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ABSTRACTION AND SET THEORY

BOB HALE

Abstract The neo-Fregean program in the philosophy of mathematics seeks
a foundation for a substantial part of mathematics in abstraction principles—for
example, Hume’s Principle: The number of Fs = the number of Gs iff the Fs
and Gs correspond one-one—which can be regarded as implicitly definitional of
fundamental mathematical concepts—for example, cardinal number. This paper
considers what kind of abstraction principle might serve as the basis for a neo-
Fregean set theory. Following a brief review of the main difficulties confronting
the most widely discussed proposal to date—replacing Frege’s inconsistent Ba-
sic Law V by Boolos’s New V which restricts concepts whose extensions obey
the principle of extensionality to those which are small in the sense of being
smaller than the universe—the paper canvasses an alternative way of implement-
ing the limitation of size idea and explores the kind of restrictions which would
be required for it to avoid collapse.

1. Preliminaries

The neo-Fregean program in the philosophy of mathematics aims to provide a foun-
dation for a substantial part of mathematics in abstraction principles which can be
regarded as implicitly definitional of fundamental mathematical concepts. By ab-
straction principles we mean, roughly,1 principles of the shape,

∀α∀β(6(α) = 6(β) ↔ α ≈ β)

where ≈ is an equivalence relation on entities of the type of α, β, . . ., and 6 is a
function from entities of that type to objects. Prominent examples are the

Direction Equivalence: The direction of line a = the direction of line b ↔

a and b are parallel,

in terms of which much of Frege’s original discussion of such principles is conducted;2

Hume’s Principle: ∀F∀G[Nx : Fx = Nx : Gx ↔ ∃R(F1_R_G)],
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which he considers, but eventually rejects, as a means of defining (cardinal) number;
and, of course,

Basic Law V: ∀F∀G[{x : Fx} = {x : Gx} ↔ ∀x(Fx ↔ Gx)]

—the set or class form of Frege’s ill-fated axiom on value-ranges. As is well
known, in the neo-Fregean view, Hume’s Principle may—Frege’s and other mis-
givings notwithstanding—be taken as a means of implicitly defining the concept of
number and can serve as a foundational principle for, at least, elementary arithmetic.
In its philosophical aspect, this claim is of course controversial. But it is not my
purpose to engage further in that controversy here. Instead I would like to explore—
rather tentatively, I should stress—the prospects for developing a version of set theory
along abstractionist lines. Can we find an abstraction principle, or principles, which
might serve as the foundation for an interesting theory of sets?

An abstraction principle which can plausibly be seen as implicitly defining the
concept of set will do so by fixing the identity conditions for its instances, and will—
on pain of changing the subject—take the identity of sets to consist in their having the
same members. If we assume—what does not seem seriously disputable—that any
plausible candidate will be a higher-order abstraction (i.e., will involve abstraction
over an equivalence relation among concepts, rather than objects), then it seems clear,
further, that the equivalence relation involved will have to be either coextensiveness
of concepts or a close relative of it. In other words, what we are looking for is,
broadly speaking, a consistency-preserving restriction of Basic Law V. I think we can
also assume that a suitable restriction—if one can be found—will, in effect (and in
contrast with the restriction Frege himself tried), be a restriction on what concepts
(can) have sets corresponding to them.

If we schematically represent the sought after restriction using a second-level
predicate ‘Good’, then the most obvious ways to restrict BLV are

(A) ∀F∀G[Good(F) ∨ Good(G) → ({x | Fx} = {x | Gx} ↔ ∀x(Fx ↔ Gx))]

and

(B) ∀F∀G[{x | Fx} = {x | Gx} ↔ (Good(F) ∨ Good(G) → ∀x(Fx ↔ Gx))].

The main difference between these is that (A) is a conditionalized abstraction princi-
ple, whereas (B) is unconditional, with the restriction built into the relation required to
hold between F and G for them to yield the same set—fairly obviously, the resulting
relation is an equivalence relation.3 Consequently, (B) yields a “set” for every F ,
regardless of whether it is Good or not, whereas (A) yields a set {x | Fx} only if we
have the additional premise that F is Good. If neither F nor G is Good, the right-
hand side of (B) holds vacuously, so we get that {x | Fx} = {x | Gx}—regardless
of whether F and G are coextensive. That is, we get the same “set” from all Bad
concepts. We get real sets via (B)—that is, objects whose identity is determined by
their membership—only from Good concepts.

2. Goodness as Smallness (1)—New V

What is it for a concept to be Good? Various suggestions have been canvassed. One
general approach picks up on the well-entrenched “limitation of size” idea, that the set-
theoretic paradoxes stem from treating as sets “collections” which are in some sense
“too big”—the collection of all sets, of all sets that are not members of themselves, of
all ordinals, and so forth. On one version of this (Goodness is Smallness) approach,
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we define a concept to be Small if it is smaller (i.e., has fewer instances) than some
concept under which everything, or at least every object, falls. And the favored
universal concept has been that of self-identity. Following Boolos ([3], p. 178), we
say that a concept G “goes into” a concept F if and only if there is a one-one function
taking the Gs into the Fs, and that F is Small if and only if the concept self-identical
does not go into F . If we frame our restricted set-abstraction in the style (B), the
result is what Boolos called New V (and Wright ([12], p. 300) calls VE):

New V: ∀F∀G[{x | Fx} = {x | Gx} ↔

(Small(F) ∨ Small(G) → ∀x(Fx ↔ Gx))].

Although, as is now well known, a certain amount of set-theory can be obtained by
adding New V to second-order logic, there are some problems with it. The most
serious of these is that we don’t get enough set theory. As Boolos showed, neither an
axiom of infinity nor the power set axiom can be obtained as theorems on this basis,
so the theory is rather weak—and certainly weaker than a neo-Fregean requires, if he
is to have a set-theoretic foundation for analysis.4 I shall return to this below.

A further, quite different, difficulty relates to the constraints needed to differentiate
between good or acceptable abstraction principles and bad or unacceptable ones. It is
clear that some constraints are needed since not all abstractions are acceptable—as is
dramatically illustrated by Basic Law V. Obviously consistency is one requirement.
But it does not seem that it can be the only one since—as Boolos also showed—
one can formulate abstraction principles which are severally consistent but mutually
incompatible. For example,5 we can take as our equivalence relation the relation
which holds between concepts F and G just when their symmetric difference is finite
(i.e., when there are just finitely many objects which are either F-but-not-G or G-but-
not-F). Writing this briefly as 1(F, G), we can frame the abstraction which Wright
calls

Nuisances: ∀F∀G[ν(F) = ν(G) ↔ 1(F, G)].

As Wright shows, this is a consistent abstraction but is satisfiable only in domains
containing finitely many objects. Hume’s Principle by contrast, though likewise
provably consistent, is satisfiable only in domains containing at least a countable
infinity of objects. Since they are thus mutually incompatible, Hume’s Principle and
Nuisances cannot both be acceptable. The problem for the neo-Fregean is to justify
rejecting the latter as unacceptable. To this end, Wright proposes a constraint—
his first conservativeness constraint6—which has obvious affinities to the notion of
conservativeness deployed by Field in his defense of nominalism.7 His plausible
thought is, roughly, that a satisfactory explanation of a concept—whether by means
of an abstraction principle or other form of definition—should do no more than fix the
truth-conditions of statements involving that concept. It should have nothing to say
about the truth-values of statements which already have determinate truth-conditions
independently of the introduction of that concept, and in particular, it should carry
no implications for the extensions of other concepts unconnected with the concept
the explanation seeks to introduce. If we think of an abstraction principle as added
to an existing theory, the requirement can be expressed, still somewhat roughly, as
that the abstraction should carry no implications regarding the “old” ontology—the
ontology of the given theory; it should be conservative with respect to that theory
in the sense that its addition to the theory does not settle the truth-values of any
statements expressible in the old language which are left unsettled by that theory.8
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Precisely because it is satisfiable only in finite universes, Nuisances does carry such
implications—it implies, for example, that there are at most finitely many aardvarks,
or subatomic particles, or space-time points, and so forth—it fails this constraint
and should therefore be rejected as unacceptable, even though consistent. Hume’s
Principle, by constrast, while implying that there are at least countably infinitely many
objects, places no restrictions—either upper or lower bounds—upon the extensions
of concepts other than the concept it is intended implicitly to define. That it places
no upper bound is obvious. But it is crucial that it places no lower bound either,
since the requirement that there be at least infinitely many objects is satisfied by the
abstracts—numbers—which it itself serves to introduce, so that it makes no demand
that any other concepts should have infinitely many instances.

So far, so good. But how do things stand with regard to New V? Shapiro and
Weir [11], exploiting a point made originally by Boolos ([2], p. 102), have argued
that New V violates Wright’s own first constraint. In essence, the argument is simple
enough. If the concept ordinal is Small, New V yields a set (and not just a “set”) of
all the ordinals and we have the Burali-Forti contradiction. Hence ordinal must be
Big. But in that case it is exactly as big as the universe, that is, there is a one-one
correspondence between ordinal and a(ny) universal concept, say self-identity. But
this, together with the fact that the ordinals are well-ordered by membership, entails
Global Well-Ordering—the existence of a well-ordering of the universe. Given that
the existence, or otherwise, of such a well-ordering may reasonably be taken to be
independent of existing theory, New V must be reckoned nonconservative.

3. Goodness as Smallness (2)—Small2 V

Since the difficulty for New V just explained crucially exploits the definition of Small
as, in effect, smaller than the (or a) universal concept, it is possible that it could be
avoided by a suitable redefinition of Smallness. As a first step in the direction I have
in mind, one might, in preference to defining Smallness in terms of being smaller
than some specified universal concept, say that a concept is Small if it is smaller
than some concept or other—where F < G if there is a bijection of F into G but
not-(F ∼ G)—and take as our set-abstraction either New V with Small so defined,
or perhaps a conditional ((A)-type) abstraction:

Small V: ∀F∀G[Small(F) ∨ Small(G) →

({x | Fx} = {x | Gx} ↔ ∀x(Fx ↔ Gx))].

However, it is obvious that, at least so long as some universal concept V is in play and
can serve as providing an upper bound, so to speak, on the potential sizes of concepts,
this simple suggestion makes no advance over New V as originally understood.9 For
then, since any concept can be no bigger than our universal concept V, a concept F
will be smaller than some concept G only if smaller than V, and if smaller than V,
will certainly be smaller than some concept or other—so ∃G F < G if and only if
F < V. But now if ordinal is Small in this sense, and so Good, we shall have the
Burali-Forti again, so that ordinal must be Bad, that is, ordinal ∼V, and we have
Global Well-Ordering, just as before.

Flawed as our simple proposal is, there is a refinement of it which really does
avoid the Global Well-Ordering problem.10 This is to interpret Goodness as double
Smallness, where a concept is doubly small if and only if it is (strictly) smaller than
some concept which is itself (strictly) smaller than some concept, that is,
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Small2(F) ↔ ∃G∃H (F < G < H ).

Interpreting Goodness as Smallness2 blocks the reasoning which shows that New V,
as originally understood with Small as meaning “smaller than the universe,” implies
Global Well-Ordering. We can still show, of course, that ordinal cannot be Good—
that is, now Small2—since if it were, we would have the Burali-Forti paradox, just
as before. So we have to agree that ordinal is Bad. But that just means that it is not
Small2, and from this we cannot infer that it is bijectible onto any universal concept
(or indeed onto any concept).11

As has already been indicated, Wright’s first conservativeness constraint is one
of a pair. The second constraint he proposes (see [12], pp. 300–302) concerns ab-
straction principles which, as he puts it, embed a paradoxical component—centrally,
abstractions of the type,

(D) ∀F∀G[6(F) = 6(G) ↔ ((ϕ(F) ∧ ϕ(G)) ∨ ∀x(Fx ↔ Gx)))],

of which New V is an instance.12 In general, by exploiting the reasoning that leads
from BLV to contradiction, we can prove, from any instance of (D), that ∃Fϕ(F).
For example, from New V, one can prove, via the Russell contradiction, that there
are Bad concepts (i.e., that not all concepts are Small). In particular, we can prove
that self-identity is Big. But as Wright observes, that is a result which we can prove
independently of New V, as a theorem of second-order logic. The second constraint
proposes that this last condition should be met by any (D)-type abstraction or, per-
haps more generally, any abstraction which embeds a paradoxical component. As
Wright at one point expresses it: “any consequences which may be elicited [from
the abstraction] by exploiting its paradoxical component should be, a priori, in inde-
pendent good standing.”13 The precise force of this constraint depends, obviously,
on what is to be understood by consequences being in independent good standing.
Being independently provable in logic alone would clearly suffice, but Wright does
not wish to accept that as a necessary condition: “ . . . ‘independent good standing’
might also reasonably be taken to cover the case where a consequence elicited from
such an abstraction by ‘fishy’—paradox-exploitative—means can also be obtained
not from logic alone but, as it were, innocently from additional resources provided
by that very abstraction” ([12], p. 303). Given this qualification, it is at least not
clear that the derivability of Global Well-Ordering via the Burali-Forti constitutes a
violation of conservativeness in Wright’s second sense, as distinct from his first. And
for essentially the same reason, the fact that Small2 V, although not implying Global
Well-Ordering, does imply that there can be no concept larger than ordinal but smaller
than the universe is not clearly in breach of the second constraint either.14 But, at least
pending further clarification of the key notion of independent good standing—and
especially of what it is for a result to be establishable only in a viciously paradox-
exploitative way—it is anyway not clear what form, if any, of the second constraint
should be respected. Certainly “paradox-exploitative” had better not be understood
so liberally as to render any proof by reductio ad absurdum as such. No acceptable
constraint—and certainly none that Wright intended—should require that we may
accept a result established by reductio ad absurdum only when we can independently
prove it by constructive means.

The other, and almost certainly the most serious, of the two problems New V
faces, as we noted, is that it suffices for only a rather weak set theory. In particular, it
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doesn’t give us either an axiom of infinity or a power set axiom as theorems. And the
same goes, of course, for New V reinterpreted with Good as Small2 and Small2 V.
As Wright has observed, however, this need not be a crippling drawback from the
neo-Fregean’s point of view, if he can justify supplementing New V, or Small2 V,
with other principles—perhaps other abstraction principles—which compensate for
its weakness. On this more catholic approach, we separate two distinct roles one
might ask a set-abstraction principle to discharge—fixing the concept of set, on the
one hand and, on the other, serving as a comprehension principle. The claim would be
that New V’s—or Small2 V’s—shortcomings as a comprehension principle need not
debar it from successfully discharging a concept-fixing role—of serving as a means
of introducing the concept, while leaving its extension to be determined, largely or
even entirely, by other principles.15 I want to discuss a couple of ways in which this
might be done. I’ll concentrate on the possibility of supplementing Small2 V with
other abstraction principles—I don’t think it is obvious that the neo-Fregean could
not justify using supplementary principles other than abstractions, but I won’t pursue
that alternative here.16

The general strategy then is to look for other abstraction principles which might
be used to set up sortal concepts in the presence of which we get an interesting range
of Small2 sortal concepts which have sets corresponding to them.

4. Cut Principles

The first approach I want to consider makes essential use of a kind of abstraction
principle which plays a key role in a neo-Fregean construction of the real numbers I
developed a little while ago (in Hale [8]). In outline, the leading idea was to get the
real numbers in broadly the way that Frege proposed to do, by defining them as ratios
of quantities. The concept of a ratio of quantities is itself to be introduced by means
of an abstraction corresponding to the ancient equimultiples principle:

The ratio a : b = the ratio c : d iff for all positive integers m and n, ma is
equal to, greater, or less than nb according as mc is equal to, greater, or less
than nd.

Here a, b are quantities of some single kind, and likewise c, d. Crucially, c and
d need not be of the same kind as a and b.17 Quantities are themselves abstract
objects (defined by abstraction over quantitative equivalence relations).18 To get
all the positive reals (and, with a little extra work, all the reals), ratio abstraction
has to be applied to a sufficiently rich abstract structure—what I called a complete
quantitative domain. A kind of quantity Q constitutes a complete domain if and only
if it is closed under a commutative and associative operation ⊕ such that exactly one
of a = b, ∃c(a = b ⊕ c), ∃c(b = a ⊕ c) holds for any “elements” of Q and the
following further conditions are met:

[Archimedean condition] ∀a, b ∈ Q∃m(ma > b),
[Fourth proportionals] ∀a, b, c, ∈ Q∃d ∈ Q(a : b = d : c),
[Completeness] Every bounded nonempty property P on Q

has a least upper bound.

Given a complete domain of quantities, it is hardly surprising that one gets the (posi-
tive) reals by ratio abstraction over it. The obvious question is: Can the neo-Fregean
justify the assumption that there exists at least one such domain? If attention is



ABSTRACTION AND SET THEORY 385

restricted to domains of physical quantities (i.e., quantities “belonging” to physical
objects), then the answer is almost certainly No. But nothing in the definition of
quantity, or that of quantitative domains, precludes recognizing numbers themselves
as a kind of quantity. In particular, the positive natural numbers—whose existence
the neo-Fregean can justify by appeal to Hume’s Principle—form a quantitative do-
main meeting all but the last two conditions. And the ratios of positive natural
numbers, RN+, form a domain meeting all but the last condition—completeness. To
demonstrate, a priori, the existence of a complete domain, the neo-Fregean can mimic
Dedekind’s construction. Define a property P of ratios of positive natural numbers to
be a cut property just in case P is nonempty, bounded above, downward closed, and
having no greatest instance. Then we can abstract over the cut properties on R N+

using

Cut abstraction: ∀F∀G[Cut(F)=Cut(G) ↔ ∀x(Fx ↔ Gx)] where x varies
over just RN+ and F, G over just cut properties on RN+.

The Cuts thus obtained can then be shown to form a complete domain.
For present purposes, it is Cut abstraction that is of primary interest to us. On

the basis of Hume’s Principle, we can define the property of being a natural number,
and show that it has no end of instances. Appealing then to Cut abstraction, we can
define the property of being a Cut on RN+ and show that the property of being a
natural number is smaller than this property, and so is Small. If an abstractionist set
theory could be based on Small V, this would suffice to give us an infinite set—the
set of natural numbers. That is, Small V combined with Hume’s Principle and Cut
abstraction would give us the effect of an axiom of infinity. However, if we are
working with Small2 V, we need to show that natural number is doubly small before
we can obtain the corresponding set. Can we do so? Consideration of an objection
that has been brought against my use of Cut abstraction suggests a way in which we
might.19

Cut abstraction may be viewed as an instance of a general schema:

Cut schema: ∀F∀G[Cut(F) = Cut(G) ↔ ∀x(Fx ↔ Gx)] where x varies
over a suitable domain Q and F , G over cut properties on Q.

What counts as an instance of this schema is, of course, unclear until we say what
counts as a suitable domain. Although the definition of cut property makes sense
whatever domain we assume, there only exist cut properties if the domain is suitably
structured—it will need to be at least densely ordered. It is certainly implausible to
suppose that the particular Cut principle I’ve used is the only acceptable instance of
this schema.

Cut principles, like Hume’s Principle and unlike the direction Equivalence, are
second-order abstractions—they abstract over an equivalence relation on concepts,
rather than objects. But in other respects, they differ significantly from Hume’s
Principle. Let us assume that we are concerned with the application of abstraction
principles to domains of definite cardinal size, finite or infinite. With Hume and Cut
principles, the underlying domain is a domain of concepts. There will be more of
these than there are objects, however concepts are individuated. If there are κ objects,
and concepts are individuated purely extensionally, there will be exactly 2κ concepts.
Thus a second-order abstraction can “generate” up to 2κ abstracts, when the initial
domain of objects is κ-sized. Applied to any domain of concepts, BLV generates
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the maximum collection of abstracts—one for each concept. By contrast, Hume’s
Principle is quite modest. Because its equivalence relation partitions the concepts into
equivalence classes by equinumerosity,and there are just κ+1 such classes when there
are κ objects over which the concepts are defined, Hume generates more abstracts
than there are other objects when, but only when, κ is finite. When κ is infinite, Hume
generates κ +1 abstracts from the 2κ concepts, and κ +1 = κ . Hume inflates on finite
domains but not on infinite domains. This ensures that Hume has no finite models.
But it is stable at infinite cardinalities. Cut principles behave quite differently. As
noted, if a cut principle is applied to a finite domain, it generates no abstracts at all,
as there are no cut properties on the domain. If the underlying domain is infinite and
at least densely ordered, what happens depends upon whether the domain is strictly
densely ordered (like the rationals) or completely ordered (like the reals). Applied to
a strictly dense domain, cut abstraction inflates, giving a completely ordered domain
of abstracts. Applied to a completely ordered domain, however, it gives a domain of
abstracts isomorphic to the underlying domain, and so does not inflate. That is, what
happens with the rationals and reals when cut abstraction is applied and then reapplied
is representative of what happens in general. So any one cut principle inflates on a
strictly dense domain, but is not rampantly inflationary (in the sense that its iterated
application leads to unlimited inflation).

Various people20 have observed that on certain standard set-theoretic assumptions,
any set of definite cardinal size can be put in a (strictly) dense linear order, so that
while it is true—as I have claimed—that the reapplication of a cut principle to the
(complete and so not strictly dense) domain of abstracts generated by its application
to a strictly dense domain does not inflate, there will be a strictly dense ordering of
the domain of cut abstracts thus generated on which a cut principle does inflate. So
that if we start with a countable strictly dense ordering and apply a cut principle to
get a 2ℵ0 -sized domain C of cuts, there is a strictly dense ordering of C , call it C∗, to
which another cut principle may be applied to get a new domain of cuts of size 22ℵ0 ,
and so on. In particular, Cook has proved the following.

Theorem 4.1 (Cook’s Theorem) For any infinite cardinal κ , there is a linear
order (A, <) such that | A |≤ κ and | Comp(A, <) |> κ , where Comp(A, <) is the
set of Dedekind Cuts on (A, <).21

Proof: Given an infinite cardinal κ , let λ be the least cardinal ≤ κ such that 2λ > κ .
Let A be the subset of functions from λ (as an ordinal) into {0, 1} such that f ∈ A
if and only if there is an ordinal γ < λ such that for all ordinals α ≥ γ, f (α) = 0.
For f, g ∈ A, let f < g if and only if, at the least γ where f (γ ) 6= g(γ ), f (γ ) = 0.
Then | A |≤ κ by the following computation:

| A |=|

γ⋃

γ<λ

2 |≤
∑

γ<λ

2|γ | ≤
∑

γ<λ

κ ≤ λ × κ = κ.

But | Comp(A, <) |= 2λ > κ , since Comp(A, <) is isomorphic to the set of all
functions from λ to {0, 1}. �

Cook thinks his result is disastrous for the neo-Fregean logicist because he thinks
that the neo-Fregean should only endorse abstraction principles that are “epistemo-
logically modest,” but that certain “natural generalizations” of my cut principle are
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clearly epistemologically extravagant. Specifically, he argues that the conjunction of
Hume’s Principle with a generalized cut principle,

GCA ∀P∀Q∀{H, <}[Cut(P, {H, <}) = Cut(Q, {H, <}) ↔

∀x((H x ∧ P and Q are cut properties on {H, <}) → (Px ↔ Qx))],

has, at best, only proper class-sized models, and that its conjunction with a generalized
cut schema

GCA Schema: All formulas of the form ∀P∀Q[Cut(P, {H, <}) =

Cut(Q, {H, <}) ↔ ∀x(H x ∧ P and Q are cut properties on
{H, <} → (Px ↔ Qx))]

may have set-sized models, but if so, can have only models of cardinality infinitely
many times up from that of the continuum.

I don’t have space to discuss this objection in the detail it deserves, so I shall be
brief and somewhat dogmatic. I am unmoved by it for two main reasons.

First, Cook seems to me to give no compelling reason why a neo-Fregean abstrac-
tionist must endorse either his generalized cut principle or even all instances of his
generalized cut schema. GCA is not itself an abstraction principle, and it is not clear
why an abstractionist should be committed to it. No doubt there are many instances
of the generalization to which the abstractionist should have no objection, but that
does not amount to a reason for thinking that he must assert the generalization itself.
After all, there are doubtless many instances of the general abstraction schema,

∀α∀β[6(α) = 6(β) ↔ α ≈ β],

with which the abstractionist should have no quarrel, but he can hardly be expected
to endorse its generalization,

∀ ≈ ∀6∀α∀β[6(α) = 6(β) ↔ α ≈ β],

which implies, inter alia, BLV, and is therefore outright inconsistent! I would of course
agree that an abstractionist shouldn’t reject any instance of GCA Schema without good
reason, but that is not the same thing as being committed to all instances.

Second, Cook’s understanding of epistemological modesty seems to me flawed,
and indeed, simply question-begging. Cook takes it that an abstraction will be im-
modest if it “generates too many objects.” If “too many” meant “too many to avoid
inconsistency,” there could be no disagreeing with him. But he doesn’t—if he did, he
would have an objection only if he’d shown that the generalizations, coupled with HP,
lead to contradiction. In fact, it’s not clear that he means anything more precise than
“rather a lot, by set-theoreticians’ standards.” The short answer to that is a question:
Why should that be objectionable? Wouldn’t it actually be a rather good result, from
the neo-Fregean’s perspective, if it turned out that his principles are mathematically
quite powerful?

Indeed—to return to our main business—it might seem that the neo-Fregean can
turn Cook’s result to his own advantage. We saw how, by appealing to the fact that
the concept Natural number is smaller than the concept Cut on R N+ , he can show
that the former concept is at least (singly) Small. But if something sufficiently close
to Cook’s result were at his disposal, why should he not apply it to the cuts on R N+ ,
together with a suitable linear ordering, to obtain a further cut concept strictly larger
than Cut on RN+? He would then be in position to apply Small2 V to obtain the
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countably infinite set of natural numbers. And if it can be done once, why shouldn’t
it be done again, and again, to obtain larger and larger uncountably infinite sets?

Before he succumbs to euphoria at the prospect of a quite powerful Small2 set
theory, however, the neo-Fregean should remind himself that he does not get Cook’s
result for free. We have already noted that its proof relies upon Choice. It is not
obvious that Choice must be out of bounds for the neo-Fregean—that he could not
argue for it as a logical principle, or secure its effect by means of a suitable abstraction.
But it is equally not obvious that he could do so. I have not yet been able to get a clear
view on the matter, and so must leave this question for further investigation. But there
is, in any case, another—glaringly obvious and seemingly more troublesome—fly in
the ointment. Cook’s proof begins: “Given an infinite cardinal κ , let λ be the least
cardinal ≤ κ such that 2λ > κ . . . .” But how do we know that there is such a λ?
What, in other words, justifies the assumption that there are cardinals > κ? I can
see no way of justifying it without appealing to the Power Set Axiom and Cantor’s
Theorem, or something at least as problematic, from the neo-Fregean’s point of view.
If that is right, then it would seem that Cook’s result cannot after all be the blessing
in disguise that it may at first appear to be.

The difficulty is not decisive. It might be suggested that a neo-Fregean who looks
askance at Cook’s proof because it is a proof in set theory is being unduly fastidious.22

Consider Boolos’s proof of the equiconsistency of Frege Arithmetic (HP+2nd-order
logic) with second-order arithmetic—this is likewise a proof in set theory, but that
need not mean that the assurance it provides is unavailable to neo-Fregeans. We need a
distinction between the “internal perspective”—which is concerned with what results
can be obtained using only resources available to the neo-Fregean—and the “external
perspective”—which is concerned with what results can be obtained, perhaps by
making indispensable use of other resources, about the neo-Fregean enterprise. Why
shouldn’t the neo-Fregean welcome Cook’s proof as it stands, as demonstrating “from
the outside” that a neo-Fregean set theory based on Small2 V + HP + (a suitably
restricted) Cut schema is agreeably powerful?

This suggestion raises delicate issues. Their resolution depends, in part at least,
upon what principled attitude the neo-Fregean can take toward reasoning that makes
essential use of principles which cannot be justified on a neo-Fregean basis, and to
what extent he can justify reliance on such reasoning. I don’t think we know how much
mathematics—and in particular how much set theory—is amenable to neo-Fregean
reconstruction. My guess—and I imagine just about everyone’s—is that there may
be quite severe limits on what can be so reconstructed. That begs the question: What
should the neo-Fregean say about the parts that neo-Fregeanism doesn’t reach? I
think he is bound to regard them as having a significantly different epistemological
and ontological status from the reachable parts. But that need not mean that he must
dismiss them as worthless. Perhaps he can find an indirect justification for relying
on them. If so, then there may be a way to uphold the present suggestion. But even
if there is, the difficulty is serious enough to warrant exploration of an alternative
strategy.

5. Power Concepts

Since the doubt whether the neo-Fregean can exploit Cook’s result turns on the need
to appeal to the Power Set Axiom, one might wonder whether one can secure some
of the effect of Cantor’s Theorem in a higher-order logic without using the Power Set
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Axiom—enough to secure a significant range of concepts as Small2, and so as having
sets corresponding to them.

For any first-level concept F , we can form a second-level concept F P—the con-
cept: subconcept of F—defined by F P(G) ↔ ∀x(Gx → Fx). Define F ≤ G if
and only if F ∼ H for some subconcept H of G, and define F < G if and only if
F ≤ G but ¬F ∼ G. Then we can prove, by an obvious adaptation of the usual
proof of Cantor’s Theorem, that ∀F F < F P .

Proof: (i) For each x falling under F , there is a unitary subconcept of F—the con-
cept: =x—under which x alone falls. Denote the (second-level) concept under which
all these unitary subconcepts fall by FUnit. Obviously ∀G(FUnit(G) → F P(G)).
Define the relation S by

S(x, G) ↔ Fx ∧ ∀y(Gy ↔ y = x).

Then x bears S to G if and only if G is that unitary subconcept of F under which
x alone falls, and, since S is obviously one-one, we have F ∼ F Unit under R. So
F ≤ FP.

(ii) Suppose F ∼ F P under some one-one R. Define a subconcept D of F by

Dx ↔ Fx ∧ ∀G(R(x, G) → ¬Gx).

By the assumption that F ∼ F P under R, we have R(x, d) for some x falling under
F . Suppose R(d, D). Suppose Dd. Then by definition of D, we have

Fd ∧ ∀G(R(x, G) → ¬Gx)

whence R(d, D) → ¬Dd
whence ¬Dd.

Suppose then, that ¬Dd. Since R(d, D) and R is one-one, R(d, G) if and only if
G is D (i.e., R(d, G) ↔ ∀x(Gx ↔ Dx)), it follows that ∀G(R(x, G) → ¬Gx).
Hence, again by the definition of D, Dd. So Dd ↔ ¬Dd. Contradiction! Hence
¬(F ∼ F P). �

This is a restricted form of Cantor’s Theorem, asserting that any first-level concept
is strictly smaller than its (second-level) power concept. To state and prove it, we
need third-order logic. If we ascend to fourth-order logic, we can prove that any
second-level concept is strictly smaller that its (third-level) power concept. And,
presumably, so on . . . . The prospect opens up of obtaining each finite restriction of
Cantor’s Theorem—that is, each instance of the schema,

∀ϕ ϕ < ϕP for ϕ of level n and ϕP of level n + 1

in a logic of order ω. Of course, even going up this far doesn’t give us anything
approaching the full strength of the Power Set Axiom, but it does suggest a method
of establishing the Smallness2 of a significant series of larger and larger concepts
by noting that they are doubly smaller than the power concepts of their own power
concepts.

Before we turn to what difficulties may stand in the way of this approach, it is
worth noticing that the recourse to logic of order ω may be avoidable—we may not
need to go above fifth-order logic. Let F be a first-level concept for which we can
show, as above, that F < F P < F P P

. Then F is Small2. Since any subconcept
of a Small2 concept is Small2, any subconcept G of F is Small2, and so has a set
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corresponding to it by Small2 V. Define F P∗
to be the first-level property which an

object y has if and only if y = {x | Gx} for some subconcept G of F . Let R be the
relation which holds between x and y if and only if x is G and y = {x | Gx} for
G ⊆ F . Then obviously F P ∼R F P∗

. Since we can prove F P < F P P
< (F P P

)P

in fifth-order logic, F P is Small2, so that F P∗
is also Small2. So by Small2 V, we

have {x | F P∗
(x)}—the power set corresponding to F P , that is, the set of all subsets

of {x | Fx}.
Since F P∗

is first level, we have in third-order logic that it is smaller than its power

concept F P∗P

, which in turn can be shown (in fourth-order logic) to be smaller than

its power concept. There is a first-level concept, F P∗∗
, corresponding to F P∗P

as
F P∗

does to F P . So we can repeat the foregoing reasoning to get the power set

{x | F P∗∗
(x)} corresponding to F P∗P

, that is, the set of all subsets of {x | F P∗
(x)}.

And generally, for any set of objects, X , we have each of the ascending sequence of
powersets—℘(X), ℘ (℘ (X)), ℘ (℘ (℘ (X))), . . . .

Since Nat is smaller than NatP , which is in turn smaller than NatP P
, Nat is Small2,

so we have N = {x | Nat(x)}, ℘ (N), ℘ (℘ (N)), . . .. So, taking Nat as our start-
ing point, we can obtain first-level concepts and corresponding sets of increasing
transfinite cardinality ℵ0, 2ℵ0, 22ℵ0

, . . . .

Perhaps then, we may be able to get a small but nonnegligible theory of sets
by supplementing fifth-order logic with Small2 V. Perhaps . . . , but there is, once
again, a more or less obvious fly in the ointment. For on the face of it, our special
cases of Cantor’s Theorem in higher-order logic are, in one crucial respect, perfectly
general. When we proved , in third-order logic, that (the first-level concept) F is
strictly smaller than its (second-level) power concept F P , F could be any first-level
concept. But with no restriction on our choice of F , we can let it be, say, self-
identical, and following our route, show that that concept is Small2, since it is twice
smaller than the power concept of its power concept. So applying Small2 V, we
have a universal set of all self-identicals. But we shall also, by the same route, be
able to show that self-identicalP is Small2, whence we shall also have the powerset
of that set, and Cantor’s paradox. And similar moves with ordinal will get us the
Burali-Forti. Clearly then, some further restriction is needed, if anything like the last
proposal we’ve been reviewing is to have any chance of getting anywhere useful. In
my closing section I want to indicate two rather different ways in which one might
try to frame and motivate a suitable restriction.

6. Definiteness and Restricted Cardinality Relations

The first suggestion I shall discuss has its origin in a third—and if well taken—
fundamental misgiving one might feel about New V as originally understood. Initially,
this focuses on the suitability of “smaller than self-identity” as an explication of
Goodness.

On the face of it, it makes good sense to think of one concept F as having as many
instances as, or fewer instances than, another concept G only if F and G are both
sortal concepts—that is, roughly, concepts with which are associated both criteria
of application and criteria of identity. Thus on the widely accepted assumption that
brown is a merely adjectival, nonsortal concept, it makes no sense to speak of the
number of brown objects, or of there being as many brown objects as there are Fs, for
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any bona fide sortal F . The worry about “smaller than self-identity” stems, initially,
from a doubt on this score. To get it into focus, it will be helpful to digress briefly to
reconsider an objection Boolos made ([1], pp. 313–14) to Hume’s Principle, turning
upon the existence of the universal number—antizero—the number of all the objects
there are, defined as Nx : x = x . Boolos claimed that since neo-Fregeans are happy
to define zero as Nx : x 6= x , they can hardly refuse to admit the existence of antizero,
defined as proposed. But that, he argued, is disastrous, since it puts the neo-Fregean
reconstruction of arithmetic in direct conflict with ZF plus standard definitions, from
which it follows that there can be no such number.

A crucial part of Wright’s [13] reply to this objection was that, contrary to what
Boolos claimed, the neo-Fregean has very good reason to deny that there is such a
number as antizero. For the question How many Fs are there? to be in good order
(and so for ‘the number of Fs’ to have determinate reference), F has to be a sortal
concept. But self-identical is, Wright argued, no sortal. It seems undeniable that
if F is any sortal concept, then so will be its restriction by any other concept G,
irrespective of whether G is sortal or merely adjectival. For example, given that
horse is sortal, brown horse, for example, must likewise be sortal, even though brown
(or brown thing) is itself no sortal. But now if self-identical were sortal, brown
self-identical would likewise have to be so. But since every object is necessarily
self-identical, brown self-identical is equivalent to brown simpliciter—necessarily an
object is brown and self-identical just in case it is brown. Since brown is not a sortal,
neither can brown self-identical be one. Nor therefore, can self-identical be one. If
this is right, then the seemingly good question How many self-identicals are there?
has no determinate answer, and ‘Nx : x = x’ has no determinate reference. There is
no universal number. There is also space, I think, for a further doubt, about whether
the contexts ‘There are just as many Fs as Gs’ and ‘There are fewer Fs than Gs’
are well defined, or have determinate truth-conditions, when one or both of F and G
is nonsortal, and hence whether self-identical can be a suitable filler for G in those
contexts. If not, then there is a further reason to deny that the proposed explication
of Goodness as smaller than self-identity is satisfactory.

I think an objector might concede that a concept F must be sortal for the how many
question and talk of the number of Fs to be in good order, and agree that self-identical
is therefore, as it stands, unsuitable, but argue that we can get around this and reinstate
antizero, by defining it slightly differently. First note that if F is sortal, then so is self-
identical F (i.e., the concept for which the predicate ‘x is the same F as x’—briefly
‘x =F x’—stands). Of course, one can’t get around Wright’s objection to antizero,
or the related difficulty I’ve raised, just by picking some particular sortal concept F
and using self-identical F in place of self-identical. More precisely, self-identical
F will—though sortal—fail to apply to every object unless F itself does so; but if
F itself is a universal sortal, then the detour through self-identity is a waste of time,
since antizero could then be just defined as Nx : Fx , and we could simply explain
Good as smaller than F . We may, however, form the complex predicates ‘For all F ,
x =F y’ and ‘For some F , x =F y’. And from these in turn we may form ‘For all
F , x =F x’ and ‘For some F , x =F x’. Presumably the first of these last two is true
of no object whatever, and it would seem that every object whatever must satisfy the
second. And this—or so it might be supposed—gives us a way out of both difficulties:
just define antizero as Nx : ∃Fx =F x , and ‘smaller than the universe’ as ‘smaller
that the concept ∃Fx =F x’.
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Of course, this way out is good only if the concept ∃Fx =F x is itself a genuine
sortal concept. The mere fact that ‘For some F , x =F x’ is true of every object is
certainly not enough to make it a sortal predicate—any more than the fact that ‘x
has mass’ is true of every physical object is enough to make it a sortal predicate of
physical objects. For being, for some F , the same F as itself to be a genuine sortal,
there needs to be a criterion of identity for the objects falling under it. But so, it seems,
there is. Let us abbreviate our predicate ‘For some F , x =F x’ by ‘V x’. Suppose b
and c both satisfy ‘V x’. What condition is both necessary and sufficient for b and c
to be one and the same V ? Well, the obvious answer is that b and c are one just in
case for some single F , b =F c. ‘V ’ has thus both a criterion of application—V x if
and only if for some F , x =F x—and a criterion of identity—x =V y if and only if
for some F , x =F y. It thus appears that V is a genuine sortal concept.

Does that show that Boolos was after all right, and Wright wrong? I don’t myself
think so. A concept F’s being sortal is a necessary condition for the how many
question to be in good order and for the corrresponding term ‘Nx : Fx’ to have
determinate reference. But I think it is arguably not sufficient. Indeed, it is fairly
obviously insufficient, if there are—as there certainly seem to be—concepts which
are sortal but indefinitely extensible in Dummett’s sense (however one thinks that
difficult notion is best to be explicated). The concepts of ordinal number, cardinal
number, and set all seem to be in this case. And, since the ordinals, cardinals, and sets
are among the objects that there are, it is plausible that any universal sortal concept
must likewise be indefinitely extensible.23 But in any case, there is a particular reason
to doubt that ‘Nx : V x’ can have a determinate reference. For—given that our
proposed definition of the universal concept V involves quantification over (sortal)
concepts—it could do so only if it were already determinate what sortal concepts
there are. It can scarcely be that there is a determinate answer to the question How
many objects are there?—where this is construed as ‘For how many x do we have
∃F x =F x?’—unless there is a determinate answer to the question What sortal
concepts are there? It is at least not obvious that there can be a determinate answer
to that question.

Someone might protest, “There is no difficulty over that. For any given domain of
objects, the corresponding domain of concepts is fixed. For each and every way of
dividing the domain of objects, there is a concept, and those are all the concepts. If
the domain of objects comprises k objects, there are thus 2k concepts.” But there is
an obvious difficulty with this answer. The use of the phrase “For any given domain
of objects” gives the game away. Whether there is or is not a determinate domain of
objects (i.e., all objects whatever) is precisely our problem—clearly if there is, there
is nothing amiss in the assumption that it has a definite cardinality, even if we are
unable to determinate what that cardinality is. Thus to assume a domain of objects
“given” is simply to fail to engage with the problem, or to assume it somehow solved.
We cannot both assume a given domain of objects as a means of fixing the range of
the quantifier ‘For some F’, and at the same time use that quantifier to define the
sortal concept ‘V x’ (i.e., ‘x is an object’).

If a domain of objects is already somehow fixed as comprising k objects, then it is,
of course, quite right that there are 2k concepts on the domain—at least provided that
concepts are individuated extensionally. However, while there is no general objection
to treating concepts extensionally—as, in effect, determined simply by what objects
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fall under them—it is questionable whether they are appropriately so treated in the
present context, for at least two, and perhaps three, reasons.

The first, more general, reason is that it makes sense to think of concepts exten-
sionally only if it is already determinate what objects belong to the domain on which
they are to be thought of as defined. That condition may well be met in a particu-
lar case—it will be met if, for example, we are considering the domain comprising
exactly the natural numbers. But it clearly cannot be assumed met in the present case.

Secondly, and more specifically, the whole point of insisting that an identity-
statement x = y has to be understood as asserting that x and y are one and the
same F , for some appropriate sortal F , is lost, if the covering sortal F is thought
of as determined purely extensionally. The point is—at least in part—that objects
cannot be individuated save as instances of some sortal concept or other, so that unless
some appropriate sortal is specified or understood from the context, it is simply not
determinate what is being asserted, when it is said that x = y. If objects could
be individuated simply as objects, there would be no justification for insisting that
‘x = y’ must be understood as elliptical for ‘x =F y’ for some specific sortal F ,
such as horse, person, number, or the like—any identity-statement x = y could be
understood as claiming simply that x is the same object as y.

The third reason—which should, I think, weigh with the neo-Fregean, but may
not be felt compelling by others—is that taking the sortal concepts to comprise just
the extensionally individuated concepts on some supposed fixed domain of objects
seems, in effect, simply to beg the question against the idea that abstraction principles
give a way of introducing “new” sortal concepts, with a “new” range of objects falling
under them.

If what I’ve said is right, the universal concept self-identical under F , for some
sortal F , exhibits something akin to the property of indefinite extensibility. I’m not
sure that it is indefinitely extensible in the usual sense, which requires, for a concept
G to be indefinitely extensible, that given any definite collection of Gs, there is an
object satisfying the intuitive requirements for being G which cannot be one of that
collection. But even if the universal concept isn’t strictly indefinitely extensible, it
seems clear that it has a similar kind of indeterminacy—leaving open the question
whether this coincides with indefinite extensibility, I shall say that it is sortally in-
determinate, and for brevity say that a concept is indefinite if it is either indefinitely
extensible or sortally indeterminate. Like Wright, I think that no determinate number
can be associated with any indefinitely extensible concept. And the same goes, in my
view, for sortally indeterminate concepts like the universal concept, even if they are
not indefinitely extensible in the usual sense (however exactly that is to be explained).

Even if it is right that no determinate number can be assigned to any indefinite
concept, it does not straightforwardly follow from this that where F is an indefinite
concept, there cannot be functions from F into other concepts. It is of course true that
if a concept F is indefinitely extensible, there can be no functions from F (to other
concepts, definite or not) which are not themselves indefinitely extensible. But that
is only to be expected and constitutes no clear objection to the idea that there may be
functions from an indefinitely extensible concept to others—anyone who accepts that
there are indefinitely extensible concepts will have no principled reason to deny that
there are indefinitely extensible relations, including indefinitely extensible functions.
If sortal indeterminacy coincides with indefinite extensibility, then the point applies to
indefinite concepts quite generally. But it is not clear either that sortal indeterminacy
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is just indefinite extensibility under another name, or that, if it is not, there can anyway
be no difficulty in principle with the idea of functions from a sortally indeterminate
concept. In our only putative example of sortal indeterminacy—self-identity under F
for some sortal F—the source of indeterminacy lies in the indeterminacy of the range
of the second-order quantifier, and is to that extent a higher-order matter, in contrast
with indefinite extensibility, which consists in the fact that no definite first-level
concept can have all instances of an indefinitely extensible concept in its extension.
Perhaps it could be shown that this makes no essential difference, so that we may
have sortally indeterminate functions just as we can have indefinitely extensible ones.

I shall not here try to determine whether the concerns aired in the last few para-
graphs are, in the end, well founded. Anyone in sympathy with them ought, it seems,
to view the free-wheeling, unrestricted talk of double smallness involved in our orig-
inal formulation of Small2 V with some suspicion, at least unless she can view the
unqualified statement that F < G < H as a merely heuristically useful way of
expressing the idea that F is a definite (i.e., not indefinite) concept. But even one
not moved by those concerns ought to be able to discern the shape of a possible re-
striction on the application of Small2 V—to the effect that we may take the fact that
for some concepts G and H , F < G < H as entitling us to conclude that there is
a set of Fs only when G, and hence F , is a definite concept. If such a restriction
can be imposed, it will straightforwardly block the paradoxes—both Cantor’s and the
Burali-Forti—that threaten the proposal sketched in the preceding section. However,
if the paradoxes are to be blocked by imposing a restriction to definite concepts in
the application of the set-theoretic abstraction, it is no longer clear that the shift to
interpreting Good as Small2 is doing useful work. The original point of that shift was
to block the derivation of Global Well-Ordering which convicted New V of a violation
of Wright’s first conservativeness constraint. But restricting Good concepts to defi-
nite ones would seem by itself enough to achieve that result, since the derivation of
the Burali-Forti from the assumption that ordinal is definite would then force only to
the conclusion that ordinal is indefinite, which does not yield Global Well-Ordering.

The second of the two suggested restrictions I want to mention, by contrast, leaves
Small2 V playing a significant role in the enterprise and can be stated rather more
briefly. This exploits two thoughts. The first is that the notion of what it is for one
concept to be smaller than another, involved in the definition of Small2, need not be
taken as fixed in advance and independently of the neo-Fregean enterprise. The neo-
Fregean is, so far as I can see, perfectly free to stipulate a meaning for it that suits his
purposes. The second is that, on the neo-Fregean approach to set theory which I have
been exploring in the last few sections, there is no aspiration to develop that theory
as a free-standing theory, based exclusively on distinctively set-theoretic abstraction
principles. On the contrary, we are already embracing the idea that much of the
ontology of the theory,and hence much its power, is to be provided by other abstraction
principles—such as Hume’s Principle and Cut principles—which do not specifically
concern sets at all, but objects of other kinds. Crucially, these other abstractions
are, when acceptable, to be conceived of as in good standing independently of the
development of any abstractionist set theory. Their acceptability is to be thought of,
rather, as a matter of their compliance with whatever constraints—some of which we
have touched on above—govern legitimate abstraction in general.24 In the context of
these two thoughts, a natural proposal is that the neo-Fregean may go a step further and
take the sortal concepts introduced via independently acceptable abstraction principles
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as his basis for the identification of a privileged class of concepts which may serve
to anchor, as it were, a restricted < relation for the purposes of Small2 V. In a little
more detail, the idea would be that F < G < H holds, in the relevantly restricted
sense, only when G and H are concepts independently in good standing courtesy of
other acceptable abstraction principles, or power concepts of such concepts, or power
concepts of power concepts of such concepts, and so on.

Obviously both of the suggestions canvassed here are merely directions for further
investigation, without which one can have little confidence that either of them will
withstand closer scrutiny or result in a satisfactory and agreeably powerful abstrac-
tionist theory of sets. And there may, of course, be other possible ways to impose the
restriction(s) on Small2 V which we have seen to be needed. I must leave that work
for another occasion. I hope, at least, that the present discussion will have served
to identify some of the difficulties facing an abstractionist development of set theory
and, perhaps, some strategies for dealing with them worth further thought.

Notes

1. “Roughly” because it is desirable to count as abstractions some principles which don’t, as
they stand, have precisely this form. In the only case that matters for present purposes, 6

is a function of two arguments, not one, and the RHS relation is 4- rather than 2-termed.
One can easily deal with this, either by introducing ordered pairs by abstraction or by
generalizing the notion of an equivalence relation.

2. In Frege [7], §§ 62–67.

3. Reflexivity and Symmetry are obvious. For Transitivity, suppose
(a) Good(F) ∨ Good(G) → ∀x(Fx ↔ Gx) and
(b) Good(G) ∨ Good(H) → ∀x(Gx ↔ H x).

If the antecedents of both (a) and (b) are both false, then ¬(Good(F)∨Good(H)), whence
(c) Good(F) ∨ Good(H) → ∀x(Fx ↔ H x).

Likewise, if the consequents of both (a) and (b) are true, then ∀x(Fx ↔ H x), whence
(c). If (a)’s antecedent is false but (b)’s consequent is true, then ¬Good(H), whence
¬(Good(F) ∨ Good(H)) and so (c) again. Similarly if (a)’s consequent is true but (b)’s
antecedent is false. Essentially this is the proof given in [12], fn. 32.

4. This last point may not, in itself, be as damaging as might be at first supposed, since there
are known to be abstractionist methods of obtaining the real numbers which avoid any
essential reliance upon an underlying set theory. But a neo-Fregean should be concerned
to develop as powerful a set theory as can be done using the resources—centrally, but not
necessarily only, abstraction principles—at his disposal, and so may hope to do better
than New V.

5. The example is not Boolos’s own but a very similar one taken from [12], pp. 289–91.

6. “First,” because Wright introduces a second quite distinct conservativeness constraint
which will be discussed briefly later.
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7. See Field [6] and subsequent papers collected together in Field [5].

8. For a fuller discussion and more precise articulation of the proposed constraint, see [12],
pp. 295–97, especially fn. 49.

9. The proviso is not merely decorative—we shall later consider possible reasons to feel
misgivings about it.

10. I am heavily indebted to Wright for this suggestion and much useful discussion of it.

11. Cook has pointed out that while the Global Well-Ordering result is blocked, one still gets
a signficant result—that, since ordinal is not Small2, there cannot be any concept that is
bigger than ordinal but smaller than the universe. Though a weaker result, this is, Cook
remarks, independent of second-order ZFC. Perhaps so, but it is not a nonconservativeness
result for a set theory based on New V with Small interpreted as Small2 (or Small2 V,
that is, Small V with Small so reinterpreted) in the sense in which Global Well-Ordering
is a nonconservativeness result for original New V. Global Well-ordering implies well-
ordering for the “old” ontology—that is, the universe of objects as a whole, including
those not included among the abstracts provided by New V—in violation of Wright’s first
conservativeness constraint (see [12], p. 296 ff.). By contrast, if our set-theory is to be
based on Small2 V, then the theory of ordinals will be naturally construed as a part of it,
and the ordinals themselves will be a species of the new abstracts so introduced. That
this species is at most singly small would seem to have no bearing on anything—cardinal
or ordinal—essentially to do with the old ontology.

12. On (D)-type abstractions, see [12], Section IV. ϕ is any property of concepts for which
coextensiveness is a congruence, that is, ϕ(F) and ∀x(Fx ↔ Gx) jointly entail ϕ(G).
New V comes from the schema by reading ϕ as Big. New V as formulated here is not
strictly of the form (d), but is obviously equivalent to an abstraction of that form.

13. [12], p. 303. A more precise formulation is given at p. 304.

14. See note 10.

15. Largely, but not entirely, if one works with a (B)-type abstraction, such as New V with
Good understood as Small2 but entirely if one works with a conditionalized, (A)-type
abstraction such as Small2 V. I shall make no attempt to adjudicate here whether there
are compelling reasons to favor one approach over the other. Very roughly, the fragment
of standard set theory which one can recover without appeal to non-set-theoretic abstrac-
tion principles—though existentially very weak—is larger if one works with a (B)-type
principle such as New V rather than an (A)-type principle such as Small2 V. This might
be thought a reason for preferring New V over Small2 V.

16. A good deal of what I shall be saying applies, with relatively minor adjustments, to
a development based on New V with Good interpreted as Small2. It would unduly
complicate the discussion to keep both alternatives in play throughout.

17. Crucially, because we want the same real numbers to be applicable in measuring quantities
of different kinds.
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18. For some explanation of this, see [8], Section II.

19. By Cook in [4]. I am grateful to him both for letting me see earlier versions of this paper,
and for helpful discussion of it.

20. Including Shapiro, Cook, and one (still) anonymous referee of the paper in which some
of these ideas were first put forward.

21. This statement of the theorem and its proof are taken verbatim from [4].

22. I am grateful to Potter for this suggestion.

23. This will be so, if we can assume that if F is indefinitely extensible and ∀x(Fx → Gx),
then G is likewise indefinitely extensible.

24. For further discussion of which, see, as well as [12], Hale and Wright [9].
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