied so 2“ many cs are produced. Let ¢ be a one-one
map of w onto {g | g € b}. After g; is chosen, and before 51 is chosen, create a
split as follows. Choose an n so that (t(n) € ¢) and (1(n) ¢ ¢) are each consistent
with Z U {o; | i < j}. Then the construction takes 2¢ different paths, and different
paths produce different cs. Such splits always exist. Otherwise there is a j such that
Z U{o; | i < j}is consistent and for each n there is a deduction D,, € A from
ZU{o; | i < j}ofeither (r(n) € ¢) or (t(n) ¢ c¢). The | admissibility of A puts all
the Dys in some D € A. D decides which elements of b belong to c. Hence there is
an e € A such that (¢ = ¢) is deducible from Z U {6; | i < j}, a contradiction. [J

Corollary 3.2 S, , is countable <— S, € A.

Theorem 3.3  There exists a lightface ZIZF Sformula F (u, v, w) such that for any
countable X1 admissible set A and any p,b,s € A,

Sp.b is countable — A |= 3w¥ (p, b, w); (3.4)

(Vs € A{{[A E F(p,b,s)] — s = Spp}. (3.5)
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Proof The existence of ¥ is implicit in the proof of Theorem 3.1. Thus Z is in-
consistent if and only if S, is countable if and only if S, , € . The statement

AEF(p.b.s) (3.6)
says
(i) there exist Ag € A and E such that Ap C atomic diagram of A, and E is a
deduction of (3.3) from Ag; and
(ii)
s={x|xe fAxZbAD(x,p)} (3.7
O

4 Enumeration of Models for Scattered Theories

Let Lo be a countable fragment of £, ,, for some countable first-order language £
and T € £y a theory with a model. Throughout this section 7 is scattered as defined
in Section 1. For convenience assume 7" mentions all formulas of £g; thus «£o and
L are recoverable from 7.

4.1 Review of w-completeness and finitary consistency for fragments  Let L' be
a countable fragment of £, , and 7' C L' a set of sentences. T’ is w-complete in
L’ if and only if (1) and (2) hold.

1. For every sentence ¥ € £/, either £ € T' or (—=F) € T".

2. For any sentence (Vv; ;) € T’, there is an i such that ; € T".

Say T is finitarily consistent if and only if no contradiction can be derived from T’
using only the finitary rules of £, . The infinitary step being avoided is deriving
an infinite conjunction by deriving each of its components. Say T is w-consistent if
and only if for any sentence (V; ;) € &£, if T’ U {V; F;} is finitarily consistent, then
there is an i such that 7" U {F;} is finitarily consistent.

Proposition 4.1  If T' is finitarily consistent and w-complete, then T’ has a model.

Proof Note that 7’ is w-consistent. The model is constructed by extending T’ to
a finitarily consistent and w-complete set of sentences that includes Henkin axioms.
At each stage of the construction, the set of sentences up to that point is w-consistent.

O

Proposition 4.2 Suppose for all B < y < A, Ty is finitarily consistent and w-
complete in the fragment Lg, Ty € T,, and Ly S L,. Then U{Ty | p < A} is
finitarily consistent and w-complete in the fragment U{Lp | f < A}.

Morley [13] showed that the scatteredness of 7' implies the countable models of T
can be arranged in a hierarchy of height at most w; based on Scott rank with at most
countably many models on each level. The current section revisits [15] and presents
a X1 enumeration of the countable models of T with a recursion-theoretic eye on
some constructive details. The enumeration is a continuous tree 7R (77) with at most
w1 levels and at most countably many nodes on each level. Each node is a theory T’
finitarily consistent and w-complete in a fragment £7 with 7 € T’ and £y C L.
Each T’ has an atomic model, and the class of all such models is the class of all
countable models of T'.
The enumeration of TR(T) is as follows.
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Level 0  Call T’ a node if and only if 7" is a finitarily consistent and w-complete
extension of 7 in the fragment Lo(= L77).

Level A (limit) Call T’ a node if and only if there is a sequence T, i B < A
such that Tg ison level 8, Ty € T, (f <y < A),and T' = U{Tp | f < A}.
Lr=U{Ly, | f < A).

Level § +1  Suppose S is a node on level J, that is, a finitarily consistent theory
w-complete in its fragment Lg. If S is w-categorical, then S has no successors on
level 0 4+ 1. Otherwise, S has a nonprincipal n-type p(?). Let L5 be the least
fragment of £, ., extending L ¢ and containing the conjunction

NMF )| F(X) e p(¥)} (4.1)

for every nonprincipal n-type p(X) of S for all n > 0. Say 7 is a successor of S
on level d + 1 if T’ is a finitarily consistent and w-complete extension of S in the
fragment L' (= L77).

Proposition 4.3  If f < wy, then TR(T) has only countably many nodes on level

B.

Proof By induction on . Level O is countable by clause (b) of the definition of
scattered. Suppose S is on level 6. Assume £ is countable. The set of all nonprin-
cipal n-types of S is countable by clause (a) of the definition of scattered; hence, £
is countable. The set of all successors of S on level ¢ + 1 is countable by clause (b)
of the definition of scattered.

Let 7’ be any node on the countable limit level A. Let £, be the least fragment
extending all the Lgs for all theories S on all levels below 4. By induction, £ is
countable. Let T” be any finitarily consistent and w-complete extension of 77 in £ ;.
The set of all 7”’s is countable, so the set of all 7’s is countable. O

Let TR(T) | S be the restriction of TR(T') to the levels below £.
Proposition 4.4
1) If p <o <wyand L(a, T) is | admissible, then
(FR(T) | p) € L(a, T).

(i1) There exists a lightface ZIZF formula §(u, v, w) such that for all scattered T,
all countable X1 admissible L(a., T), and allb € L(a, T),

(TR(T) | p) =b < L(a,T) = §(T, B, b).

Proof Bya Zf“(a’T) recursion that relies on Theorem 3.3. Suppose

(TRT) [ (W0+1)elL(a,T), 4.2)

and theory S is on level 6. The set of nonprincipal types of S is the unique
s € L(a, T) that satisfies the X{F of Theorem 3.3 with p and b both equal to
S. The statement “g is a nonprincipal type of S” is lightface AgF and corresponds
to the formula D(x, y) of (3.1). The fragment £ was defined just before Equa-
tion (4.1). The set of successors of S on level ¢ + 1 is obtained from Theorem 3.3
with parameters (p, b) equal to (S, °C/S>' O
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Let 4 be a countable model of T (a scattered theory as above). The Scott analysis of
A differs little from its tree analysis:
T(0, A) = theory of # in Ly, and L7(0,.4) = Lo-
TA, A)=U{T(B,A) | f <}
Lro,4) =U{Lr@,a | B < ).
LTG41,4) = °C/T(5,A) (defined similarly to £’ on level 6 4+ 1 of TR(T') above).
T(0+ 1, A) = theory of A in L7(541,4)-

Recall from Section 2 the definition of d 4, the distinction rank of +, and the argu-
ment that the Scott rank of +4 is either d 4 or d4 + 1. Clearly, there isa 0 < w; such
that for all n, any distinction made between n-tuples of 4 by a formula of L7 (w,,4)
is made by a formula of £7,.4). The tree rank of + is defined by

tr(A) = least J [+ is the atomic model of T (J, A)]. 4.3)
Proposition 4.5  tr(A) < sr(A).

Proof oﬁg‘ was defined just after Equation 2.3. By induction on 4, £§ C L7,
Thus Ts‘fz ) C T(sr(4A), A). But 4 is an atomic, hence homogeneous, model of
Ts‘?M), and so »4 is an atomic model of T (sr(+A), A). O

Proposition 4.6  Suppose A =T and L(a, < T, A >) is £ admissible. Then

tr(A) < a —> sr(A) < a.

Proof Suppose not. Then D, the set of all distinctions between n-tuples (all n > 0)
of A made by formulas of L7 (i(4),.4), belongs to L(a, (T, #4)) by Proposition 4.4.
And there is an unbounded ZlL(a’(T"A‘)) map of D into a, a violation of the X ad-
missibility of £L(a, (T, 4)). The map carries each distinction d € D to the least 0

such that d is made by some formula of GC(;"". U

A theory T can be scattered up to a point. The tree TR(T) is said to be scattered
below p if the notion of scattered enumeration succeeds for 7 on all levels below /.
To be more precise, 7R (T') has only countably many nodes (perhaps none) on each
level below £.

Proposition 4.7  Suppose a < w1, L(a, T) is X1 admissible, T is scattered below
(o + 1), and T has a model of Scott rank > f for each i < a. Then there exists a
theory T, on level o. of TR(T) such that T, is Ai‘(“’T).

Proof By Proposition 4.6, TR(T) has nodes on all levels below « if an 4 can be
found that satisfies the hypotheses of Proposition 4.6 and also sr(+) > a. To find A
through Barwise Compactness, consider the following set Z of sentences.

(Z1) Introduce a constant e to name each ¢ € L(a, T). Add the atomic diagram
(in the sense of £, ,,,) of L(a, T) to Z. Foreach f < a,

Vx[x € p «— Vix =7y |y < B}l 4.4)
is a typical member of (Z1). Any model of (Z1) is an end extension of L(a, T).

(Z2) Introduce a new constant d and add sentences saying d is an ordinal greater
than f for each f < a.
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(Z3) Add A =T and st(A) > f foreach g < a.
(Z4) Add the axioms for X admissibility.

Let M be a model of Z that omits o but extends L(a,T) as in [5] or [7].
L(a, (T, A)) is X | admissible; otherwise o € M. (Z3) insures sr(A) > a.

Let T’ denote an arbitrary node below level a. Call T’ unbounded if 7’ has
extensions to theories on arbitrarily high levels below a. Then T can be regarded as
an unbounded node.

Suppose 7" is an unbounded node below level 8 for some B < a; then T’ has an
unbounded extension on level . Otherwise, the X1 admissibility of L(a, T') implies
T’ is bounded.

There exists a fp < a and an unbounded node T, on level Sy such that for all
B € (Bo, @), Tp, has a unique unbounded extension on level . Otherwise, a tree
U of unbounded nodes can be constructed such that U is isomorphic to the binary
branching tree 2<%, and the branches of U define a continuum of nodes on some
level ag < o of TR(T) | (a + 1).

The set S, of unbounded nodes above Tj, form an expanding sequence whose
union is the desired T, . To see S, is AlL(a’T), let N, be the set of all nodes on level
y extending Tp, for each y € (fo, ). Then N, , as a function of y, is ElL(a’T) by
Proposition 4.4, and (N, — Su») € L(a, T) since N, N S, has just one element.
There is a Zf‘(“’T) function that takes each node e € (N, — S,;) to a bound on the
levels occupied by extensions of e. But then there is a strict upper bound b < o on
the levels occupied by extensions of members of (N, — S,5). Any such b singles out
the unique member of N, N S,. U

Proposition 4.8  Suppose a < w1, L(a, T) is o admissible, T is scattered below
o, and T has models of arbitrarily high Scott rank less than a. Then there exists a

theory T, on level o of TR(T) such that T, is AIL(a’T).

Proof The proof is similar to that of Proposition 4.7. The only difference is in the

handling of U. Then and now U can be defined by a 2;‘ @T) recursion of length

w, since the set of unbounded nodes is HlL(a’T). But now the X, admissibility of
L(a, T) implies U € L(a, T), and so the branches of U define a continuum of
nodes on some level ag < a of TR(T). U

Two JL-structures are said to be £, »-equivalent if they satisfy the same sentences
of £, (Recall that if »4 is countable and £, ,-equivalent to B, then A is Lo, (-
equivalent to B.)

Theorem 4.9  Suppose Vaught’s Conjecture fails for T. Then there exist Tg, #Ap,
and L (f < wy) such that
(i) if B < wy, then Ty is an w-complete theory in the countable fragment £Lp;
() iff <y <oy, thenTg C T, Ap C A,, and L C Ly,
(iil) if A(limit)< w1, then T, = U{Tg | f < A} and A, = U{Ag | B < A};
(iv) Ty, is AIL(w"T) definable;
(v) if B < wy, then Ap is an atomic model of Tg;
(vi) if B < wy, then Ap | realizes a nonprincipal type of Ty,
(vii) (Harnik and Makkai [6]) The cardinality of A, is w1, and Ay, is not Ly, -
equivalent to any countable model.’
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Proof A uncountable model 44, of T is constructed so that it is not L, -
equivalent to any countable model. By Proposition 4.8, there is a theory Ti,, on
level @ of TR (1) such that T, is AX“"T) Thus T,, = U(T, | y < @}, and
(y <9) = (I, € Ts). p, the parameter used in the AlL(a’T) definition of T,
belongs to L(ag, T') for some a¢g < w;. Define

K={flay<pf <oy ANL(P, T) =<1 L(w1,T)}.

(Recall that X <1 Y means X is a ZIZF substructure of Y.) Let {y5 | 6 < w1} be an
increasing enumeration of K. Then L(ys, T) is £ admissible, and so

Tyg = Ta)l N L(V(s, T)

by Proposition 4.4(i). Also T); is Af(”’T) definable via the same A definition that
works for Ty, , since p € L(ys5, T) <1 L(wy1, T).

Structures As(d < 1) and inclusion maps ig 5 : Ag —> As(f < J) are defined
by recursion on d. The map ig s will be elementary with respect to the language £,
that is, any sentence of £, , with parameters in s and true in /4 will also be true
in Ag.

Stage 0 Structure A is the countable atomic model of 7).

Stage § + 1 Assume A is the countable atomic model of T;,. Extend +4s to
g1, the countable atomic model of 7, ,, so that the inclusion map is 541 is o&£-
elementary.

Stage A (limit < wy1) Let
Ay =U{As | 0 < 1}

Forall 9 < ¢’ < A, assume the inclusion map is s is «£,;-elementary. Then for each
0 < A, A, is an £L,;-elementary extension of +s and so is a model of T,;. Thus 4,
is amodel of T'y,.

To see that +, is an atomic model of Ty;, let @ be an n-tuple of 4 ;. For some
§ < A, d is an n-tuple of sy and realizes some atom F (%) of T,,. Then F(X)
is an atom of T}, because L(ys, T) <1 L(4,T). Hence, @ realizes 3’(7) in A,
since ig,; is £Ls-elementary.

If Ay, were L, o-equivalent to some countable model, then it would be an
atomic model of T, for some 6 < w;. But 441, hence #,,, , realizes a nonprincipal
type of T,. O

5 Absoluteness of Vaught’s Conjecture

Let VC(T') be the predicate ‘Vaught’s conjecture holds for 7. Morley’s work [13]
implies that VC(T') is absolute. The enumeration tree, TR (T'), of Section 4 is applied
below to make the statement of VC(T) more precise and to see in some detail how
T can satisfy Vaught’s Conjecture. Suppose an attempt is made to develop TR (T)
and the attempt fails to produce a tree with only countably many nodes on each level
and w; many nonempty levels. Then there must be a countable f§ such that one of
the following holds:

(1) p = 0 and T has uncountably many finitarily consistent, w-complete exten-
sions in Lo;
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(2) p =0+ 1, some theory S is on level J, and for some n, the set of n-types of
S is uncountable;
(3) p = 0+ 1, some theory S is on level d, for all n the set of n-types of S is
countable, and the set of all finitarily consistent, w-complete extensions of S
in £’ is uncountable. L’ is defined just before (4.1).
(4) p = 4 and the set of nodes on level 4 is uncountable.
(5) level f is empty.
Define the Vaught Rank of T, vr(T') to be the least countable f that satisfies one of
(1)-(5) above. (If there is no such g, let vr(T') be w;.) Define the predicate VC(T')
by vr(T) < w;. Suppose vr(T) = f < w;. If p = 0, then T has 2% finitarily
consistent, w-complete extensions in Lo by Theorem 3.1, hence, 2“ many countable
models. The same holds in cases (3) and (4). If (5) holds, then T has only countably
many countable models, and each one is the atomic model of a theory on some level
of TR(T) below level B. Suppose case (2) holds. Then for some n, there are 2“n-
types of S by Theorem 3.1, hence, 2“ many countable models of T'.
Recall that

w{‘(T) = least y [L(T) = (y is uncountable )]. 5.1
Proposition 5.1  The predicate, Vaught’s Conjecture holds for T, is
E]L(w]L(T)’T), hence Z%.
Proof By Proposition 4.4, TR(T) € L(w;, T) and is Zf‘(w"T). The statement

VC(T) says “at some level y < wy, either (a) TR(T) ends or (b) blows up; that is, a
perfect kernel of theories or types is manifest.” Let aq be the least @ > y such that
L(a, T) is £ admissible.

Suppose (a) holds. Then Levy-Shoenfield Absoluteness implies ag < wlL(T), and
there is an £,,,,, sentence KX € L(ap, T') that expresses the fact that every model of
T is an atomic model of some theory on some level at or below y of TR(T).

Suppose (b) holds. Theorem 3.1 implies the existence of a perfect kernel of the-
ories or types. A coding of some such perfect kernel by a real is constructible from
any counting of ag. The proof of Theorem 3.1 relies on the consistency of a certain

set Z of axioms. Z is Ef(ao’T), and the consistency of Z is H{‘(ao’T). Hence Levy-

Shoenfield Absoluteness implies ag < wlL(T) , and so a code for the perfect kernel

belongs to L(a)lL(T), 7). O

Proposition 5.2 Suppose T is a counterexample to Vaught’s Conjecture. Then there

is a theory T, on level wy of TR(T) such that T, is AlL(wl’T). For all countable p,
T, the restriction of Ty, to level f, has an atomic model whose Scott rank is .

Proof By Proposition 4.8. (]

Suppose L(a, T) is X admissible, + is a countable model of T, and a)‘]A’ = «a.
According to (2.6), # is a homogenous model of Ta‘A’; A 1s said to be a-saturated if
every n-type (n > 1) of T;’“ is realized in A.

Theorem 5.3  Suppose T is a counterexample to Vaught’s Conjecture. Then there
isa AIL(w"T) theory T, on level wi of TR(T) and a closed unbounded set C C w;
such that Va € C: T, the restriction of Ty, to level a, has an atomic model A, of
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Scott rank a and an o-saturated model B, of Scott rank o. + 1. The atomic models
form an expanding chain and each inclusion Ap C A, (B < y) is elementary with
respect to the language of Tp.

Proof Proposition 4.8 provides Tp,,. Let p € L(w;, T) be the parameter needed
for the A]L(w"T) definition of 7,,. For any a, let a™ be the least > o such that
L(B, T)is X1 admissible.

For x € L(T), let H{(x) be the £ hull of x in L(T). Recall that

x € Hi(x) <1 L(T)

and that x and Hj(x) have the same cardinality in L(7). An expanding sequence of
countable X hulls, H g (0 < wy), is defined by recursion on 6.

His H;({tc(p), w1, tc(T)}). (tc is transitive closure.) Note that wfr, we HY if
d <e<wande € HY, thend € H. Let ¢y be the lub of the countable ordinals in
HY. Let L(Bo, T) be the transitive collapse of H°. Then

co=wr P and L(c}, T) € L(po, T). (5.2)

Stage § +1  Assume H° is countable in V. Then H° N w is a proper initial seg-
ment of ;. Let ¢ be the least countable ordinal not in H°. H%t! is H; (H5 U{cs)).

Stage A (limit)  Let H”*be U{Hs5 | 6 < A}. Then C = {cs | 6 < w1} is a closed
unbounded set. Let L(Ss, T) be the transitive collapse of H°. Then

cs =orP D and L(ch, T) € L(s, T). (5.3)

Let T, be the restriction of Ty, to level c¢5 of TR(T). Then T, is Af(c‘s’T) via
parameter p, and N, the set of nonprincipal types of T¢,, is nonempty and countable
in V. Then T € L(c;, T), and so N € L(cg, T) by Theorem 3.1. Hence the
structure L[cs, T; T, N] (e., L(cs, T) with x € T,; and x € N as additional
atomic predicates) is X; admissible because no subset of ¢s in L(fs, T) can define
a counting of wIL(ﬁ 1) Now the construction of M in the proof of Theorem 6.1 can
be imitated to produce a model 8 of T¢; such that B realizes all the types in N and

a)‘f” = c¢y. The atomic #gs are supplied by Theorem 4.9. O

6 Bounds on Scattered Theories

Once again L is a countable first-order language, L is a countable fragment of
Lw,0,and T C Lo has a model. £ and Ly are effectively recoverable from Ty. T
is scattered below £ as was defined just before Proposition 4.7.

Theorem 6.1  Suppose a < wy, L(a, T) is Xy admissible, T is scattered below a,
and for each < a, T has a model of Scott rank > f. Then T has a model A such
that w'lA‘ = o and st(A) = a + 1.

Proof By Proposition 4.8, TR (A) has a theory T, on level & such that 7;, is A{ and
T, is U{Tg | B < a}, where Ty is a node on level . Let Z be the following set of
sentences.

(Z1) The atomic diagram of L(a, T') in the sense of £, -
(Z2) Add(d > p)forall B < a.d is a constant not occurring in (Z1).
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(Z3) Let T, be a theory on level d of TR(T). Add # is the countable atomic
model of Ty and ¥ € Ty for each sentence ¥ €7,.

(Z4) Add (b(T) is an atom of Ty) for each b(X) that is an atom of T,; that is,
b(%) generates a principal type of 7.
(Z5) Add the axioms of X admissibility. The set Z is 22L (a’T), since the set of

atoms of T}, is H{‘(‘X’T).

Suppose f < a, L(f,T) is | admissible, and Zg is Z N L(f, T). A funda-
mental fact of forcing in the setting of set theory is the Levy collapse of a cardinal
to V preserves replacement; furthermore, the preservation of X, replacement needs
only X, replacement in V. To check the consistency of Zg, augment L(a, T) by
adding a generic counting of L(f, T') to L(a, T) that preserves the X, admissibility
of L(a, T). The set Zz can be modeled by the augmented L(a, T'). By Proposi-
tion 4.4, Tp € L(B, T). Interpret d as f. Interpret + as the atomic model of Tjg.
Such an 4 belongs to the augmented L (a, T') because there T is countable. If b(X)
is an atom of T}, and belongs to L(f, T), then b(X) is an atom of Tp.

The set Z has a model M that is a proper end extension of L(a, T') but omits a.
a)'f" < a; otherwise, a is recursive in +, and then o € M. By design A = T} for all
S < a; hence, sr(4) > a by Proposition 4.5, and so a)'lA’ = a by (2.6).

Suppose sr(4) = a. Then a € M as follows. By supposition #4 is the atomic
model of T,,. The rank of an atom b( %) of T, is the least # < a such that b(%)
is an atom of Tj. Let f be the function that carries each @ € s to the rank of an
atom of T, that generates the principal type realized by @ in . Thanks to (Z4) f
is definable from 7y, and so f € M. Then lub(range /) = a € M. (]

Corollary 6.2 ([15])  Suppose for every countable model A of T, the Scott rank of
A is less than or equal to w‘f". Then Vaught’s Conjecture holds for T.

Proof Suppose VC(T) fails. Then T is scattered below w;, and TR (T) has nodes
on every countable level. Choose an o < w; such that L(a, T) is £, admissible.
Then T has a countable model + such that w‘l”“ = ¢ and sr(A) = o + 1. U

A more effective version of Corollary 6.2 is as follows. Define
azT = leasta [L(a, T) is X, admissible]. 6.1)
vr(T), the Vaught rank of 7', was defined at the beginning of Section 6.
Corollary 6.3  Suppose T does not have a countable model A such that
ot = o] and st(A) = o] + 1. (6.2)
Then vi(T) < azT.

Proof Ifvr(T) > O'2T , then T is scattered below 02T and TR (T') has nodes on every
level below o . U

As a warmup to the main bounding results of the paper (Section 8), the above is
recast as an effective bounding theorem.

Corollary 6.4  Suppose T is scattered and
sr(A) < a)‘]A’ for every countable A |=T. (6.3)



Bounds on Weak Scattering 19

Then 3p < 0'2T such that
sr(A) < f forevery A = T. (6.4)
Let SA(T') say for every countable model 4 of T, the theory T(j: is w-categorical.

1
Steel [18], as reported in Makkai [11], showed that VC(T) follows from SA(T).
Theorem 6.5 is an effective version of Steel’s result.

The set L(a, T) is said to be recursively Mahlo if L(a, T) is £ admissible and
L(a,T)

every A closed unbounded subset of a has a member £ such that L(f, T) is
Y1 admissible. Define

rm(7") = least y [L(y, T) is recursively Mahlo]. (6.5)
Note that rm(T’) < o .

Theorem 6.5  Suppose T is scattered and

T(Z}’, is w-categorical for every countable A = T. (6.6)

Then 3f < rm(T) such that
sr(A) < f for every countable A = T. (6.7)

Proof Suppose there is no such . Let a be rm(7"). Then Proposition 4.7 supplies

a AlL(a’T) theory T, on level a of TR(T'). Then T, = U{Ty | f < a}, and Tg, as a

function of £, is Z]L(G’T).
There is a ZIL(“’T) function fj such that Ty € L(fo(f), T) for all § < a. Itera-

tion of fjleadstoa Af(a’T) closed unbounded set

Co={y IT, SL(y,T)} (6.8)
A similar argument produces a AlL(a’T) closed unbounded set C; such that
Vy € Ci[(T, N L(y,T))is AL"T]. (6.9)

Then there is a Af(a’T) closed unbounded set K such that
Vy € K[T, S L(y,T)and T, is AL77]. (6.10)

Hence, for some yg € K, L(yg, T) is X1 admissible. Consequently 7, has a model

B such that co;@ = yo. But then Tﬁ;, hence T}, is w-categorical and so has no
1
extension to a node on level a. O

7 Iterated Classical Bounding

In this section classical bounding (reviewed in Section 1) is translated into the lan-
guage of X| admissible sets and revised to allow for iterated use in X; recursive
definitions in Section 8.

Let B(x) be a AgF formula with parameter pg. The formula B(x) is f-bounded
if and only if

Vc[B(c) <= LIS, po; c] E B(O)]. (7.1)

The set L[f, po; c] is the result of iterating first-order definability with y € c as an
additional atomic predicate through the ordinals less than f starting with the transi-
tive closure (tc) of {pg}. Assume B(x) is f-bounded. Define

cp =cNL[B, po;cl. (7.2)
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Then B(c) <= B(cp). For all z let A; be the least X admissible set with z as a
member; thus

A; = L(wy7, tc({z})). (7.3)
Let F (u,v) bea EIZF formula with parameter py, and let p be {pg, p1}. Suppose for
all ¢, if B(c), then there exists a unique J € Ap, g4} such that

Ap.pcp) = F(cp, 9); (7.4)
designate 6 by J, g c. B
Theorem 7.1
(i) There exists a dp,p € Ayp, gy such that for all c,
B(c) — Op,p.c < 0p.p- (7.5)

(ii) 6p,p can be construed as a partial function of p and B whose restriction to
any X1 admissible A has a Zf* definition uniformly in A; that is, one X
formula works for all A.

Proof Let Z be the following Ef‘“’ 71 set of sentences. Let o = a)ip A

(Z1) Introduce constants ¢ and cg, and put cg = ¢ N L[, po; c] and B(cp) in Z.
(Z2) Add constants that name the elements of

L(a, tc({p, B, cp})) (7.6)

and sentences of L, , that define each element in terms of elements of lower defin-
ability rank.

(23) Let F(u,v) be IwG(u,v, w) for some AL formula §(u,v,w). Add
ﬂg(c,;, J,r) forall 6 < a and every r that names an element of (7.6).
(Z4) Add axioms for X admissibility.
Suppose Z is consistent. Assume for a moment that
Z is countable. 7.7

As in the proof of Proposition 4.7, Z has a model M that is a proper end extension
of (7.6) but omits a. Then (7.6) is £; admissible, and so

A{p,ﬁ,c‘/;} = L(a,tC({Pa ﬁ’ C/)’})) (78)
But then A(p g ¢4 | —F (cp, 9) forall 6 < a, a contradiction since
p.prcs € Alp.ficp)-
Thus Z is inconsistent.
To remove assumption (7.7), generically extend the universe V to V'’ so that Z is

countable in V’. Then Z is inconsistent in V’, hence in V, by the absoluteness of
provability in the sense of Lo .

Since Z is ZlA“"ﬂ ! there must be an inconsistent W  Z such that
W e Agpp)-
The set W consists of (W 1), (W2), and (W3):
(W1) (Z1)and (Z4) above.
(W2) Some Ag € Ayp,p) such that Ag C set of sentences of (Z2).
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(W3) For some d; < a, the sentence —§(cg, d,r) for all 6 < J; and every r of
(Z2) that names an element of L(J;, tc({p, ﬁ,_c‘ﬁ})).

Then there is a deduction D € Ay, gy from (W1) and (W2) of
V{F (cp,0) | 6 < o). (7.9

Let pg be the least p such that there is such a D € L(p, tc({p, B})); let §(,, g be the
least d; associated with any such D € L(pg, tc({p, £})). Then

Op.p.c < Op.p (7.10)

for any ¢ such that B(c) holds. The ZIZF formula J¢ that defines J,, s as a partial
function of p, f uniformly owes its existence to the effective nature of deducibility
in £4,,,». The formula F¢ singles out a deduction in Ay, g) that establishes the value
of 6, 5 and can be formulated to succeed in every X admissible A, because p, f € A
implies Ay, ) is a £ definable (uniformly) subclass of A. U

8 Enumeration of Models under Weak Scattering

Let £y be a countable fragment of £, . for some countable first-order language
L and T C Ly a theory with a model. Assume 7 is weakly scattered as defined
in Section 1. For convenience assume 7 mentions all formulas of .Lg; thus £
and £ are recoverable from 7. Since T need not be scattered, there is no hope of
enumerating theories in L(wi, T) whose atomic models are exactly the countable
models of 7. But some useful vestiges of the constructive features of scattering
carry over to weak scattering, and L(w;, T) manages to say a great deal about the
countable models of T

First consider RH(T), the raw hierarchy for the countable models of 7. On
level 0 of RF#H(T), put every Tp such that 7 € Ty and Ty is a finitarily consistent,
w-complete theory of L£y. (If needed, see the beginning of Section 4 for a review.)

Suppose T is on level 6 of RH(T'). Define

0—1 ifdisa successor,
0— = (8.1)
0 if J is not a successor.

Let Lo(Tp—) be Ly. Assume Ty extends a unique 75— on level 0— and L5(Ts—) is
countable. If all n-types (n > 1) of Ty are principal, then £s41(Ty) is undefined and
Ts has no extensions on level 6 + 1. Otherwise, let Ls54+1(75) be the least fragment
of £, extending L£5(Ts5—) and having as a member the conjunction

ANF @) F(X) e p(X)} (8.2)

for every nonprincipal n-type p(X) of Ts (n > 1). Since T is weakly scattered, the
set L5+1(Ts) is countable.

On level 0 + 1 of RH(T) put every Ts4; that extends 7 and is a finitarily con-
sistent, w-complete theory of Ls54+1(7s). Put T; on level A if there is a sequence
T5(0 < A) such that

(a) Tsis on level d;
(b) Tp €T, if p < y;and
© T)=U{Ts |0 < A}
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Define £, (T)) to be U{Ls5(Ts—) | 6 < 4}.
It is straightforward to verify that + is a countable model of T if and only if 4 is
the atomic model of 75 for some countable J. Define the raw tree rank of 4 by

rtr(+4) = (least 0)[+ is the atomic model of some Tj]. (8.3)
Propositions 4.5 and 4.6 hold when tr is rtr. Thus
rtr(A) < sr(s), (8.4)
and if L(a, (T, +)) is £| admissible, then
rtr(A) < a —> sr(A) < a. (8.5)

What matters more is what can be expressed inside L(a, T) when a < w; and
L(a,T) is X admissible. Let As be the set of all Tss on level ¢ of RH(T). The
set Ay will be defined by a B-bounded A§" formula (7.1), and its definition as such,
denoted by " A5, will belong to L(a, T) when 0 < a. The fragment Ls5(Ts5-) will
be constructible from Ts_ via an ordinal ps < a for all Ts— € As_. The pair "As"
and ps will be defined by a simultaneous Zf‘(a’T) recursion uniformly in a, that is,
the same X formula will work for all & < w; such that L(a, T) is | admissible.
Consider an arbitrary T3 on level ¢ of RH(T). There exists a natural recovery
process that can be applied to T to recover the unique sequence T, (y < J) such that
T, isonlevel y,
Y1 =)y2—> Tyl - Tyza and (86)
T, =U{T, | y < A} forall limit 2 < 4.
The recovery proceeds as follows. It begins with Ty is Ts N Lo. If y is a successor,
then
T, =TsN0 L, (T)-). (8.7)
If y isalimit, then T, = U{Ty | B < A}.
The recovery process can be used to decide whether or not an arbitrary set c is a
theory on level 0 of RH(T). The answer is yes if and only if ¢ passes the following
tests at all levels y < 4.

Level 0 Let cp be ¢ N Ly; cp is an extension of T and a finitarily consistent,
w-complete theory of L.

Level y +1 <8  Let &£, 41(cy) be the least fragment extending £, (¢, —) and
having as a member the conjunction
MF (@) | F(X) € p(X)) (8.8)

for every nonprincipal n-type p(%) of cy—. Letcy 41 becNLy 41(cy). ¢y 41 extends
¢y and is a finitarily consistent, m-complete theory of £, 11 (cy ).

Level A (limit) <8  Letc, beU{c, | y < A};let Ly(c;) be U{Ly (cy—) |y < A}

In short, c is a theory on level 0 of RH(T) if and only if ¢ satisfies the recovery
process on all levels y < J and ¢ = c¢s. It will follow below that As is f-bounded
AgF definable (7.1), where S is large enough to define the recovery process.

An effective version of the recovery process is woven into the ZlL @T) recursive
definitions of ps and "As" for 0 < 0 < a. The set L5(Ts_) is constructible from
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Ts_ via the ordinal ps for all T5— € As—, and " A is a f-bounded AgF definition
of As. The definition " A" specifies the value of £ and the AgF formula.

Stage 0 Lo(Tp-) is Lo; Ag is the set of all finitarily consistent, w-complete the-
ories of Lo extending T. Since Ly is recoverable from T, the set Ag is f-bounded
AgF definable with = 0 and parameter 7.

Stage d +1  Assume the recursion has produced sequences
{py Iy =6} {"A, |y <6} € L(a,T) (8.9)
such that "A, " is a f-bounded AgF definition of A, , and &£, (T, —)(y < 9) is first-

order definable over

Llpy. L£o: Ty-1. (8.10)
(The definition of (8.10) follows (7.1).) Consider an arbitrary T5 € As(d > 0). Use
the recovery process to construct the unique 75— € As— such that

Ts— CTs C Ls5(Ts-). (8.11)

The recovery is effective thanks to the sequence p, (y < d). Now L5 (T5) can be
defined as above (8.2) but with an effective twist. Let STs be the set of all n-types
(n > 1) of Ts. Since T is weakly scattered, Corollary 3.2 implies

ST € L(o]°, Ty), (8.12)
the least X admissible set with T as a member. Let
71, = (east Y)[STy € L(y, Ty)]. (8.13)

By Theorem 3.3, the ordinal y7;, as a function of T}, is uniformly X;; the same
ZIZF formula singles out y7; in L(wlT(j, Ts) for every T5 € As and for all §. By
Theorem 7.1(i), there is a y;s such that

(VTs5 € As)lyt; < ys < al. (8.14)

Hence ST5 € L(ys,Ts) for all Ts € As. Theorem 7.1(ii) implies that ys, as a
function of , has a uniform X definition utilizing the parameters occurring in " As™
and the uniform X definition of y7;. Any n-type p(X) € STs for any Ty € As is
constructible from T} via some ordinal less than y;.

A set Ps of first-order definitions can be assembled at level ys of L(a, T) as
follows. Let

PP 1Jeds) (8.15)

be the set of all first-order definitions over L(y, T') for all y < ys with parameter 7.
For each T;5 € Ay, the object p;(T5) is the set defined by p;(75) when the parameter
Ts is assigned the value Ts. The set (8.15) has a natural well-ordering Wy definable
at level ys, since each p% is specified by its level y < ys and its Godel number
e < w as a formula of ZF. The type ds(75), the default type for T, is defined by its
action on Ty € Ag:

Jj(Ts5) = (least j in sense of Ws)[p;(Ts) is an n-type of Ts];  (8.16)
ds(Ts) = pjy(Ts). (8.17)
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The formula p? is a slight variant of p;(J5) and is defined by its action on T5 € A;.

p;j(Ts) if pj(Ts) is an n-type of Ty,
plo = (8.18)
ds(Ts) the default type, otherwise.

Let £ = {p}’ | j € §s}. Then

1. forall Ts € As and p(X) € STy, thereisa j € g5 such that p? defines
p(X) atlevel ys of L(a, T), and
2. p}’ € STy forall Ty € As and all j € .

It can happen for some Ty € Ag and j, k € Js that j # k but pjT‘; = ka(‘. Such
repetitions are the price paid to have #5 € L(ys + 1, T).

The ordinal ps+; < a is chosen just large enough to develop the sequence
py (y < 0) needed for the recovery of T;5_ from T;5(0 > 0) and the ordinal ys needed
to assemble Ps. The set Ls11(Ty) is first-order definable over L[psy1, Lo; Ts]; its
definition begins with £s5(75-), adds the conjunction of all formulas in p? for each

pj% € Ps, and closes under the finitary operations that generate a fragment of £, .

To complete stage J+ 1, construe As to be the set of all x such that the effective
version of the recovery process applied to x reports that x is a theory on level 6 + 1
of RH(T). The effective version uses the sequence p, (0 < y < J+ 1) to define
Ly (T,_) from T, _ forall T,_ € A,_. Thus Asy; is f-bounded ASF definable
with f§ equal to ps+1, and "Asy1 ' € L(a, T). The parameter specified by " Asy; ' is
T.

Stage A (limit) Assume for 0 < y < 4 that £, (T, ) is constructible from T, —
via p, for all T, = € A, . Use the effective version of the recovery process to
define A, as a f-bounded AgF class. For T, € A,, effectively recover the unique
sequence T, (y < 4) such that T is U{T} | y < 4}, and then define £, (7}) to be
UL, (T, ) |0 <y < A}

Makkai [10] showed that if T is a counterexample to Vaught’s Conjecture, then
T has a model of cardinality w; that is &£ ¢, equivalent to a countable model. The
following are variants of his results.

Suppose A is a countable £ admissible set and T € A. Assume T C Ly, Lo
is a countable fragment of £, 4, and £ is a countable first-order language. Also
assume every symbol of £ is mentioned in 7 so that £ is recoverable from 7. Let
&L’ denote an arbitrary fragment of L, , that extends &£, and 7’ an arbitrary finitar-
ily consistent, w-complete theory contained in «£" and extending 7. Call T weakly
scattered in A if and only if ST" € A forall T’ € A. According to Theorem 3.3, we
have the following.

Theorem 8.1  Suppose A is a countable model of T. Assume T is weakly scattered
in L(w] "™, (T, A)), and
sr(A) > a)lT"A’.

Then A is Lo, equivalent to a model of T of cardinality w.

Proof Leta =a)]T"A“. Thus w‘{‘“ = a, since w‘l’* +1 > sr(4). Let Tﬁ‘A (f < sr(A)) be
the Scott analysis of «# as defined in Section 2. By Theorem 3.3, STﬁ"" € L(a, (T, A))
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(and so Tﬁ"‘" has a countable atomic model) for all £ such that f + 1 < sr(+). The

set Z is ElL(a’m‘A’)) and consists of the following sentences:

(Z1) the atomic diagram (in the sense of L, ,,,) of L(a, (T, A));
(Z2) d is acountable ordinal andd > ¢ (all 0 < a)lT"A’);

(Z3) Vyly <d — T;“ has a countable atomic model];

(Z4) axioms of X admissibility.

The set Z is consistent since it can be modeled by V (the real world). Every model
of Z is an end extension of L(a, (T, 4)). Let M be a model of Z that omits «. Thus
M has nonstandard ordinals greater than every ordinal less than a. Hence sr(4) > o
inVanda ¢ M, so sr(+4) > y for some nonstandard y € M.

Now work inside M. Let T(g"’ (0 < y) be the Scott analysis of 4 up to level y.
Choose a nonstandard f < y. Then T[;A’ has a countable atomic model 4. There is
a map

igy 1 Apg —> A (8.19)
that is elementary with respect to all formulas of OC? (defined in Section 2). Note
that i, is not onto, since g is not isomorphic to 4 in M.

But s is isomorphic to 4 in V. Now a)iAﬁ < asince a ¢ M; also sr(4Ag) > J
for all 6 < a. Hence sr(Ap) > a, and so wi%ﬁ > o. Thus both Ag and A are
homogeneous models of T;"’ by (2.6). To see they realize the same types of Ta”"",
choose p, € S Ta"“’ and first suppose Ap = pu (b). In M, note that Ap = pﬁ(l_)) for
some type pg of Tﬁ"‘“ and that A = p, (ig, (b)) for some type py of Ty‘A’. Then

Pa © Pp - Py, (820)
since ig, is GC? elementary. Hence 4 = p, (ig, (b)). It follows that
igy 18 &Ly, » €lementary, (8.21)

since the types of T,}* realized in 4 are atoms of Ly, ¢
Now suppose A = p,(a). In M, the tuple a realizes p, in A, a type of Ty"“’.

Choose a nonstandard § < . Let pg be the restriction of p, to .,C?, and let ps be
the restriction to OC(;‘A. Then p, € ps € pp € py. So

A = Txps(X). (8.22)

But then 3x ps(X) € Tsy1 S Tp, so ps, hence pg, is realized in Ag.

Thanks to the above there exist structures B¢y and B, both isomorphic to 4, such
that By ; $B1 and the inclusion map i is £, . €lementary. A strictly expanding
L), elementary chain B5(0 < w) is defined by iterating i. For 6 < w, assume
Bs is isomorphic to 4. Then enlarge Bs to Bsy1, another copy of +A. For limit
A < w1, let B; be the union of the Bss (6 < A). By, is an Ly, , elementary
extension of By, hence L, »-equivalent to 4, consequently oo ,-equivalent to

A. ]

Corollary 8.2  Suppose T is weakly scattered. For each f < wIT assume T has a
model of Scott rank > . Then T has a countable model A such that

sr(A) > a)lT”A’ = a)lT,
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and every such A is Lo, equivalent to a model of T of cardinality w;.

9 Bounds on Weakly Scattered Theories

Once again let Lo be a countable fragment of £,  for some countable first-order
language £ and T C Lo a weakly scattered theory with a model. Assume L(a, T)
is X1 admissible. Consider B, a A{‘(a’T) set of sentences designed so that every
model of B, constitutes a node on level o of RH(T), the raw hierarchy for 7. The

axioms of B, are

1. T < Tp and T is a finitarily consistent, w-complete theory of £y,

2. T;s has a nonprincipal n-type for some n (all 6 < a),

3. Ts € Ts4+ and Tsy is a finitarily consistent, w-complete theory of £Ls541(7s)

(all o0 < &),

4. T, =U{Ts | 0 < A}and L£;(T)) = U{Ls(T5-) | 6 < A} (all limit A < a).
Then B, is A{‘(a’T) because Section 8 shows how to construct .£5(75—) from T;5_
via the ordinal ps defined by a EIL(a’T) recursion on d < a.

Sets Ps and Js were defined just after (8.14). Define ‘p is on level §° by

p= p? for some j € Js. 9.1

A split at level 6 is a sentence of the form p is on level d, and there exist » and
r’ on level 6 + 1 such that r # r’ and both r and r’ extend p. The sentence in
abbreviated form is (p, r, r’). A split is a sentence of £, » N L(a, T), because Ps,
Ps+1 € L(a, T). The triple {p, r, ¥’} is a k-split if p has arity k. Let K be a set of
k-splits. The set K is unbounded if and only if

VB < a(3o > P)[K has a k-split on level J]. 9.2)

K has the predecessor property if and only if there is a partial function f(p, y) such
thatif y < dand (p,r,r’) € K and asserts p splits at level d, then f(p, y) is defined
and belongs to &, , and

By F [(p.rr') —> (p},.,, is extended by p)]. 9.3)

If such an f exists, then there is one that is EIL(‘X’T) definable, since the AlL(a’T)
definability of B, implies the deduction claimed by (9.3) can be found in L(a, T).

The effective k-splitting hypothesis holds for T at a if and only if there exists an
unbounded A{‘(“’T) set K of k-splits such that K has the predecessor property and
B, U K is consistent (in the sense of Ly, restricted to L(a, T))) if B, is. Con-
sider Makkai’s example [1 1] (also [8]) mentioned in Section 1. It can be formulated
as a fragment Lo and a theory Ty C Lo, both arithmetically definable, with the
following properties:

(1) Ty is not weakly scattered;
(2) every countable model 4 of Tjs has Scott rank at most a)f";
(3) for every countable X admissible L(a), there is a countable model +4 of Ty,
such that w‘l’"‘ = o = sr(A).
Despite (1) it is possible to develop a crude hierarchy for Tjs with a superficial resem-
blance to the raw hierarchy RF# (T) of Section 8. For § < w put theory T’ D Ty on
level d if there exists a countable model #A of Ty such that sr(A) = dand T’ = TS‘;‘? A)
(as defined in Section 2). Since T)s is not weakly scattered, it is not possible to give
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a bounded description of all types associated with all theories on level J, as was done
with #5 in Section 8. Nonetheless, some of the types on level ¢ have properties that
lend credence to the effective k-splitting hypothesis. The model 4 of (3) above is a
tree with @ many levels and infinite paths. Some nodes of + have foundation rank
(fr) < oo. Foundation rank wd + m corresponds to atoms of T”l of rank 6. Asso-

ciated with level ¢ of C#(T)y), the crude hierarchy for Ty, are types of the form

x is on level ¢ of A and fr(x) > wd + m (9.4)

that split on level 6 + 1 of CH(T). On level y < J, (9.4) has a predecessor similar
to (9.4) with ¢ replaced by y.

Theorem 9.1  Suppose T is weakly scattered and L(a, T) is countable and X,
admissible. For each < a, suppose T has a model of Scott rank at least B. If for
some k, the effective k-splitting hypothesis holds for T at a, then T has a countable
model A such that

ot = a and st(A) = a + 1.

Proof By Barwise Compactness, 7" has a model + such that L(a, (T, 4)) is X
admissible and sr(4A) > «. Then rtr(4A) > a by (8.5) and so B, is consistent.
Let K be an unbounded AL(“ D) set of k-splits with a ZL(‘X ) predecessor function
f(y, p). A model of B, U K is constructed so that T, has a nonprincipal type g,
and the structure

Lla,T; T,, qq] 9.5)
is X admissible with respect to X formulas that include 7, and g, as atomic predi-
cates. Then, as in the type omitting proof of Theorem 6.1, T has a model 4 realizing
¢q and such that w‘lA" = a. The universe of (9.5) is the result of iterating first-order
definability through the ordinals less than a starting with T and with T, g, as ad-
ditional atomic predicates. The construction of (9.5) is Henkinesque and gradually
decides all sentences of rank less than a in a standard language £, 7 € AL(“ D) that
names all elements of (9.5) and is able to express how each one is defined from those
of lower definability rank. The language £, r does not have symbols 7, or g, but
does have symbols Ty and g4 for all 8 < a. There is one twist. The X| admissibility
of (9.5) is not obtained by an effective type omitting argument that omits « as in the
proof of Theorem 6.1 but by direct manipulation of ranked sentences of £, 7. The
twist avoids Henkin constants.

Let S, be the set of sentences chosen by the end of stage n. S, will be ZL(a D
definable. Sy requires some preparation. Consider p " forsome j € §,. p T’ is said
to be K -unbounded if the set of all é such that

Ap,r.r)[(p.r.r) € K. pisonlevel 8, f(p.y) = p]'] 9.6)

is unbounded in a. Thus B, U K implies p? has unboundedly many extensions

that split in K. K-unboundedness is a Hé @) property. K-bounded means ‘not
K -unbounded’.

Claim 9.2  Forall y there is a K -unbounded type on level y.

Proof of claim Suppose not. Then for each j € ,, there is a least £; such that

forall 6 > B, (9.6) is false. The ordinal ;, as a function of j, is X, L(a, ), hence
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bounded by some S~ < a. But then K is bounded by fioo. A set U C K is said to
be bounded if

38 < a(¥d > B)[U does not have a k-split on level d].

Definition 9.3 (Definition of Sg)  Start with B, U K. Add

1. sentences of £, 7 that express how each element of (9.5) is defined from
elements of lower rank;

2. gpisatype onlevel f(f < a);

3. gpisextended by g, (B <y < a);

4. g5 # p(f < a and p is K-bounded).

Note that ‘gp is a type on level B’ is a ranked sentence, in particular, a disjunction,
by the remarks following (8.14).

So is 22L (@.T) definable since K-boundedness is 22L (a’T). To check the consis-
tency of Sp, let M be a model of B, U K that specifies the structure of L(a, T'; T,)
but says nothing about ¢, for any y < a. Fix t < a. Suppose y < t; then M can
be interpreted as a model of those sentences in Sy that mention g, only for y < z.

Choose a K-unbounded p; on level 7 with the aid of Claim 9.2. Define
Ur = {s13t7Us,t,t") € Kland f(s,7) = pi}, 9.7
Uy = {slseUnfls,y)=riy <1). (9.8)

Fix y < 7. There must be a K-unbounded r on level y. Suppose not. Then Uy is
bounded for every r on level y. But

U, = U{Uyr | ris on level y }. 9.9)

Hence U, is bounded by the X, admissibility argument used to prove (9.2), and so
pr is K-bounded.
For each y < 7, choose a K-unbounded r, onlevel y. To see that foreach y < 7,

B, UK Fr, is extended by p, (9.10)

lets € U;’. Then s € U,. Assume B, U K. Then s extends f(s,7) = p; and s
extends f (s, y) =r,. Hence p, extends r, .
It follows from (9.10) that

B, UK Fry, is extended by r,, 9.11)

when y; < y2 < . Now M, as promised above, can be interpreted as a model of
that part of Sy that mentions g, only for y < t by setting the interpretation of ¢, in
M equal to that of r, .

Definition 9.4 (Definition of S,,+1) Assume S, is consistent and 2;‘(“1). There
are two cases.

Case (a) Suppose ¥ = V{F; | i € I}is aranked sentence such that S, U {F} is
consistent. S+ is S, U {F;+} for some i’ € I such that S, U {F;+} is consistent.
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Case (b) The purpose of this case is to establish Ag bounding, hence X replace-
ment, for (9.5). Let D(x, y) be a AgF formula with constants naming elements of
(9.5). Fix p < a, and regard D (x, y) as possibly defining a many-valued function
d(x) from p into a that is Ag in the sense of (9.5). For each § < p, define

Hs ={=D(@,y) |y <a}. 9.12)

Subcase (b1) Suppose there is a § < p such that S,, U Hy is consistent. Let ¢’ be
such a d, and put S;,1| equal to S, U Hy. Then d(d") will be undefined.

Subcase (b2)  Suppose (bl) fails. Then for each é < p,
S, =V{D@G,y) |y <al; (9.13)

so by Barwise Compactness there is a ¢(d) < a such that
Su EV{D@,y) |y <c(9)}. 9.14)

c(0) can be defined via deductions from S, as a 22L @) function of 6. Let ¢ be
sup{c(d) | 6 < p}. Then ¢ < a and d(d)(6 < p) will be bounded by c.

Define S = U{S,, | n < w}. By Case (a), S specifies (9.5). ¢, is a nonprincipal
type of T, because for every f < a, Sp and Claim 9.2 compel gz to be K -unbounded
and consequently to split. (An instance of Case (a) results in the choice of a K-
unbounded p such that (s = p) belongs to S.) By Case (b), (9.5) is X| admissible.
It follows, as in the proof of Theorem 6.1, that 7 has a model +4 that realizes g, and
such that a)'f” = a. Hence sr(4A) = a + 1. d

Corollary 9.5 (Bounding)  Suppose T is weakly scattered and for some k satisfies
the effective k-splitting hypothesis at o. If L(a, T) is X, admissible and

(¥ countable A)[A = T —> sr(A) < o], 9.15)

then
3B <a)(VA) [A ET — sr(A) < B]. (9.16)

10 Further Results and Open Questions

Weakening the assumption of effective k-splitting in Section 9 is under study. At this
writing it appears likely that the predecessor (9.3) property can be dropped from the
assumption: all that is needed is an unbounded AlL(a’T) set of k-splits consistent with
B,; then the existence of a predecessor function can be proved. (See Goddard [4].)
There is a price to pay: the type structure p? (0 < a) of a weakly scattered theory
T has to be treated with greater delicacy. A further weakening, less likely but more
than plausible, is to rule out the existence of RN-models of 7. Call A an RN-model
of T if and only if (i) sr(A) = o, (ii) Taﬁ is o-categorical, and (iii) for each n
1

thereisa f < w'f" such that each principal n-type of Ta‘:“A of arity n is generated by a

formula of rank less than . (Ta')ﬁ is defined in Section 2.) Makkai [1 1] produces an
1
s that satisfies (i) and (ii) but not (iii).
It appears that iterated forcing has a role to play above and also in the construction
of an a-saturated model of T when T is weakly scattered and has countable models
of unbounded Scott rank. But that is another story. (See Chan [3].)
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Gerald E. Sacks

Notes

[15] was a hasty writeup of a talk given at the 1971 meeting of the International Congress
of Logic, Methodology and Philosophy of Science. Some details absent from [15] but
needed here are presented below.

. Strictly speaking, the relativization is to the transitive closure of A.

. As final corrections were being made to the galleys, it was discovered that Theorem 4.9

here is also reproved as Theorem 3.8, p. 84 of Baldwin [1] in this special issue.
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