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Nonconstructive Properties of Well-Ordered
T2 Topological Spaces

KYRIAKOS KEREMEDIS and ELEFTHERIOS TACHTSIS

Abstract We show that none of the following statements is provable in
Zermelo-Fraenkel set theory (ZF) answering the corresponding open questions
from Brunner in “The axiom of choice in topology”:

(i) For every T2 topological space (X, T ) if X is well-ordered, then X has a
well-ordered base,

(ii) For every T2 topological space (X, T ), if X is well-ordered, then there
exists a function f : X × W → T such that W is a well-ordered set and
f ({x} × W ) is a neighborhood base at x for each x ∈ X,

(iii) For every T2 topological space (X, T ), if X has a well-ordered dense sub-
set, then there exists a function f : X × W → T such that W is a well-
ordered set and {x} = ∩ f ({x} × W ) for each x ∈ X.

1 Introduction Let (X, T ) be a T2 topological space and let B be a base for X.
Clearly,

|T | ≤ |2X| (1)

and
|X| ≤ |2B |. (2)

(The map f : X → P (B )(= the powerset of B), f (x) = {B ∈ B : x ∈ B} is obviously
1 : 1). We then have the following proposition.

Proposition 1.1 In Fraenkel-Mostowski permutation models, a T2 topological
space (X, T ) is well-ordered if and only if X has a well-ordered base.

Proof: From (1) and the fact that in every permutation model Form 91 in Howard
and Rubin [4], PW : The powerset of a well-ordered set can be well-ordered holds,
we have that if X is well-ordered, then T is well-ordered. Similarly from (2) it follows
that if X has a well-ordered base, then X is well-ordered. �
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In Cohen models however Proposition 1.1 may fail. Indeed, in the basic Cohen
model, model M 1 of [4], the real line R with the standard topology has a countable
base, but R is not well-ordered. There remains the question:

If (X, T ) is a well-ordered T2 topological space, then does X have a well-
ordered base?

Motivated by this question, Brunner [1] defined the following statements:

(A1) Form 148 in [4]: For every T2 topological space (X, T ), if X is well-ordered,
then X has a well-ordered base.

(A2) For every T2 topological space (X, T ), if X is well-ordered, then there exists a
function f : X × W → T such that W is a well-ordered set and f ({x} × W ) is
a neighborhood base at x for each x ∈ X.

(A3) For every T2 topological space (X, T ), if X is well-ordered, then each open
cover of X has a well-ordered open refinement.

(A4) For every T2 topological space (X, T ), if X is well-ordered,then X satisfies (∗):
if O ⊆ T covers X, there is a mapping f : X → T such that x ∈ f (x) and f [X]
refines O.

(A5) For every T2 topological space (X, T ), if X is well-ordered, then (∗) is a hered-
itary property of X.

(A6) For every T2 topological space (X, T ), if X has a well-ordered dense subset,
then there exists a function f : X × W → T such that W is a well-ordered set
and {x} = ∩ f ({x} × W ) for each x ∈ X.

Clearly, each of the above statements is a theorem of ZFC (ZF with the axiom of
choice AC, Form 1 in [4]). Brunner [1] asks whether these statements are provable
in ZF minus the axiom of regularity (ZF0) and Howard and Rubin [4] ask whether
148 implies AC. The aim of this paper is to show that none of (Ai), i = 1, 2, 6, is a
theorem of ZF and that 148 does not imply AC in ZF0. In particular, we show that

(A1), (A2), and (A6) are equivalent to AC in ZF.

The set-theoretic status of (Ai), i = 3, 4, 5 still eludes us.
Before setting out with proofs let us make a straightforward remark on the inter-

relation between the statements (A1) up to (A5).

(i) (A1) ⇐⇒ (A2).
(ii) (A1) =⇒ (A3).

(iii) (A3) ⇐⇒ (A4) ⇐⇒ (A5).

For any undefined topological notion the reader is referred to Willard [9].

2 Results We begin by observing the following.

Theorem 2.1 (A1) does not imply AC in ZF0.

Proof: Let N be the basic Fraenkel model (model N 1 in [4]). By Proposition 1.1
we have that (A1) holds in N . On the other hand, AC fails in N (see [4]) meaning
that (A1) does not imply AC in ZF0 as required. �
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However in ZF, (A1) is equivalent to AC as Theorem 2.3 clarifies. In particular, we
show that both (A1) and (A6) are equivalent to the set-theoretic principle PW (see the
introduction) which in ZF is known to be equivalent to AC (see Felgner and Jech [3]).
We recall first the notion of an independent family of sets.

Definition 2.2 Let θ ≥ ω be an ordinal number. A family A ⊆ P (θ) is said to be
independent if and only if for any finite collection A1, . . . , Am, B1, . . . , Bn of distinct
elements of A , |A1 ∩ · · · ∩ Am ∩ (E\B1) ∩ · · · ∩ (E\Bn)| = |θ|.

Theorem 2.3 In ZF the following statements are equivalent:

(i) PW,

(ii) (A1),

(iii) (A6).

Proof: (i) → (ii) This is straightforward.

(ii) → (i) Fix an ordinal number κ ≥ ω and let A = {ai : i ∈ 2κ} ⊆ P (κ) be an
independent family (see Kunen [6], Exercise (A6), p. 288). The existence of such a
family can be proved in ZF0. We show that 2κ is well-ordered.

For each i ∈ 2κ, let Gi = {x ∈ P (κ) : |x 
 ai| < ω} where 
 denotes the operation
of symmetric difference. Since for all i, j ∈ 2κ, i �= j, ai 
 a j is infinite, we have that
Gi ∩ G j = ∅. Put G = ∪{Gi : i ∈ 2κ}. For each x ∈ [κ]<ω(= {x ∈ P (κ) : |x| <

ω}), i ∈ 2κ and g ∈ Gi, put

B(x, i, g) = {y ∈ [κ]<ω : x ⊆ y and y ∩ g = ∅}. (3)

Claim 2.4 The family {B(x, i, g) : x ∈ [κ]<ω, i ∈ 2κ, g ∈ Gi} is a cover of [κ]<ω.

Proof of Claim 2.4: Fix x ∈ [κ]<ω and let i ∈ 2κ. Then ai\x ∈ Gi and x ∈
B(x, i, ai\x) finishing the proof of the Claim 2.4. �

Let B = {B(x, g) : x ∈ [κ]<ω, g = ∪Q, Q ∈ [G]<ω} where B(x, g) = {y ∈ [κ]<ω :
x ⊆ y and y ∩ g = ∅}.

Claim 2.5 B is a base for a T2 topology TB on [κ]<ω.

Proof of Claim 2.5: By Claim 2.4 we have that B is a cover of [κ]<ω. On the other
hand, if x ∈ B(x1, g1) ∩ B(x2, g2), then since x ∩ g1 = x ∩ g2 = ∅, we have that
B(x, g1 ∪ g2) ∈ B and clearly, x ∈ B(x, g1 ∪ g2) ⊆ B(x1, g1)∩ B(x2, g2). Therefore,
B is a base. We show now that B generates a T2 topology on [κ]<ω. Fix x, y ∈ [κ]<ω

with x �= y and let g ∈ G be such that (x ∪ y) ∩ g = ∅ (take, for example, any i ∈ 2κ

and put g = ai\(x ∪ y)). Then Vx = B(x, g ∪ (y\x)) and Vy = B(y, g ∪ (x\y)) are
disjoint neighborhoods of x and y, respectively. Assume otherwise and let z ∈ Vx ∩
Vy. Then x ⊆ z, z ∩ (g ∪ (y\x)) = ∅, and y ⊆ z, z ∩ (g ∪ (x\y)) = ∅. Thus,
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y ⊆ z and y ∩ (y\x) = ∅ (4)

and

x ⊆ z and x ∩ (x\y) = ∅ (5)

By (4) we have that y ⊆ x and by (5), x ⊆ y. Therefore, x = y, a contradiction. This
completes the proof of Claim 2.5. �

Since ([κ]<ω, TB ) is a well-ordered T2 space, let by (A1) W = {Wj : j ∈ ℵ} be a well-
ordered base. Consider now the open cover U = {B(∅, i, g) : i ∈ 2κ, g ∈ Gi} where
B(x, i, g) is given by (3). Then V = {V ∈ W : V ⊆ U for some U ∈ U} is clearly a
well-ordered open refinement of U. For every V ∈ V , let

HV = {i ∈ 2κ : ∃g ∈ Gi, V ⊆ B(∅, i, g)}. (6)

Claim 2.6 For each V ∈ V , HV is finite.

Proof of Claim 2.6: Assume the contrary and let V0 ∈ V be such that HV0 is in-
finite. As each Gi can be well-ordered uniformly ({ai 
 x : x ∈ [κ]<ω} is a uni-
form well-ordering of Gi) we may define an infinite set {gi ∈ Gi : i ∈ HV0} such
that V0 ⊆ B(∅, i, gi) for all i ∈ HV0 . Fix B(x0, g) a basic open set contained in
V0. Then g = gi1 ∪ gi2 ∪ · · · ∪ gin for some n ∈ ω and gi j ∈ Gi j , j ≤ n. Since
B(x0, g) ⊆ ∩{B(∅, i, gi) : i ∈ HV0}, we have that (∪{gi : i ∈ HV0})\g = ∅ (otherwise
fix i ∈ HV0 and y ∈ gi\g, then x0 ∪{y} ∈ B(x0, g)\B(∅, i, gi), a contradiction). Since
|gi 
 ai| < ω, it follows immediately that for all i ∈ HV0 , Fi = ai\(ai1 ∪ ai2 ∪ · · ·∪ ain )

is finite. This contradicts the fact that A is an independent family and completes the
proof of Claim 2.6. �

Since A is an independent family, U has no finite subcover. Furthermore, as W is a
base it is clear that 2κ = ∪{HV : V ∈ V } and since κ is well-ordered, 2κ is linearly
ordered (e.g., lexicographically). Thus, each HV is well-ordered and consequently 2κ

is well-ordered finishing the proof of (ii) → (i).

(i) → (iii) Since in ZF, AC ⇐⇒ PW, this is straightforward.

(iii) → (i) Fix an ordinal number κ. Since |κ| < |2κ| we may assume without loss
of generality that κ ⊆ 2κ. Let W = {W f : f ∈ 2κ\κ} be an independent family of
subsets of κ. Define a topology T on X = 2κ by requiring: All points in κ to be isolated
whereas neighborhoods of f ∈ 2κ\κ are all sets of the form

V f = { f } ∪ (W f \(∪Q ∪ A)), Q ∈ [W \{W f }]<ω, A ∈ [W f ]<ω.

(X, T ) is a T2 space. Indeed, let x, y ∈ X, x �= y. We consider the following cases.

Case 1: x, y ∈ κ. Then {x}, {y} are the required disjoint neighborhoods of x and
y, respectively.
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Case 2: x ∈ κ, y ∈ 2κ\κ. Then {x}, {y}∪ (Wy\{x}) are the required disjoint neigh-
borhoods of x and y, respectively.

Case 3: x, y ∈ 2κ\κ. Then {x} ∪ (Wx\Wy), {y} ∪ (Wy\Wx) are the required dis-
joint neighborhoods of x and y, respectively.

Thus, (X, T ) is a T2 space having the well-ordered set κ as a dense subset. Adjoin an
extra point ∞ to X and extend the topology T by declaring neighborhoods of ∞ to
be all supersets of {∞} missing finitely many sets { f } ∪ W f , f ∈ 2κ\κ. Thus, each
neighborhood of ∞ misses only finitely many elements of 2κ\κ. Clearly Y = X ∪
{∞} with the extended topology T∞ is a T2 space having κ as a dense subset.

Let, by (A6), {Zi : i ∈ ℵ} be a well-ordered family of neighborhoods of {∞} such
that {∞} = ∩{Zi : i ∈ ℵ}. Then 2κ\κ = ∪{(2κ\κ)\Zi : i ∈ ℵ} and by the above each
set (2κ\κ)\Zi is finite. As 2κ is linearly ordered, (2κ\κ)\Zi is well-ordered. Thus,
2κ\κ is well-ordered finishing the proof of (iii) → (i) and of the theorem. �

Remark 2.7 The statement “If (X, T ) is a T2 space with a well-ordered dense sub-
set, then each open cover of X has a well-ordered open refinement” has also been con-
sidered in [1] where it is shown not to be a theorem of ZF; in the basic Cohen model,
the Moore plane (see Steen and Seebach [8], Example 82) is a separable T2 space hav-
ing an open cover with no well-ordered open refinement. Via the latter proof, Brunner
implicitly suggests that the above statement implies a well-known weak choice prin-
ciple, namely, the axiom of choice for families of nonempty subsets of R, AC(R), and
Form [79 A] in [4]. However, following the proof of Theorem 2.3 we deduce that the
above statement is equivalent to AC in ZF. Indeed, let (X, T ) be the T2 space of The-
orem 2.3 and let O = {{ f } ∪ W f : f ∈ 2κ\κ} ∪ {{x} : x ∈ κ}. Clearly, O is an open
cover of X. Let V = {Vi : i ∈ ℵ} be a well-ordered open refinement of O. For each
f ∈ 2κ\κ, let i f be the least i ∈ ℵ such that f ∈ Vi. Then Vi f ⊆ {g} ∪ Wg for some
g ∈ 2κ\κ. Necessarily, g = f and consequently the function f �→ Vi f is 1 : 1 meaning
that 2κ is well-ordered.

3 Summary The following diagram summarizes the results of the paper.

AC ≡ (A1) ≡ (A2) ≡ (A6)

⇓
(A3) ≡ (A4) ≡ (A5)
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