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The Fact Semantics for Ramified Type Theory
and the Axiom of Reducibility

Edwin D. Mares

Abstract This paper uses an atomistic ontology of universals, individuals, and
facts to provide a semantics for ramified type theory. It is shown that with some
natural constraints on the sort of universals and facts admitted into a model, the
axiom of reducibility is made valid.

1 Introduction

Various authors have criticized Russell’s use of the axiom of reducibility in Principia
Mathematica, among them, Ramsey, Quine, and Russell himself. Recently, however,
Linsky [11] has justified the acceptance of the axiom on the basis of his reading of
Russell’s metaphysics of universals. In the present paper I create a formal semantics
from Linsky’s interpretation of Russell and prove that the axiom of reducibility is
valid in this semantics, thus providing a formal counterpart to Linsky’s informal
argument.

The primitives of the model theory are universals, individuals, and facts. Facts
have individuals and universals as constituents. The language contains constants
(that refer to individuals or universals) and variables of all types. Types are divided
into two classes: hereditarily predicative types and nonhereditarily predicative types.
Hereditarily predicative types are the type of singular terms, predicative relations
expressions that hold of individuals, and predicative relations between other entities
that are represented by expressions of hereditarily predicative type. There are con-
stants of hereditarily predicative type only. Individual constants denote individuals.
Function constants denote universals. Nonhereditarily predicative function expres-
sions do not denote anything. The core of the semantics is a substitutional treatment
of quantification for quantifiers that take nonhereditarily predicative variables. Using
the substitutional theory of quantification, we give the truth conditions for formulas
in terms of formulas containing only function constants and names of individuals.
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In its use of the substitutional theory of quantification, this paper follows Leblanc
and Weaver [9], Leblanc [8], and especially Hazen and Davoren [3]. We show that
this semantics, combined with some natural constraints on models, makes valid the
axiom of reducibility.

This paper is not primarily a piece of Russell scholarship. It is an attempt to
provide a reasonable model for Russell’s logic (or, more exactly, one formalization
of Russell’s logic). I do, however, occasionally motivate elements of the model by
reference to Russell’s work. In addition, the reader will notice that I make heavy use
of set-theoretic concepts in this paper. One of the central motivations of Principia
was to reconstruct all of classical mathematics without the existence of sets. My goal
here is only to show that Russell’s logic, including the axiom of reducibility, can be
given a reasonable semantics. Whether we can reconstruct this semantics without
the use of set theoretic concepts is an interesting topic, but one for another paper.

2 Individuals, Universals, and Facts

We begin with ontology. On our theory, there are three broad sorts of entities—
universals, individuals, and facts. Facts have universals and individuals as con-
stituents. A version of simple type theory (the theory of “s-types”) dictates how
entities can be combined into facts. Like Russell, we assume that the class of indi-
viduals and the class of universals of any given type each is a set (see Whitehead and
Russell [17], *24).1

The type of individuals, ι, is a primitive type both of s-types and of r-types (ram-
ified types). Complex s-types are determined by the following inductive definition.
The set of s-types is the smallest set such that

1. ι is an s-type;
2. if t1, . . . , tn are s-types (for some n, 0 < n < ω), then (t1, . . . , tn) is also an

s-type.

A fact is a structure 〈R, a1, . . . , an〉, where R of s-type (t1, . . . , tn) and a1, . . . , an
are entities of type t1, . . . , tn , respectively.2

Note that we include a whole hierarchy of universals in our ontology. This runs
contrary to some interpretations of Russell. Hazen and Davoren [3] hold that, with
a few exceptions, Russellian facts are all of the form 〈R, i1, . . . , in〉 where each i j
is an individual. The exceptions all concern intentional relations, such as belief. It
would seem, however, that Russell does think that there are nonintentional relations
of higher type:

Between universals, as between particulars, there are relations of which we
may be immediately aware. We have just seen that we can perceive that the
resemblance between two shades of green is greater than the resemblance be-
tween a shade of green and a shade of red. Here we are dealing with a relation,
namely “greater than”, between two relations. (Russell [12], pp. 102–3)

Thus it would seem that, at the period when Russell wrote [12], which was at the
time he wrote the first edition of Principia, he held that there were nonintentional
higher-order universals.3

Also note that we have excluded facts from themselves being constituents of facts.
Facts containing other facts are complicated to incorporate into my proof of the ax-
iom of reducibility because sentences that contain other sentences as arguments are
difficult to incorporate into the present framework. I think it is possible to do so, but
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I will leave this task to another paper. It is, however, an important issue since Russell
thought that certain relations connect individuals with facts. In particular, Russell
held that we perceive facts ([14], pp. 82–84). Thus, perceptual relations connect
individuals and facts.

We will also use the notion of a frame. A frame is a set of facts. The class of
frames that we consider have the following property: For every homogeneous collec-
tion of finite sequences of entities, there is a relation in which all and only members
of that set stand. A collection of sequences of entities is homogeneous if there is a
sequence of s-types, (t1, . . . , tn), such that the members of each sequence of entities
in that set are of these types in that order. Thus, our condition says that for any homo-
geneous set of sequences X there is some relation R such that if 〈a1, . . . , an〉 ∈ X ,
then 〈R, a1, . . . , an〉 is in our frame.

This condition is rather strong, so we need a motivation for it. To do so we
need some definitions. An entity a has a property P in a frame F if and only if
〈P, a〉 ∈ F . A frame is called Leibnizian if for each pair of distinct individuals
i and j , there is some property that i has that j does not have. A frame is called
super-Leibnizian if for each pair of individuals or universals, e and e′, there is some
property that e has and e′ lacks. Finally, a frame is said to be super-duper-Leibnizian
if for any sequence of entities, there is some relation in which the entities in the
sequence and only they stand.

I follow Linsky [11] in reading Russell as holding the following two views:
(1) relational properties are genuine properties; (2) the class of properties of individ-
uals is closed under Boolean combinations (Linsky [11], p. 106).

Relational properties are entities like being three miles from Paekakariki or takes
Zermela for walks.4 On Linsky’s reading of Russell, an entity might not be distin-
guished by its monadic properties, like being green, being square, and so on. But
instead, the property that distinguishes between two objects can be a relational prop-
erty. Thus, in formulating Leibniz’s thesis of the identity of indiscernibles, Russell
quantifies over both monadic and relational properties.

Linsky argues for the adoption of Boolean combinations of properties on the
grounds that the inclusion of these combinations helps to justify the axiom of re-
ducibility. The axiom of reducibility says that any propositional function is coexten-
sive with a predicative function. For Linsky’s Russell, first-order function expres-
sions pick out universals or constructions out of universals. Consider the extension
of some propositional function that takes individuals as arguments. Linsky suggests
that any such extension be characterized in terms of a Boolean combination of uni-
versals, such as “being F and G but not H . . . ” (Linsky [11], p. 107).

In order to prove that the axiom of reducibility holds generally (not just for func-
tions taking individuals as arguments), we accept the Boolean combination thesis in
a strong form. That is, for any set of properties of the same type, 8, the conjunctive
property

∧
8 and disjunctive property

∨
8 both exist. We also accept relational

properties in our model. Suppose that 8 is the set of properties that is had by an
entity, a. We call

∧
8 the Leibnizian concept of a. Now consider some set of enti-

ties 9 of the same type. Let 9 ′ be the set of Leibnizian concepts of members of 9.
Then

∨
9 is a property that has all and only members of 9 in its extension. Thus,

our form of the Boolean combination thesis allows us to say that any set of entities
of the same type is characterized by some property.
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In addition, I treat these Boolean combinations as universals properly speaking.
There are facts about them, that is, they enter into facts as arguments and not just as
properties of other things. Moreover, the super-Leibnizian thesis holds for Boolean
combinations and relational properties as well as for simple universals. That is, for
any two distinct properties F and G, F has some property that G lacks. In our formal
model theory we do not make any distinction between simple universals and Boolean
combinations or relational properties. They are all called “universals” and are treated
as elements in our models.

Accepting infinite Boolean combinations helps to motivate our use of super-
duper-Leibnizian frames. Suppose that we have a sequence of entities 〈e1, . . . , en〉,
which have Leibnizian properties ϕ1, . . . , ϕn , respectively. Then the property
λx1 . . . xn(ϕ1(x1) ∧ · · · ∧ ϕn(xn)) is a property that is had only by that sequence
and no other. Thus, the existence of Leibnizian concepts, together with Boolean
combinations and a device such as lambda abstraction allows us to construct super-
duper-Leibnizian frames from super-Leibnizian frames. Moreover, given Boolean
combination and lambda abstraction, from super-duper-Leibnizian frames, we ob-
tain frames in which there is a property corresponding to each homogeneous set of
sequences of entities. Let8 be a homogeneous set of sequences of entities and let us
call the set of universals which correspond to the sequences in 8, 8′. The property
λx(∨F∈8′ F(x)) clearly is had by all and only members of 8.5

It is clear that considering only super-duper-Leibnizian frames makes a weak form
of the axiom of reducibility valid. This weak form says that every open formula
that has only free variables of hereditarily predicative type is equivalent to some
predicative predicate expression of those variables. We need the theorems that follow
to prove the more general thesis that any open formula is equivalent to a predicative
predicate expression.

3 The Language

Our treatment of type theory is based on Church [2]. We also follow Anderson [1],
Hazen [4], and Hazen and Davoren [3] in using lambda abstracts, but only in the
metalanguage. As we shall see, we also assume that every individual has a name and
that there is a name for every universal; thus our language needs as many constants
as our model has entities.6

Before we set out the other elements or our vocabulary and our formation rules,
we will need to state the theory of ramified types (r-types). Our formulation of
ramified types is Church’s. That is, we begin with the type of individuals, ι, and then
for each finite sequence of types, τ1, . . . , τm , also include (τ1, . . . , τm)/n as a type
(where n is a finite natural number greater than 0). (τ1, . . . , τm)/n is the type of
relations between entities of types τ1, . . . , τm and of level n. If the relation is of level
one, it is said to be predicative.7 Propositions have a type ( )/n, where ( ) is the
empty sequence. Propositions and their types play a very small role in the present
theory, since I do not include properties of or relations between propositions in my
language.

An important concept in our theory is that of a hereditarily predicative expression.
An expression is hereditarily predicative if and only if it is of a hereditarily predica-
tive type. The set of hereditarily predicative r-types is defined inductively as the
smallest set such that it contains ι and if τ1, . . . , τn (for finite n > 0) are hereditarily
predicative, then (τ1, . . . , τn)/1 is hereditarily predicative.
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Another concept that we will use in this paper is that of the height of an expres-
sion. The idea behind the notion of height is that we need a measure for the distance
an expression is from having all of its arguments being hereditarily predicative. The
height of a function of type (τ1, . . . , τn)/n, where all of τ1, . . . , τn are hereditarily
predicative, is zero. Where at least one of τ1, . . . , τn is not hereditarily predicative,
the height of a function of type (τ1, . . . , τn)/n is 1 plus the greatest height of any of
τ1, . . . , τn .

Now we turn to the vocabulary and formation rules of the language. Our language
includes names for individuals and universals. It also includes variables of all types
except propositions8 (there are ℵ0 variables of each type), the connectives ∧ and ∼,
the quantifier ∀, as well as parentheses. We define ∨, ⊃, ≡, and ∃ as usual.

Our formation rules are fairly standard:

1. If F is a constant of type (τ1, . . . , τn)/1 and e1, . . . , en are names or variables
of type τ1, . . . , τn , respectively, then F(e1, . . . , en) is a sentence;

2. If f is a variable of type (τ1, . . . , τn)/n and e1, . . . , en are names or variables
of type τ1, . . . , τn , respectively, then f (e1, . . . , en) is a sentence;

3. If A is a sentence, then ∼ A is a sentence;
4. If A and B are sentences, then A ∧ B is a sentence;
5. If A is a sentence, then ∀x A is a sentence.

A formula is a sentence with no free variables. In our models, only formulas are
given truth conditions.

We also utilize a piece of Russellian terminology. Where A and B have at
most x1, . . . , xn free, then we say that A and B are formally equivalent in a model
(as are the propositional functions λx1 . . . xn A and λx1 . . . xn B) if and only if
∀x1 . . . ∀xn(A ≡ B) is true in that model.

I use a notion of order due to Anderson [1], which slightly (but usefully) modifies
that of Church [2].

1. The order of ι is 0;

2. The order of (τ1, . . . , τm)/n is n + N , where N is the highest order of the
τ1, . . . , τm .

Where a is an individual name or free variable, it has the order of its type. For a
variable x bound by a quantifier, the order of x is the order of the type of x plus one.
We can now define the order of a sentence.

1. Order(F(e1, . . . , em)) = N +n, where n is the level of F and N is the highest
order of e1, . . . , em ;

2. Order(A ∧ B) = max{Order(A), Order(B)};
3. Order(∼ A) = Order(A);
4. Order(∀x A) = k, where k is either the order of x plus one or the order of A,

whichever is higher.

One reason why we need this notion of order is so that we can define the type of a
lambda abstract. Although lambdas are not in our object language, we need them to
state the truth conditions for quantified statements and to state the central theorems
of this paper. Where A is a sentence in which at most x1, . . . , xm occur free, the type
of the abstract λx1 . . . xm A is (τ1, . . . , τm)/n, where

n =

{
Order(A)− Order(xi ), if Order(A) > Order(xi )
1 otherwise



242 Edwin D. Mares

and xi has the highest order of x1, . . . , xm .
The axiom of reducibility is the scheme,

∃ f (τ1,...,τn)/1∀x1 . . . ∀xn(A ≡ f (x1, . . . , xn)).

This axiom says that for any sentence with at most x1, . . . , xn free, there is a pred-
icative propositional function that is coextensive with it.

The axiom of reducibility is important to Russell’s theory of classes. It acts as a
comprehension principle of sorts. For Russell, classes are logical fictions. *20.1 of
Principia defines the expression ‘the class ofψs is f ’ as meaning that there is a pred-
icative predicate ϕ that is formally equivalent to ψ and ϕ is f . Thus, in particular,
a ∈ ẑ(ψz) (x is a member of the class of ψs) if and only if there is a predicate ex-
pression ϕ such that ϕa and ∀x(ψx ≡ ϕx). By the axiom of reducibility, therefore,
all predicate expressions, predicative or not, determine classes.

4 Denotation and Truth Conditions

Every constant in our language refers to an entity. Also, our models are constrained
so that every entity has a name in our language.

We have the following correspondence between the r-types of constants and s-
types of entities. Where τ is an r-type, τ ∗ is the corresponding s-type:

1. ι∗ = ι;
2. [(τ1, . . . , τn)/1]

∗
= (τ ∗

1 , . . . , τ
∗
n ).

A model, then, is a pair 〈F , µ〉, where F is a frame and µ is a function from con-
stants in the language to entities in the frame such that where c is a constant of type
τ , µ(c) is of type τ ∗. Now we can give the recursive truth conditions for formulas:

1. where F is a function name and a1, . . . , an are names of appropriate type,
|Hµ F(a1, . . . , an) if and only if 〈µ(F), µ(a1), . . . , µ(an)〉 ∈ F ;

2. |Hµ ∼ A if and only if 6|Hµ A; |Hµ A ∧ B if and only if |Hµ and |Hµ A and
|Hµ B;

3. where x is hereditarily predicative, |Hµ (∀x)A if and only if |Hµ A[n/x], for
all n, names of the same r-type as x ;

4. where x is nonhereditarily predicative, |Hµ (∀x)A if and only if |Hµ A′

for all A′ where A′ is the normalization of A[λx1, . . . , xn(B)/x] and
λx1, . . . , xn(B) is a closed abstract of the same r-type as x .

An easy double induction on the height and complexity of formula proves that if e
and e′ are names and denote the same entity and A is an arbitrary formula, then |Hµ A
if and only if |Hµ A′, where A′ differs from A only in that one or more occurrences
of e are replaced by occurrences of e′.

Before we go on to the proof that the axiom of reducibility holds in this model, I
would like to discuss briefly the differences between this model and other models for
the ramified theory of types. This model differs from, say, those of Kaplan [6] and
Anderson [1] in that Kaplan’s and Anderson’s models contain propositional func-
tions and propositions other than facts. Russell claimed during the period during
which he wrote Principia to be an antirealist about propositions and propositional
functions and so my model is in this respect closer to Russell’s view. My model
avoids commitment to propositional functions by incorporating a substitutional the-
ory of quantification for nonhereditarily predicative variables. My model, how-
ever, is not novel in employing the substitutional theory of quantification. Lebanc
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and Weaver [9] and Leblanc [8] use the substitutional theory of quantification, as
do Hazen and Davoren [3]. The difference between my model and Leblanc and
Weaver’s model is that the latter utilizes in its substitutional instances predicate con-
stants of all types, not just of hereditarily predicative type. My model is closest to
that of Hazen and Davoren, and in fact takes many of its basic features from their
model. The difference, however, is that my model places the Leibnizian constraints
on the model in order to validate the axiom of reducibility.

5 Decomposition Trees

A decomposition tree for a formula has some superficial similarities to a truth-tree
(as in, e.g., Jeffrey [5]). There are, however, some important differences. First,
both conjunctions and negated conjunctions (and universal quantified statements and
their negations) cause decomposition trees to branch. Second, decomposition trees
contain points which have infinitely many children (immediate successors). Every
instance of a universal quantified statement is represented in the tree.

The rules for decomposition trees are as follows. The rules of conjunction de-
composition and negated conjunction decomposition are

A ∧ B

?
∧

�
�

�	

@
@

@R
A B

∼(A ∧ B)

?
∨

�
�

�	

@
@

@R
∼ A ∼B

Where x is a variable of hereditarily predicative type, we have the following rules
for the universal quantifier:

∀x A

?
∀

�
�

�	

@
@

@R?

A[i/x] A[ j/x] A[k/x] . . .

∼∀x A

?
∃

�
�

�	

@
@

@R?

∼ A[i/x] ∼ A[ j/x] ∼ A[k/x] . . .

Where there are infinitely many constants of the relevant type, there are infinitely
many branches under the ∀ and ∃ in the above rules. The rules for quantification
over nonhereditarily predicative functions are
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∀ f A

?
∀

�
�

�	

@
@

@R?
A′ A′′ A′′′ . . .

∼∀ f A

?
∃

�
�

�	

@
@

@R?
∼ A′ ∼ A′′ ∼ A′′′ . . .

where A′, A′′, A′′′, and so on, result from replacing previously bound f with a closed
abstract of the same type as f and normalizing. Finally, we have a rule for double
negation decomposition:

∼∼ A

?
A

If a node has no children, that is, if the formula labeling the node admits of no
further decomposition, then it is called a terminal node. The nature of formulas at
terminal nodes will be of particular interest to us. Clearly, in a full decomposition
tree, terminal nodes will be labeled either by atomic formulas or by negated atomic
formulas.

It is clear that if a branch point below a formula is labeled with an existential
quantifier or a disjunction, then that formula is true if and only if at least one of its
children are true. And if a branch point below a formula is labeled with a universal
quantifier or a conjunction, then that formula is true if and only if all of its children
are true.

In addition to decomposition trees, we use the notion of a partial decomposition
tree. Whereas the top node of a decomposition tree is labeled with a formula, the
top node of a partial decomposition tree is labeled with a sentence which has one
or more free variables. The decomposition rules are applied as usual. As in full
decomposition trees, the decomposition rules are applied as far as possible.

6 The Extensionality of Nonhereditarily Predicative Functions

We say that two expressions ϕ and ψ of the same type τ are indistinguishable in a
model if and only if for all natural numbers n > 0 and for all functions χ of type
τ/n, the normalization of χ(ϕ) is true if and only if the normalization of χ(ψ) is
true. In this section, we show that any two nonhereditarily predicative functions of
the same type that are formally equivalent are also indistinguishable.

We need one more definition before we can proceed with the proof. A sentence
is atomic if it is of the form F(a1, . . . , an), where F and a1, . . . , an are constants. A
sentence is quasi-atomic if it is of the form f (a1, . . . , an), where at least one of f
and a1, . . . , an is a variable.

Lemma 6.1 If f is a variable of nonhereditarily predicative type and A is a sen-
tence with at most f free, then in every terminal node of the partial decomposition of
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A, f either does not occur or it occurs in predicate position either in a quasi-atomic
sentence or a negated quasi-atomic sentence.

Proof By reductio. First we note that there are no atomic sentences of the form
F(. . . f . . . ) since only hereditarily predicative functions can be subjects in atomic
formulas. So no terminal nodes in which f occurs as an argument are atomic (or
negated atomic). Thus, if f occurs as an argument in a terminal node of the tree, in
say ϕ(. . . f . . . ), ϕ must be complex. But if ϕ is complex, further decomposition is
possible and the node is thus not terminal. �

Lemma 6.2 If λx1 . . . xnϕ and λx1 . . . xnψ are nonhereditarily predicative func-
tions of the same type and ∀x1 . . . ∀xn(ϕ ≡ ψ) holds in a model, then λx1 . . . xnϕ
and λx1 . . . xnψ are indistinguishable in that model.

Proof Suppose that λx1 . . . xnϕ and λx1 . . . xnψ are functions of the same type and
∀x1 . . . ∀xn(ϕ ≡ ψ) holds in the model. Let A be a sentence with at most f free,
where f is of the same type as λx1 . . . xnϕ and λx1 . . . xnψ .

Now consider the partial decomposition tree of A. We take two copies of this tree.
In one copy, we replace free occurrences f throughout with λx1 . . . xnϕ and nor-
malize and in the other tree we replace free f with λx1 . . . xnψ and normalize. By
Lemma 6.1, in every terminal node in this tree in which f occurs, it occurs as a pred-
icate in a quasi-atomic sentence or negated quasi-atomic sentence. Thus, because ϕ
and ψ are formally equivalent, every terminal node of one copy is equivalent to the
corresponding terminal node of the other copy. We can see that this implies that every
node of a given copy of the tree will be equivalent in the model to the corresponding
node of the other tree. Thus, we can say that the normalization of A[λx1 . . . xnϕ/ f ]

is equivalent in the model to the the normalization of A[λx1 . . . xnψ/ f ].
Generalizing on A, this shows that λx1 . . . xnϕ and λx1 . . . xnψ are indistinguish-

able. �

Now we apply the same reasoning to the general case.

Theorem 6.3 Let A and B be sentences of the same order in which at most
x1, . . . , xn are free and let M be a model in which A and B are formally equivalent.
Suppose that e1, . . . , en and e′

1, . . . , e′
n are either closed lambda expressions (only

in cases in which the expression is not hereditarily predicative) or constants of the
same type as x1, . . . , xn and are such that if ei is a constant then ei and e′

i are
identical and if ei is not a constant then ei and e′

i are formally equivalent. Then, in
M, A[e1/x1, . . . , en/xn] ≡ B[e′

1/x1, . . . , e′
n/xn].

Proof By induction on the order of A and B. The base case, in which A and B are
first-order sentences is obvious. For then x1, . . . , xn are individual variables, and the
corresponding e1, . . . , en and e′

1, . . . , e′
n are all constants and are such that e′

1, . . . , e′
n

are just e1, . . . , en , respectively. Then the theorem follows from the hypothesis that
A and B are formally equivalent and the truth condition for the universal quantifier.

For the inductive case we take the partial decomposition tree of A and, as in
Lemma 6.2, we take two copies of it. This time, in the only cases in which nonhered-
itarily predicative free variables appear in terminal nodes, they are either in predicate
position or they are arguments of predicates that are free variables in quasi-atomic or
negated quasi-atomic sentences. The reasoning for this is the same as in Lemma 6.1.
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As in Lemma 6.2, we take two copies of this partial decomposition tree. We
consider a terminal node in which at least one nonhereditarily predicative variable is
free and in argument position. This node will be either of the form x j (b1, . . . , bm)
or ∼x j (b1, . . . , bm), where each bi is either a constant or one of x1, . . . , xn (distinct
from x j ).

By the inductive hypothesis, since e j and e′

j are of lower order than A and B, in
our model e j (c1, . . . , cm) ≡ e′

j (c
′

1, . . . , c′
m), where ck is ei if bk is xi and ck is bk

if bk is a constant. Thus, repeating the argument of Lemma 6.2, we can show that
A[e1/x1, . . . , en/xn] ≡ A[e′

1/x1, . . . , e′
n/xn] is true in M.

Moreover, we repeat the argument using the decomposition tree for B to show that
B[e1/x1, . . . , en/xn] ≡ B[e′

1/x1, . . . , e′
n/xn] is true in M. Since, by hypothesis, A

and B are formally equivalent in M and by the transitivity of material equivalence,
A[e1/x1, . . . , en/xn] ≡ B[e′

1/x1, . . . , e′
n/xn] is true in M, ending the proof of the

theorem. �

7 The Axiom of Reducibility

In this section, we show that all instances of the axiom of reducibility are valid in
our class of models. We first show how to construct reduction formulas for propo-
sitional functions. A reduction formula for a function ϕ that takes only hereditarily
predicative expressions as arguments is just

∀x1 . . . ∀xn(ϕ(x1, . . . , xn) ≡ F(x1, . . . , xn)),

where F is a name of a universal that has the same extension as ϕ. We call ‘F’ the
final constant of this formula and ‘F(x1, . . . , xn)’ the reduct of ‘ϕ(x1, . . . , xn)’.

Now consider a function ϕ some arguments of which are not hereditarily pred-
icative. We begin with a sequence of expressions 〈e1, . . . , en〉 such that the normal-
ization of ϕ(e1, . . . , en) is true in the model. Let eα, . . . , eν be the nonhereditarily
predicative expressions from this sequence and Aα, . . . , Aν be their reducts. We then
replace the final constant in each of the Aα, . . . , Aν with variables of the same type,
say, fα, . . . , fν . We call the resulting sentences, A′

α, . . . , A′
ν . We now can construct

a reduction sentence for ϕ:

∀x1 . . . ∀xn(ϕ(x1, . . . , xn) ≡

∃ fα . . . ∃ fν(∀zα(xα(zα) ≡ A′
α) ∧ · · · ∧ ∀zν(xν(zν) ≡ A′

ν) ∧ G(x ′

1, . . . , x ′
n)),

where x ′

i is xi if xi is hereditarily predicative and fi otherwise. Here, for brevity, we
use boldface z to indicate a sequence of variables. In this formula, ‘G’ is the final
constant and it stands for a relation that holds of all and only sequences of entities
〈a1, . . . , an〉 such that ϕ is true of the sequence of expressions (which may include
closed lambda terms) 〈e1, . . . , en〉 and ai is the referent of ei , where ei is a constant,
and where ei is not a constant, ai is the referent of the final constant in a reduction
formula of ei .

Before we go on, let us look at an example of a reduction formula. Suppose
that ϕ is a unary propositional function that takes as arguments unary functions that
are not hereditarily predicative, but the arguments of which are hereditarily pred-
icative. Thus, we begin with ψ , which is a propositional function such that the
normalization of ϕ(ψ) is true in a given model. We know that there is a property
name F such that ∀x(ψ(x) ≡ F(x)) is true. We then generalize. For each ψi such
that the normalization of ϕ(ψi ) is true, there is at least one corresponding Fi . We
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then choose a property name G such that G(Fi ) is true if and only if Fi is the final
constant of a reduction formula of one of these ψi . Then our reduction formula is
∀ f (ϕ( f ) ≡ ∃g(∀x( f (x) ≡ g(x)) ∧ G(g))).

The construction of reduction formulas, in effect, shows that the axiom of re-
ducibility is valid in our models. But to see this, we show that, where ∀x1 . . .
∀xn(ϕ(x1, . . . , xn) ≡ A) is a reduction formula, λx1 . . . xn A is predicative and that
each reduction formula is valid.

Theorem 7.1 If ∀x1 . . . ∀xn(ϕ(x1, . . . , xn) ≡ A) is a reduction formula, then
λx1 . . . xn A is predicative.

Proof By induction on the height of the function to be reduced.

Case 1 Suppose that ϕ takes only hereditarily predicative expressions as argu-
ments. Then its reduction formulas are all of the form ∀x1 . . . ∀xn(ϕ(x1, . . . , xn) ≡

F(x1, . . . , xn)), where F refers to a relation. Then clearly F is hereditarily predica-
tive and λx1 . . . xn F(x1, . . . , xn) is predicative.

Case 2 Suppose that ϕ takes some nonhereditarily predicative expressions as argu-
ments. Then its reduction formulas are all of the form

∀x1 . . . ∀xn(ϕ(x1, . . . , xn) ≡

∃ fα . . . ∃ fν(∀zα(xα(zα) ≡ A′
α) ∧ · · · ∧ ∀zν(xν(zν) ≡ A′

ν) ∧ G(x ′

1, . . . , x ′
n)).

By inductive hypothesis, for each A′

i , each corresponding λzi Ai is predicative.
Thus, the order of each final constant in each Ai (and hence the variable that
replaces it in A′

i ) is at most one greater than the order of the maximal order of
any member of zi . Thus, for each xi the variable that replaces the final con-
stant in A′

i has an order less than or equal to that of xi . Since G is heredi-
tarily predicative, its order is one greater than the order of the greatest order
of all the final constants (and the variables that replace them). Hence the or-
der of G is at most one greater than the maximal order of x1, . . . , xn . Thus,
λx1 . . . xn(∀zα(xα(zα) ≡ A′

α) ∧ · · · ∧ ∀zν(xν(zν) ≡ A′
ν) ∧ G(x ′

1, . . . , x ′
n)) is

predicative. �

Theorem 7.2 If ∀x1 . . . ∀xn(ϕ(x1, . . . , xn) ≡ A) is a reduction formula, then it is
valid.

Proof Again by induction on the height of ϕ.

Case 1 ϕ takes only hereditarily predicative expressions as arguments. Then the
reduction formula for ϕ is just ∀x1 . . . ∀xn(ϕ(x1, . . . , xn) ≡ F(x1, . . . , xn)), where
F is coextensive with ϕ. Thus, ∀x1 . . . ∀xn(ϕ(x1, . . . , xn) ≡ F(x1, . . . , xn)) is true.

Case 2 Suppose that ϕ takes some nonhereditarily predicative expressions as ar-
guments. Then, as in the preceding theorem, its reduction formulas are all of the
form

∀x1 . . . ∀xn(ϕ(x1, . . . , xn) ≡

∃ fα . . . ∃ fν(∀zα(xα(zα) ≡ A′
α) ∧ · · · ∧ ∀zν(xν(zν) ≡ A′

ν) ∧ G(x ′

1, . . . , x ′
n))).

First, consider a sequence of expressions 〈e1, . . . , en〉 such that the normalization of
ϕ(e1, . . . , en) is true in a model, where each hereditarily predicative variable xi is re-
placed with a constant of the same type and each nonhereditarily predicative variable
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is replaced with a closed lambda term of the same type. By the inductive hypothesis,
∀zi (ei (zi ) ≡ Ai ) is true for all i , α ≤ i ≤ ν. By the construction of reduction
sentences, G(e′

1, . . . , e′
n) is also true, where e′

i is just ei for all constants ei and e′

i is
the final constant from ∀zi (ei (zi ) ≡ Ai ) otherwise. Then, by the construction of the
reduction sentence, we know that G(e′

1, . . . , e′
n) is also true.

Now we take a sequence of expressions 〈e1, . . . , en〉 such that

(*) ∃ fα . . . ∃ fν(∀zα(eα(zα) ≡ A′
α) ∧ · · · ∧ ∀zν(eν(zν) ≡ A′

ν) ∧ G(e′

1, . . . , e′
n))

is true (where e′

i is fi for all ei that are not constants). Thus,

(**) ∀zα(eα(zα) ≡ A′′
α) ∧ · · · ∧ ∀zν(eν(zν) ≡ A′′

ν) ∧ G(h1, . . . , hn)

is true where h1, . . . , hn are constants of appropriate types such that hi is ei for ei
that are constants and A′′

i results from A′

i by replacing fi with hi (i.e., (**) is just an
instantiation of (*)).

But, by the construction of reduction sentences, if G(h1, . . . , hn) then there are
expressions bn, . . . , bn such that

ϕ(b1, . . . , bn) ≡

(∀zα(bα(zα) ≡ Bα) ∧ · · · ∧ ∀zν(bν(zν) ≡ Bν) ∧ G(h1, . . . , hn))),

where each ∀zi (bi (zi ) ≡ Bi ) is a reduction sentence. By an easy induction on the
complexity of reduction sentences, it can be seen that the only constant in each Bi is
hi . Moreover, every reduct of a propositional function of a given type has the same
logical form. Putting these two facts together, we can see that Bi is just A′′

i .
Clearly, each ∀zi (ei (zi ) ≡ A′′

i ) and ∀zi (bi (zi ) ≡ A′′

i ) are themselves reduction
formulas. By the inductive hypothesis, every reduction formula of a height lower
than the reduction formula for ϕ is true. Therefore, by standard logical moves, we
know that ∀zi (ei (zi ) ≡ bi (zi )) is true.

Moreover, by Theorem 6.3, if b1, . . . , bn and e1, . . . , en are of the same type, re-
spectively, and are formally equivalent, we know that ϕ(e1, . . . , en) ≡ ϕ(b1, . . . , bn)
is true in the model.

Putting all of this together we get

ϕ(e1, . . . , en) ≡

∃ fα . . . ∃ fν(∀zα(eα(zα) ≡ A′
α) ∧ · · · ∧ ∀zν(eν(zν) ≡ A′

ν) ∧ G(e′

1, . . . , e′
n)),

for all sequences of expressions of the correct type (where every hereditarily pred-
icative expression is a constant). Therefore, generalizing, every reduction formula is
valid. �

Now we know that the axiom of reducibility is valid in our class of models.

Corollary 7.3 ∃ f (τ1,...,τn)/1∀x1 . . . ∀xn(ϕ(x1, . . . , xn) ≡ f (x1, . . . , xn)) is valid.

Proof By Theorem 7.2 and existential generalization. �

8 Concluding Remarks

In this paper I have shown that the axiom of reducibility is valid in the class of frames
in which for each homogeneous collection of sequences of entities there is a relation
that determines it. There is, however, more work to be done. One important task
which we have already mentioned is that we need to extend the current theory to
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treat relations between individuals and facts and to treat propositional functions—
such as truth predicates—that apparently take propositions as arguments. I think
both of these tasks can be treated by integrating another Russellian sort of entity—
logical forms—into the semantic framework. But this is a large topic and I will leave
it to another paper.9

Notes

1. *24 in fact says that there is a universal class for every type of expression. This, in effect,
means that the elements of a given type constitute a set.

2. Thus we only include singular facts, as opposed to general facts, in our ontology. General
facts do appear in The Philosophy of Logical Atomism (Russell [15], p. 101). But in
Principia Russell rejects them: “If ϕx is an elementary proposition, it is true when it
points to a corresponding complex. But (x).ϕx does not point to a single complex: the
corresponding complexes are as numerous as all possible values of x” (Whitehead and
Russell [17], Volume 1, p. 46).

3. It may be that he changed his mind about this by the time he wrote the second edition
of Principia, which is the period with which Hazen and Davoren are concerned. Hazen
has told me that he does think that Russell had changed his mind on this point between
the two editions of Principia.

4. Of course, this is a bit misleading. For Russell “Paekakariki” and “Zermela” are not
proper names, but we will ignore that point here.

5. Note that the foregoing is meant only to be a motivation for the condition on frames, not
a proof that super-duper-Leibnizian frames satisfy this condition.

6. See Lewis [10], p. 145. As Lewis points out, we can always take a thing (or universal)
to be its own name. Following Swift, he calls such a language a Lagadonian language.

7. Whitehead and Russell give two definitions of “predicativity” in [17]. The first coincides
with Church’s, namely, “We will define a function as predicative when it is the next order
above that of its argument. . . ” ([17], Volume 1, p. 53). The other definition (found at
[17], *12, p. 164) states that “a function is said to be predicative when it is a matrix.”
A matrix, in Russell’s terminology, is an open formula. I cannot make sense of the
latter definition, but Landini makes sense of it in his radically different interpretation of
Principia. See Landini [7], Chapter 10.

8. In a much later work, Russell says: “I suggest that variable propositions are only
legitimate when they are an abbreviation for name-variables and relation variables”
([13], p. 199).

9. Church [2], Kaplan [6], and Urquhart [16] think that Principia requires propositions.
I agree with them insofar as I think that it will take a lot of work and some serious
alteration of the theory of ramified theory of types to get rid of propositions.
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