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Abstract  Standard possible world semantics foppositional modal lan-
guages ignore truth-value gaps. However, simple considerations suggest that it
should not be so. In Section 1, | identify what | take to be a correct truth-clause
for necessity under the assumption that some possible worlds are incomplete
(i.e., “at” which some propositions lack a truth-value). In Section 2, | build a
world semantics, the semanticsiaf-models, for standard modal propositional
languages, which agrees with the truth-clause for necessity previously identi-
fied. Sections 3-5 are devoted to systematic concerns. In particular, in Section
4, Prior’s systen@Q (propositional version) is given a TV-models semantics and
proved adequate (i.e., sound and complete) with respect to it.

1 Incomplete worlds and modality Let aproposition be any statement that is ac-
tually true or falsé!, and let us say that possible worldis (i) complete with respect

to proposition p if and only if p is true or false atv, and(ii) complete (tout court)

if and only if it is complete with respect to all propositions. Then by definition the
actual world is complete. And a classical assumption in possible worlds semantics
for propositional modal logics is thatery possible world is complete.

There are serious reasons to reject that assumption. Consider, for instance, the
proposition ‘Socrates is mortal’, and assume (i) that there are possible worlds where
Socrates does not exist, and (ii) that for ‘Socrates is mortal’ to have a truth-value at a
world, Socrates must exist therein: two defendable assumptions, which jointly entail
that there are worlds where ‘Socrates is mortal’ has no truth-value.

Once itis granted that some propositions have no truth-value at some worlds, it
is still not decided if and how these truth-value gaps are transmitted to more complex
propositions. In this paper, we shall adopt gnanciple of contamination, according
to which if a proposition has no truth-value at a given world, then every proposition
containing the first thereby has no truth-value at that world.
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Now, the admission of incomplete worlds, together with the acceptance of the
principle of contamination, raises some difficulties when it comes to stating truth-
clauses for necessity operators. Consider first the usual clause:

(1) OA s true iff Ais true at every possible world.

Now, letw be a possible world, incomplete with respect to some propositidhen,
by the principle of contaminationy is also incomplete with respect tov ~A. And
since, of course, being true at a world entails having a truth-value at that world, a
consequence of (1) is th&tv ~A is not necessarily true: an unhappy result.

The classical modal logician has a ready-made solution to this problem. It con-
sists in adopting the spirit, not the letter, of the classical truth-clause for the box:

(2) OA s true iff Ais true at every complete world.

The problem with this proposal is that, as far as | can see, there is no good reason
to accept the restriction twomplete worlds. For consider some propositién Then
intuitively, if Ais necessarily true, thefiis trueat every world where it has a truth-
value—and not only at every complete world. And converselyAifs true at every

world where it has a truth-value, then, plausiliis necessarily true. (Note here that

if Aistrue ateveryworld where it has a truth-value, itis true at every complete world,
and so by the classical clause, it is necessarily true.) That s, intuitively the following
biconditional holds:

3) OA s true iff Ais true at every possible world where it has a truth-value.

Let us now turn to possibility. Defining possibility in terms of necessity by the usual
‘O =~ 0O ~, the following truth-clauses can be derived from (1), (2), and (3) respec-
tively:

1) O Ais true iff there is a possible world at whicdhis not false;
2) QAls true iff there is a complete possible world at whislis true;
3) QAis true iff there is a possible world at whidhis true.

(The derivations make use of the basic truth-conditionfgtthe fact that being true

at a world entails having a truth-value at that world, and the principle that having a
truth-value at worldv and not being true atb entails being false abt.) Condition (1)

is subject to the same type of problem as (1). Fowlbe a possible world, incomplete
with respect to some propositigh Then, by the principle of contaminatiom,is also
incomplete with respect td & ~A. And once again, since being false at a world
entails having a truth-value at that world, a consequence' pigthat(A& ~A)

is true—an undesirable result. On the other hand, conditignj@t like condition

(2), seems ill-motivated. As to condition’}3it sounds perfectly right.

Clause (3) is radically different from any usual truth-clause for the box. The dif-
ference is essentially this. L&t be the set of all possible worlds at which propo-
sition A must be true fofJA to be true. According to any classical truth-clause for
necessity?a = Ws for any two distinct propositioné and B: W, and W} are in
both cases the set of all possible worlds (accessible from the actual world). On the
other hand, according to condition (3), it may be the caselthHatt Wk; it is actu-
ally so as soon as there is some world at which only on& of B has a truth-value.
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In Sectior2below, I build a simple world semantics for standard languages con-
taining a necessity operator which agrees on necessity with condition (3). Systematic
matters and adequacy results are dealt with in Sections 3-5.

2 Modelingnecessity  Let £ be a formal language, whose vocabulary consists in (i)
adenumerable set of propositional letters (the atoms), and (ii) the operatoega-
tion), & (conjunction), and] (necessity). What counts agamula of £ is charac-
terized in the usual way, and operatorgdisjunction),> (material implication)=
(material equivalence), an (possibility) are standardly defined.

There are many ways one can providevith a world semantics which agrees
with condition (3) of Sectiofi] However, the most straightforward way to model
is by means of what | shall callV-models. TV-models are essentiall$5-models
without accessibility relation, modified so as to take into account the possibility
of truth-value gaps. More precisely, a TV-model for languagés a quadruple
(@, W,TV, =), where? is a set, @ is i/, and TV and= are two-place rela-
tions between worlds and atoms, meeting conditions:

[TV-@] for every atomp, TV(@, p), and
[E=-TV] for every w in W and every atonp, if w = p then TV(w, p).

Under the intended interpretatigf/ is the set of all possible worlds, @ is the actual
world, ‘TV (w, p)’isread ‘p has atruth-value abt’, and ‘w = p’is read ‘pis true at
w’. The first condition amounts to the claim that the atoms sfand for propositions
in the sense introduced at the beginning of Sediibnd the second condition speaks
for itself.

Given an arbitrary TV-model@, W, TV, =), we must specify how TV ang=
extend to relations between worlds and complex formulas. The conditions on truth-
valuedness | choose are

[TV.~] TV ~A  iff TV (w, A,
[TV.&] TV (w, A& B) iff TV (w, A) and TV(w, B), and
[Tv.0)] TV, OA)  iff TV (w, A).

The idea behind these three conditions is that (i) a complex formula has no truth-value
at a world if some of its subformulas have no truth-value at that world, and (ii) a com-
plex formula has a truth-value at a world if its subformulas all have a truth-value at
that world. (i) is motivated by the principle of contamination and (ii) seems reason-
able.

The clauses fog= are
[E.~] wE ~A iff TV (w, A)andw = A,
[E.&] wkEA&B iff wkEAandw = B,
[=.0] w = OA iff TV (w, A) and for every in %/ such that
TV (v, A), v = A.
For an arbitrary TV-model we then have

@E=~A iff @ KEA
@ A&B iff @F Aand @ B;
@ =0OA iff for every win W such that T w, A), w = A.
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The clauses for~ and & are standard and the condition fdris as foreshadowed.
We also have, for every world and every formulaA,

1. TV(@, A);
2. if w = Athen TV(w, A);

3. TV(w, A) iff wkE Aorw =~A;

4. w = QAIff TV (w, A) and for some in W, v = A;
5. @ OAiff forsomevin W, v = A.

Let us turn finally to validity. Formulg will be said to bevalid in TV-model M if
and only if for every worldw of M at which A has a truth-valueA is true atw. And
formula A will be said to bevalid if and only if Ais valid in every TV-model.

As one can easily check, all-instances of axiom (schema)(A > A) and
axiom E (0A D OQA) are valid, and the rule necessitatioA/JA) is validity-
preserving. On the other hand, somfiénstances of axiom K(O(AD B) & OA) D
0B) are not valid. In fact, lep andq be two atoms. Theid(p D q) & Op) D
Oq is false at the actual world of any TV-modeg®, {w, @},TV, =) where p and
g are both true at @p has no truth-value av andq is false atw. The logics
to be presented below, in particular Prio} diverge from systeng5 essentially
in that each contains as a theorem a modified version of axiom K. (Here it should
be noted that while somé-instances of axiom K are not valid, every instance of
(OAD (B& (Av ~A))) & OA) D O(B& (Av ~A)) is valid, even thougtB =
(B& (Av ~A)) has all its instances valid.)

3 System S5~  The first system | shall envisage$5~. Like the systems to be de-
fined in Sectiof] it is formulated in a language richer than

3.1 S5~ anditssemantics The language fo85~ is L>—that is, £ with extra two-
place operator. Wedefine the TV-models fat~ in the same way as the TV-models
for £, and the semantical clauses for the new operator are given by

[TV.>] TV (w, A> B)iff TV (w, A) and TV(w, B), and
[=.>] w k= A> Biff TV (w, A) and TV(w, B) and for every in W,
if TV (v, A), then TV(v, B).
Validity is defined as before. For an arbitrary TV-model, we have
@ = A > Biff forevery win W, if TV (w, A), then TV(w, B).

Thus, ‘A > B'isto beread as ‘at every world wher&has a truth-valueB has a truth-
value’, or as ‘forA to have a truth-valu® must also have a truth-value’A'> B’

can be seen as expressing the idea that there is some kind of relevance link b&tween
andB or between the “information” conveyed Byand byB. SystemS5~ is defined

by the following axioms (schemas) and rules.

Classical axioms

Every PC-validZ-formula
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Axiomsfor >

A > BifeachatominBisin A
(A>B&B>C)DA>C
(A>B& A>C)DA>(B&C)
(A>B& A>C)DA>(B=>0C)
A>BDUOA> B)

M odal axioms

(K>) (B> A&O(ADB)&OA) >OB

(T) OADA
(E) OADOOA
Rules

(modus ponens) i Aand- AD Bthen- B
(necessitation) I Athen-OA

3.2 Adequacy SystemSb5~ is adequate (i.e., sound complete) with respect to

the semantics of TV-models. For soundness, it is more or less routine to show that
each axiom o685~ is valid and that necessitation is validity-preserving. The case for
modus ponens, though, is not standard: the rule does not preserve validity-in-a-model
(if it did, then axiom K would have all its instances valid). However, modus ponens
is validity-preserving, as the following argument shows. ReB be formulasM =

(@, W,TV, =) a TV-model, andvg aworld of M such that TWwg, B). We want to

prove that ifAand A D B are valid, therB is true atwg. Suppose that every atom in
Aisin B. Then TV(wgp, A) and TV(wg, A D B). So, if bothAand A > B are valid,

they are true atvg in M, and therefore so i8. Suppose now that some atomAris

not in B. Consider the model = (@, W/, TV’, =) defined by

1. TV'(wg, p) for every atomp in Anotin B;

2. TV/(w, p) iff TV (w, p) for every atomp and everyw in W such thatw # wq
or pis not an atom iMA not in B;

3. wg =’ pfor every atomp in A notin B;

4. w =" piff w = pfor every atomp and everyw in % such thatw # wg or p
is not an atom inA not in B.

By the definition ofN, for every atomp in B and for everyw in W,

@) TV (w, p) iff TV (w, p), and

(i) wE piff wEp.
From this fact, it follows that given any formutawhose atoms are all iB, for every
win W, w ' Cifand only if w = C (the proof is by induction on the complexity of
C). As aconsequencey =’ Bif and only if wg = B. Now by construction, bott\

andA > B have atruth-value abg in N. So, if both AandA > B are valid, they both
are true atvg in N and so, by the properties of truth-at-a-worllis true atwg in N.
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By the previous result therB is true atwg in M. Let us turn now to completeness.
Useful for what follows is the following proposition.

Proposition 3.1

1L If-FO(AD>B)and+ B> A, thenTOA D OB.

A> B> A> C, provided all atomsin C arein B.

A> B= A > C, provided B and C contain exactly the same atoms.

If By, ..., Byareall theatomsin B,then (A>B1& --- & A>B,) =A> B.
~(A>B)D>DUO~(A> B).

UOA D OOA.

(UDA& UOB) D O(A& B).

No g~ LDd

Proof:

1. By axiom K~

2. LetCq,...,Cy be all the atoms irC. If each is inB, then by the first axiom
for>,F B> Cq,...,F B> C,. S0 by the transitivity of>,- A> B> A>
C,...,cFA>BDA>C,.SOFA>BD(A>C& --- & A>C)). As
a monsequence of the third axiom fer, A> B> A> (C1 & --- & Cp).
Now, each atomirCisinC; & --- & Cy,and sof (C; & --- & Cy) > C.
By the transitivity of>, it follows that- A> B> A> C.

3. By the previous result.

4. Let By, ..., B, be all the atoms irB. By Propositiol3.1{3), - A > B =
A> (B & --- & By). Nowwe provethat A> (B1 & --- & By)) = (A >
B;& --- & A> Byp).

FFA> (B & ---&By)D>D(A>B1 & --- & A> B,) follows from
Propositiod2.1{2).

i) F(A>B1& --- & A>Bp) DA> (B & --- & By) follows from the
third axiom for>.

5. (a) By axiom T OA D OOA.
(b) By axiom E -+ OCOA D OOOA.
(c) By axiom E}- OOOA D OA.

By necessitation them; O(OCOA D OA). But-OA > OOA. So by Proposi-
tionlﬁ[l), F (O0OA) D OOA. Points (a), (b), and (c) yield the result.

6. By classical logic and necessitation[J(AD (B> (A& B))). But (BD
(A& B)) > Aand+ A& B > B. We then have the result by Proposi-
tionB1(1).

7. - ~0O(A> B) D ~(A> B). By necessitation theit; O(~O(A> B) D ~
(A > B)). But by the fifth axiom for>,+ ~(A> B) > ~0O(A > B). So
by PropositioB.1{1), - O ~ (A > B) > 0~ (A > B). As aconsequence,
FO(A > B) D OO(A > B). The result follows from axioms Eand T. [

Now for the completeness proof, lebe a nontheorem, and let @ be a maximal con-
sistent extension df~«} (use a Lindenbaum-type construction to prove the existence
of @). (I use a standard definition of consistency and inconsistency: a set of formulas
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" isinconsistent with respect to a given system if and only if there is a finite collection
A1, ..., Ayof members of” such that-(A; A --- A Ap) is atheorem of that system;
andTI is consistent with respect to a given system if and only if it is natonsistent
with respect to that system.)

Proposition 3.2  Every theoremisin @, and for all formulas Aand B, if Ac @
and AD Be @thenB e @.

This proposition will be used without explicit mention. Its proof is standard.

Let At be the set of all atoms, and Igt(constituency) be the function from the
set of all formulas tdP(At) such thaty(A) is the set of all atoms ir\.

Let X be a nonempty subset dft. Then theclosureof X, cX, is{p € At | there
areps,..., pnin Xsuchthatp: & --- & pn) > p € @}. Note that forX andY any
subsets ofdt, X € cX, ccX = cX, andif X € Y thencX C cY. A nonempty subset
X of At will be said to beclosed if and only if X = cX.

Proposition 3.3 For all formulas Aand B, A > B e @ if and only if x(B) C
cx(A).

Proof: Let A and B be formulas, lety(A) be {Aq, ..., Ay}, and let x(B) be
{Bl, ey Bm}

(i) Let Bj beinx(B). SupposeA > Bj € @. Thensinceé- (A1 & --- & Ay) >
A (A1& --- & An > Bj) € @. So by definition of closureB; € cx(A).
Conversely, suppose th@; € cx(A). By definition of closure, there are
ag, ..., o in x(A) such that(a1 & -+ & ag) > Bj € @. Butk A >
(1 & -+ & ay). SO,A > Bj € @. As a conclusionA > Bj € @ iff Bj €
Cx(A).

(i) By Propositior3.1{4), A>B=(A>B;& --- & A> Bny). SOA>Bec@
ifandonlyif A> B; € @and---andA > B € @. So by (i) aboveA > B
@ if and only if x(B) C cx(A). O

Where X is a closed set of atoms, let @] be the set of all formulasA such that
OA e @andy(A) C X. Note that @K] is never empty (by definition, a closed set
is never empty, and K contains, say, then @[X] containspv ~p). Also note that
by axiom T, @[X] € @ for every closed set of aton¥. As aconsequence, each
@[X] isconsistent.

For every set of formula$ and every closed set of atonxs say thatSis X-
maximal in case (i) for everyAin S, x(A) € X and (ii) for every formulaA such
that x(A) C X, eitherA € Sor ~A € S. Clearly, every consistent set of formulas
satisfying (i), in particular every @], has someX-maximal consistent extension
(adapt the usual Lindenbaum-type construction).

Let W be{w|w is anX-maximal consistent extension of @& for some closed
set of atomsX}. Note that @ is inl¥/, since At is closed and @ is trivially ar¢-
maximal extension of @{t]. For everyw in W, there is only one closed set of atoms
X such thatw is an X-maximal consistent extension of @ Call it ‘D(w)’. In
the other direction, for every closed set of ato¥ighere is some world) such that
D(w) = X. The reason is that @] is never empty.
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Now, wherep is any atom, put ‘T\(w, p)’ for ‘p € D(w)’, and ‘w = p’ for
‘p € w'. We have, for every atonp and everyw in W/,
1. TV(@, p) (sinceD(@) = At), and
2. if w = pthen TV(w, p) (by maximality).

The 4-tuple(@, W, TV, =) is then a TV-model. The aim is now to prove that for
every formulaA and every worldw, w = Aiif and only if A € w, which will give us
completeness.

Proposition 3.4 Let w bein 7. Then

1. every theorem A such that x(A) € D(w) isin w, and for all formulas A and
B,if Ac wand (AD B) € wthen B € w;

2. for all formulas Aand B, if x(A) € D(w) and A > B e @then x(B) C D(w).

Proof: The proof for (1) is quite standard. For (2), l&t B be formulas. Suppose
that x(A) € D(w). Thencyx(A) C cD(w), and sinceD(w) is closed,cx(A) C
D(w). Now suppose thah > B € @. By Propositiof.3 it follows that x(B) <
cx(A). So,x(B) € D(w). O

Proposition 3.5  For every w in W/ and for every formula A, A € w if and only
if JAe @and x(A) C D(w).

Proof: Let A be a formula.

1. Suppos&lA € @. Then by Propositida.1[6), JOJA € @. So, for everyw in
W, if x(A) € D(w) thendA € @[D(w)], and consequentlylA € w.

2. SupposélA ¢ @. By maximality~ A€ @. So by axiomE.J~ A e @.
Consequently, for eveny in 7/ such thaty(A) € D(w), ~ OA € @[D(w)].
Thus,~ OA € w, and so by consistency]A ¢ w. O

Proposition 3.6  For every w in %/ and for all formulas A and B,

1. ~Aecwifandonlyif x(A) C D(w) and A ¢ w;
2. A& Bewifandonlyif Ac wand B € w;

3. A> Bewifandonlyif x(A)U x(B) € D(w) and for every vin % such that
x(A) € D(v), x(B) € D(v).

Proof: Let A andB be formulas and leiy be inW/.

1. (i) Suppose-Ac w. Thenyx(A) C D(w) and by consistencp ¢ w.
(i) By maximality, if x(A) € D(w) andA ¢ w then~A € w.

2. (i) SupposeA& B e w. Thenx(A& B) € D(w), and thusy(A& B>
A) and x(A& B > B) are subsets ob(w). Sosince- A& B> A
and- A& B D B, by Propositio3.4(1) A € w andB € w.
(i) SupposeA € w andB € w. Then x(A) U x(B) € D(w), and so,
x(AD (B> (A& B))) € D(w). Thus since- AD (B> (A& B)),
by Propositiof3.4{1) A& B € w.
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3. (i) SupposeA > B € w. Then x(A > B) € D(w). (a) A consequence
is thatx(A) U x(B) € D(w). (b) Another consequence is thatA >
B> O(A> B)) € D(w). Butsince- A> B> O(A > B), it follows
by Propositior3.4{1) thatCJ(A > B) € w. By Propositior3.5] then
(A > B) e @. So by axiom TA > B € @. We have then by Propo-
sition[3.4[2): for everyv in W if x(A) C D(v) thenx(B) € D(v).

(i) SupposeA > B ¢ w and x(A > B) € D(w). Then by maximal-
ity, ~ (A > B) € w. By Proposition€.1(5) and2.4{1), it follows that
O~ (A > B) € w. So, by Propositiol8.5hnd axiom T~ (A > B) € @,
and as a consequenck,> B ¢ @. By Propositiof2.3] then, x(B) is
not a subset ofx(A). Let v be any world withD(v) = cx(A). We
have: x(A) but notx(B) is a subset 0D (v).

O

Proposition 3.7  For every w in %/ and for every formula A, JA € w if and only
if x(A) € D(w) and for every vin 7/ such that x(A) € D(v), A € v.

Proof: Let A be aformula and leb be in/.

1. Supposé]A € w. A first consequence is that A) € D(w). A second conse-
quence is thaflA € @ by Propositiod3.5 From this it follows that for every
vin W such thaty(A) € D(v), A€ @[D(v)]. So, for everyv in 7 such that
x(A) € D), Ae .

2. Suppos&lA ¢ wandy(A) € D(w). By Propositior3.5] thenCJA ¢ @. Now
let us prove thaf~A} U @[cx(A)] isconsistent. Suppose it is not. Then one
canfindBy, ..., B,in @[cx(A)] suchthat- (B1 & --- & B,) D A. We have
then the following:

a. OBy, ..., OBy arein @, and so by PropositiBnl(7), J(B; & - - - & By)
isin @.

b. By necessitationi,][(B1 & --- & By) D Alisin @.

c. Since eachB; is in @[cx(A)], eachx(B;) is included incx(A). So,
by Propositiod3.3] each A > B; is in @. Now by the third axiom for
>FA>B& ---&A>By)D>DA> (B & - &By). So,A>
(B1& --- & By)isin @.

These three points plus axiontKentail thatTJA is in @. So, since by hypothesis
OAis not in @, we must conclude that A} U @[cx(A)] is consistent. Now, let
v be acyx(A)- maximal extension of~ A} U @[cx(A)]. v is, of course, &x(A)-
maximal extension of @fx(A)], and sov is in 7. Moreover,(a) x(A) € D(v), and
(b) ~A € w, which by consistency entails that¢ w. O

Proposition 3.8 For every formula A and every world w, TV (w, A) if and only if
x(A) € D(w).

Proof: Easy. O

Proposition 3.9  For every formula Aand everyworld w, w = Aifandonly if A e
w.
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Proof: By induction on the length of the formulas, using Proposit@r@E.7] and
Ba O

This ends the completeness proof.

4 System Q3  Prior was aware that the possibility that a proposition has no truth-
value at some possible world has to be taken into account in a correct treatment of
propositional modal logic. Accordingly, he developed a syst®nand gave some
indications as to how to provide it with a world semantics (see Prior and Ejne [

pp. 85-86). These indications show that, essentially, Prior agrees with the TV-
modeling of necessity presented in Secfidrin the present section, two results are
achieved. First, it is shown that systépncan be seen as a fragment of a mild exten-
sion of systen85~. Second,Q is given a TV-model semantics and proved adequate
with respect to it.

4.1 System Q  Prior formulates syster® in a language with primitive operators

~, &, ¢, and S—where § is a one-place operator intended to express necessary
statability (a proposition is necessarily statable if and only if it is statable (i.e., has
atruth-value) at every possible worlél)For the sake of uniformity, | will rather for-
mulateQ in languageLs, namely,£ augmented by operatg

SystemQ can then be defined thus, withstanding for~ [0 ~ as before (sedd],
pp. 84-85).

Classical axioms
Every PC-valid formula
Axiomsfor §

SA D Sp, for any atomp in A
(Sp1& -+ & Spn) D SA wherepy, ..., py are all the atoms iA
O0SAD SA

Modal axioms

(KS) (Spr1& - & Sph& O(A > B)&OA) > OB, where
P1, ..., pn are all the atoms of\ not in B

(T OADA

(BE) OADOOA

Rules

(modus ponens) i Aand- AD Bthen- B
(necessitation) I AthenOA

42 QinS5!  Let £7!'be £~ augmented by a special atomThe TV-models for
L' are like those forL>, except that we impose the following:
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[TV.1] TV (w, t) for any worldw of any TV-model, and
[E= 1] w =t for any worldw of any TV-model.

Validity is defined as before and syst&8i! is S5~ plust as an axiom anéd > t as an
axiom schema. It should be clear tI85! is adequate with respect to the semantics
of TV-models for£>!. (Soundness is straightforward. For completeness, the major
modification from the proof of Sectid@consists in requiring that every closed set of
atoms contain.)

Now, putSAfort > A. Asis readily shown, we have for an arbitrary TV-model

w = SAiff for every w in W, TV (w, A).

That is, SA expresses the necessary statabilityAoMoreover, whereA is any for-
mula of LS, let A* be the result of replacing each occurrenc&ai Abyt >. Then
it is easy to show that for every formulaof £S5, Ais a theorem ofQ if and only if
its translationA* in £>!is a theorem 085!,

4.3 Semanticsfor Q and adequacy We can do better: we can prove that system
Qs adequate with respect to the obvious TV-model semantics for langiliagehe
TV-models for£S are defined in the same way as the TV-modelsdpand the se-
mantic clauses for operatgrare

1. TV(w, SA) Iff TV (w, A), and
2. w = SAiff for every w in W, TV (w, A).

As is easily checked is sound with respect to the semantics of TV-modelsfér
For completeness, a slight adaptation of the completeness proof of Jelgiees
the result. The proof fo@ is even a bit simpler. Propositiogs1(6) and3.1{7) hold
in the present context, and we have the following proposition.

Proposition 4.1 + SA D OSA.

Proof: + OSA D SA. By necessitation, thelr C(OSA D SA). So by axiom K2,
FOOSA D OSA. As aconsequence; ¢ ~ SA D OO ~ SA. From axioms E and
T, it follows that  ~ SA D~ SA. Hence the result. O

Leta be a nontheorem and let @ be a maximal consistent extens{enaf. Propo-
sition[3.2lstill holds.

Let At be now the set of all atoms a@fS. Functiony is defined as before. Let
S(At) be the set of all atomp of £S5 such thatSp is in @. WhereX is a nonempty
subset ofAt, theclosure of X, cX, is now X U S(At). As before, a subseX of At
will be said to beclosed if and only if X = cX.

WhereX is a closed set of atoms, @] and X-maximality are defined as in Sec-
tion[3] As before, each @f] is consistent and has somxemaximal consistent ex-
tension.

Wefinally define the TV-model@, W,TV, ) asin SectioBJandthe aimis to
prove now that for every formul& and every worldw, w = Aifand only if A € w.

Proposition 4.2 Let A and B be formulas, with py, ..., p, all the atoms of B not
in A (we suppose there are such atoms). Then (Sp1 & --- & Spn) € @ if and only
if x(B) C cx(A).
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Proof: Let A, B, p1,..., pn be as stated and & be all the atoms oB in A.

(i) SupposeSp1 & --- & Spn) € @. Then eaclsp; is in @ and so each; is in
S(A?). Sinceyx(B) is XU {p1, ..., pn}, andX C x(A), it follows thaty (B) C
x(A) U S(At). But x(A) U S(At) iscy(A).

(i) Supposex(B) € cx(A). Then eachp; is in S(At). So, eachSp; is in @ and
therefore(Sp1 & --- & Spn) € @. O

Propositiod3.4{1) is easily proved and we have the following.

Proposition 4.3 Let Abeaformula. Thenif SAc @, for every w in W, x(A) C
D(w).

Proof: Let Abe a formula and supposfA € @. Thenx(A) C S(At). Now letw
be a world. Sincd (w) is closed,S(At) € D(w). So,x(A) € D(w). O

Propositionf8.5]B.6{1), and3.§2) still hold, and we have the following proposition.

Proposition 4.4  For every w in W and for every formula A, SA € w if and only
if for every vin W, x(A) € D(v).

Proof: Let Abe aformula, and leb be in /.

(i) SupposeSA € w. Then by maximalityy (SA) € D(w). A consequence is that
x(SA D SA) € D(w). But since by Propositidd.TI- SA D [1SA, we have
by Propositiof8.4{1) that JSA € w. By Propositiori3.5] then[ISA € @. So by
axiom T,SA € @. We have then by Propositigin3] for everyvin W, x(A) €
D(v).

(i) SupposeSA ¢ w. We have to prove that there is a wonlduch thaty (A) is not
asubsetoD(v). Firstcase:x(A) is notasubset dd (w). Wedirectly have the
result. Second case;(A) is a subset 0D (w). Then by maximality~ SA e
w. Since-~ SA> O~ SA, wehave by PropositioB.4(1): 0 ~ SA € w. So,
by Propositiof2.5land axiom T~ SA € @, and as consequencgA ¢ @. So,
thereis an atonpin Asuchthatp ¢ S(At). Letv be any world withp ¢ D(v).
We have: x(A) is not a subset ob (v). O

Propositior3.7lalso holds. The first half of the proof is the same as in Se@ion
For the second half, minor modifications have to be made. Supposelthat w
and x(A) € D(w). By Proposition3.5] then JA ¢ @. Now let us prove that
{~A} U @[cx(A)] is consistent. Suppose it is not. Then one can fihd.. ., B,

in @[cx(A)] such that- (B; & --- & B,) D A. We have then the following:

1. OBy, ...,0B,are in @, and so by Propositith1{7), J(B; & --- & By) is
in @.

2. By necessitationi,][(B1 & --- & By) D Alisin @.

3. Since eachB; is in @[cx(A)], each x(B;) is included incy(A). So,
x(B1 & --- & By) Ccx(A). Letpy,..., pmbetheatomsoB; & --- & By
notin A (if there are such atoms). By Propositlo) then(Sp; & --- & Spm)
€ @.
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These three points plus axion? kntail that JAis in @. So, since by hypothegisA
is not in @, we must conclude that A} U @[cx(A)] is consistent. The rest of the
proof is as in SectioB]

Propositior3.8]still holds. We conclude that for every formukaand every
world w, w = Aif and only if A € w, as expected.

5 Asmpler system All the systems considered so far are formulated in a language
richer than the purely modal language But consider systerS5~, whose rules are
modus ponens and necessitation and whose axiom schemas are all PC-tautologies, T,
E, and

(K7) O(A D B) & 0JA) D OB, where all the atoms of are inB.>

Clearly, K~ is atheorem of) andS5> (and ofS5>!). S0,S5~ is sound with respect to
the class of all TV-models faf. Moreover, completeness is easily proved (adapt the
completeness proof f@5~ by defining the closure of a nonempty set as that very set;
every proposition in the completeness proof$6t which does not concern operator
> is provable as it stands).

6 Resumé SystemsS5~, S57t, Q, andS5~ are all both sound and complete with
respect to their respective semanti€s- ¢ S5~ ¢ S57!, S5~ ¢ Q, and for every
formula Ain £S5, A is a theorem ofQ if and only if its translationA* in L>!is a
theorem ofS5™t.
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NOTES

1. Following a standard assumption, | take a statement to be false at a world if and only if
its negation is true at that world. | shall also suppose that no proposition dathieue
and false at a world.

2. Before turning to systematic concerns, let me mention that Segeﬁepg)[/es com-
pleteness for modal system® {ncluded), whose semantics is similar to the semantics
of TV-models. The reader is invited to glance at this paper for a full comparison. Two
big differences between Segerberg’s systems/semantics and mine are: (1) his semantical
clauses do not all respect the principle of contamination: formulas of tyjpere true at
worlds whereA has no truth-value; (2) his systems are closed under a restricted version
of modus ponens, not under full modus ponens.

3. Inaprevious version of the present paper, no section was devoted to stemas a
nice surprise for me to discover Prior’s ideas on necessity once | obtained the previous
results abouS5~ and its semantics.

4. Let aconstituent of a proposition (in the sense introduced in Secfijme any object
rigidly denoted by some expression in that proposition. For Prior, a proposition is stat-
able at a world if and only if either it has no constituent, or all its constituents exist in
that world. And accordingly, a proposition is necessarily statable if and only if either
it has no constituent, or all its constituents exist necessarily [§epd. 93-94). Fol-
lowing Prior’s account of statability, the operaterintroduced in SectioRIshould be
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considered as expressing a form of existential dependence. For in case propd@sitions
and B both have some constituents, we should then r#ad B as something like ‘for

the constituents oA to exist, those oB must exist’, or ‘the constituents & cannot
exist unless the constituents Bfexist'.

5. Iam indebted to an anonymous referee ofking nal for suggesting that | examine sys-
temS5™.
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