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A Natural Deduction System
for First Degree Entailment

ALLARD M. TAMMINGA and KOJI TANAKA

Abstract This paper is concerned with a natural deduction system forFirst
Degree Entailment (FDE). First, we exhibit a brief history ofFDE and of com-
bined systems whose underlying idea is used in developing the natural deduc-
tion system. Then, after presenting the language and a semantics ofFDE, we
develop a natural deduction system forFDE. We then prove soundness and
completeness of the system with respect to the semantics. The system neatly
represents the four-valued semantics forFDE.

1 Introduction

1.1 First degree entailment After being inspired by the work of Ackermann [1],
Anderson and Belnap [2] started their investigation into a theory of implication: if
. . . then . They developed a number of formal calculi ofentailmentwhich later
came to be known asRelevant Logics.1 In developing their systems, Anderson and
Belnap encountered the difficulty of dealing with nested entailments. Consequently,
they consideredFDE, inwhich the antecedentϕ and consequentψ in an implicational
sentence of the formϕ→ψ are truth functional, that is,ϕ andψ themselves do not
contain implications. The purpose of the investigation intoFDE is, then, to study
the truth functional relationship between antecedent and consequent of implicational
sentences.

Anderson and Belnap provide a Hilbert-style system and a Gentzen-style system
for FDE. Although they give characteristic matrices, however, Anderson and Belnap
do not provide any formal semantics forFDE. For this, we had to wait for Routley
and Routley [11] and Dunn [5].2 Routley and Routley provide a two-valued semantics
for FDE. Although their semantics may be philosophically contentious, it serves as
abasis for the semantics for various relevant logics.3 However, in this paper, we are
concerned only with Dunn’s semantics, which is somewhat more intuitive. Together
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with a tableau system, Dunn presents an “intuitive” formal semantics forFDE. Clas-
sically, semantic evaluations of sentences are defined to be functions that assign to
a formula exactly one truth value. For Dunn, however, evaluations are relations be-
tween a truth value and a formula. A formula may then take (relate to) no truth value
or may take (relate to) multiple truth values.4

One feature of Dunn’s semantics forFDE that we should take notice of is that
truth and falsity are not mutually complementary. Truth and falsity are considered
separately and are independent notions in Dunn’s semantics. This feature plays an
important role in developing a natural deduction system forFDE later in this paper.

1.2 Combined systems The idea of considering true and false formulas sepa-
rately can also be found in the study of formal logics for ‘assertion’ and ‘rejection’.
Łukasiewicz was, to the best of our knowledge, the first to introduce both a sign for
‘assertion’ and a sign for ‘rejection’ into formal logic. Tracing back the history of the
philosophy of logic, Łukasiewicz followed Brentano (1838–1917), who propounded
anonpropositional theory of judgment. Brentano [4] argued that

As every judgement is based on an idea, the statement expressing a judgement
necessarily contains a name [of the idea]. To this, another sign must come, a
sign corresponding to the inner state which we call judging, that is, a sign com-
pleting the bare name to a sentence. And because this judging can be twofold,
viz., asserting or rejecting, the sign indicating it must be twofold too, one for af-
firmation and one for denial. These signs themselves do not mean anything, but
in conjunction with a name, they are the expression of a judgement. Therefore,
the most general scheme of a statement is ‘A is’ and ‘A is not’.5

In the 1921 paper “Logika dwuwartościowa,” later translated as “Two-valued logic,”
Łukasiewicz followed Brentano in adding to Frege’s idea of assertion Brentano’s idea
of rejection. In his early works, Łukasiewicz argued that a proposition must be re-
jected if and only if it is false, parallel with Frege’s condition for the assertion of a
proposition.6 Later, starting withAristotle’s Syllogistic from the Standpoint of Mod-
ern Formal Logic, Łukasiewicz redefined the concept of rejection to cover not only
false propositions, but propositions which are false under at least one interpretation
as well. Furthermore, he introduced syntactical techniques toderiveall rejected, that
is, nontautological, statements. By using the symbol ‘�’ f or assertion (indicating tau-
tologyhood) and ‘�’ for rejection (indicating nontautologyhood), what Łukasiewicz
added toclassical propositional logic (CPL)is the following:

Axiom � p, wherep is a fixed propositional variable.
Detachment If � ϕ→ψ and� ψ, then� ϕ.
Substitution If � ψ andψ can be obtained fromϕ by substitution, then� ϕ.

This system is first described in Łukasiewicz [8],7 where Łukasiewicz also pro-
pounded a system of rejection for Aristotle’s syllogistics, after some technical prob-
lems had been solved by Słupecki. Łukasiewicz also tried to construe systems of
rejection for theintuitionistic propositional logic (IPL)and for his own version of
modal logic. All these systems share one characteristic: they are all “combined sys-
tems,” that is, they all include both a sign for ‘assertion’ and a sign for ‘rejection’.
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One of the advantages of combined systems over traditional ones worth men-
tioning in this paper is that metatheoretical results can be incorporated in the object
language of the system under consideration. For instance, the disjunction property of
IPL can be formulated in the object language of a proof system as follows:

� ϕ � ψ

� ϕ ∨ ψ
.

Now, since in many of the combined systems, in particular the systems of
Łukasiewicz,� ϕ is complemented by the failure of� ϕ,8 the concept of rejection
contained in the systems is classical. Nonetheless, combined systems, prima facie,
take the idea seriously that (possibly) false formulas be considered separately from
true formulas. The idea of Dunn’s semantics seems to have another home here.

2 Language and semantics

Definition 2.1 The alphabet ofFDE consists of the following.

(i) Propositional variables p1, p2, p3, . . .

(ii) Logical symbols ¬,∧,∨
(iii) Auxiliary symbols ), (

� denotes an empty sequence.A denotes the set of propositional variables.

Definition 2.2 The set of all formulas ofFDE, denoted byF , is the least set satis-
fying the following conditions:

(i) A ⊂ F ,
(ii) ϕ,ψ ∈ F =⇒ (ϕ ∧ ψ), (ϕ ∨ ψ) ∈ F ,

(iii) ϕ ∈ F =⇒ ¬ϕ ∈ F .

Definition 2.3 Let M = 〈F , ν〉 be an interpretation for the language whereν is an
evaluation such thatνM is a function fromA to ℘({0,1}). ThenνM is extended to
an evaluation for all formulasϕ andψ by the following conditions:

(i) 1 ∈ νM (ϕ∧ψ) ⇐⇒ 1 ∈ νM (ϕ) and 1∈ νM (ψ),
(ii) 0 ∈ νM (ϕ∧ψ) ⇐⇒ 0 ∈ νM (ϕ) or 0∈ νM (ψ),

(iii) 1 ∈ νM (ϕ∨ψ) ⇐⇒ 1 ∈ νM (ϕ) or 1∈ νM (ψ),
(iv) 0 ∈ νM (ϕ∨ψ) ⇐⇒ 0 ∈ νM (ϕ) and 0∈ νM (ψ),
(v) 1 ∈ νM (¬ϕ) ⇐⇒ 0 ∈ νM (ϕ),

(vi) 0 ∈ νM (¬ϕ) ⇐⇒ 1 ∈ νM (ϕ).

Definition 2.4 Let �⊆F andM be an interpretation. Then

(i) 1∈νM (�) := 1∈νM (ϕ) for everyϕ∈�,
(ii) 0 ∈νM (�) := 0∈νM (ϕ) for everyϕ∈�.

We are now in a position to define validity. Validity defined below incorporates the
concept of Dunn’s semantics forFDE. It concerns not only truth but also falsity as in
Dunn’s semantics.9
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Definition 2.5 (FDE Validity) Let �,�⊆F andϕ∈F . Then

(i) �;� |= ϕ;� ⇐⇒ For all M : if 1 ∈νM (�) and 0∈νM (�), then 1∈νM (ϕ),
(ii) �;� |= �;ϕ ⇐⇒ For all M : if 1 ∈νM (�) and 0∈νM (�), then 0∈νM (ϕ).

3 A natural deduction system While providing a Hilbert-style system and a
Gentzen-style system and natural deduction systems for other relevant logics, Ander-
son and Belnap do not give any natural deduction systems forFDE. The first natural
deduction system forFDE to be formally introduced, other than the system developed
in this paper, will be by Priest [9].10

In this section, we introduce a natural deduction system forFDE, NDFDE. The
system is developed by amalgamating the concept of Dunn’s semantics and that of
the combined systems. Instead of taking�ϕ to be an assertion ofϕ (a usual policy
in combined systems), here it is semantically interpreted as:ϕ takes ‘truth’ asa truth
value. Similarly,� ϕ is interpreted as:ϕ takes ‘falsity’ asa truth value.

The systemNDFDE is defined as follows.11

Definition 3.1 Derivations in the systemNDFDE are inductively generated as fol-
lows.

Basis:The proof tree with a single occurrence of an assumption� ϕ or� ϕ is a deriva-
tion.

Induction Step:Let D , D1, D2, D3 be derivations. Then they can be extended by the
following rules:

D
� ϕ ¬I�� ¬ϕ

D
� ϕ ¬I�� ¬ϕ

D
� ¬ϕ ¬E�� ϕ

D
� ¬ϕ ¬E�� ϕ

D1

� ϕ

D2

� ψ ∧I�� ϕ∧ψ

D
� ϕi ∧I�, i ∈{0,1}� ϕ0∧ϕ1

D
� ϕ0∧ϕ1 ∧E�, i ∈{0,1}� ϕi

D1

� ϕ∧ψ

[� ϕ]u

D2

X

[� ψ]v

D3

X ∧Eu,v
� , where eitherX = � χ or X = � χ

X

D
� ϕi ∨I�, i ∈{0,1}� ϕ0∨ϕ1

D1

� ϕ

D2

� ψ ∨I�� ϕ∨ψ

D
� ϕ0∨ϕ1 ∨E�, i ∈{0,1}� ϕi

D1

� ϕ∨ψ

[� ϕ]u

D2

X

[� ψ]v

D3

X ∨Eu,v
� , where eitherX = � χ or X = � χ

X
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where [� ϕ] and [� ϕ] are assumptions which are discharged by the application of the
rules.

Lemma 3.2 De Morgan rules of the following forms are available inNDFDE (dou-
ble lines indicate that the rules work both ways):

D
� ϕ∧ψ

DeM�� ¬ϕ∨¬ψ

D
� ϕ∧ψ

DeM�� ¬ϕ∨¬ψ

Proof: DeM�:

� ϕ∧ψ

� ϕ

� ¬ϕ

� ϕ∧ψ ∧E�� ψ ¬I�� ¬ψ ∨I�� ¬ϕ∨¬ψ

� ¬ϕ∨¬ψ

� ¬ϕ

� ϕ

� ¬ϕ∨¬ψ ∨E�� ¬ψ ¬E�� ψ ∧E�� ϕ∧ψ

DeM�:

� ϕ∧ψ

[� ϕ]u

� ¬ϕ

� ¬ϕ∨¬ψ

[� ψ]v ¬I�� ¬ψ ∨I�� ¬ϕ∨¬ψ ∧Eu,v
�� ¬ϕ∨¬ψ

� ¬ϕ∨¬ψ

[� ¬ϕ]u

� ϕ

� ϕ∧ψ

[� ¬ψ]v ¬E�� ψ ∧I�� ϕ∧ψ ∨Eu,v
�� ϕ∧ψ

�

Definition 3.3 Let �⊆F . Then

(i) � � := {� ϕ : ϕ∈�},
(ii) � � := {� ϕ : ϕ∈�}.

Definition 3.4 (FDE Derivability) Let�,�⊆F andϕ∈F . Then

(i) �;� → ϕ;� ⇐⇒ There is a derivation of� ϕ from � �∪ � � in NDFDE,
(ii) �;� → �;ϕ ⇐⇒ There is a derivation of� ϕ from � �∪ � � in NDFDE.



NATURAL DEDUCTION 263

4 Soundness

Lemma 4.1 Let�i , �i ⊆F for i ∈{1,2,3} andϕ,ψ, χ∈F . Then

(i) �;� |= ϕ;�, if ϕ∈�

(ii) �;� |= �;ϕ, if ϕ∈�

(iii) �;� |= ϕ;� =⇒ �;� |= �;¬ϕ

(iv) �;� |= �;ϕ =⇒ �;� |= ¬ϕ;�
(v) �;� |= ¬ϕ;� =⇒ �;� |= �;ϕ

(vi) �;� |= �;¬ϕ =⇒ �;� |= ϕ;�
(vii)

�1;�1 |= ϕ;�
�2;�2 |= ψ;�

}
=⇒ �1,�2;�1, �2 |= ϕ∧ψ;�

(viii) �;� |= �;ϕ =⇒ �;� |= �;ϕ∧ψ

(ix) �;� |= �;ψ =⇒ �;� |= �;ϕ∧ψ

(x) �;� |= ϕ∧ψ;� =⇒ �;� |= ϕ;�
(xi) �;� |= ϕ∧ψ;� =⇒ �;� |= ψ;�

(xii)
�1;�1 |= �;ϕ∧ψ

�2;�2, ϕ |= χ;�
�3;�3, ψ |= χ;�


 =⇒ �1,�2,�3;�1, �2, �3 |= χ;�

(xiii)
�1;�1 |= �;ϕ∧ψ

�2;�2, ϕ |= �;χ

�3;�3, ψ |= �;χ


 =⇒ �1,�2,�3;�1, �2, �3 |= �;χ

(xiv) �;� |= ϕ;� =⇒ �;� |= ϕ∨ψ;�
(xv) �;� |= ψ;� =⇒ �;� |= ϕ∨ψ;�
(xvi)

�1;�1 |= �;ϕ

�2;�2 |= �;ψ

}
=⇒ �1,�2;�1, �2 |= �;ϕ∨ψ

(xvii) �;� |= �;ϕ∨ψ =⇒ �;� |= �;ϕ

(xviii) �;� |= �;ϕ∨ψ =⇒ �;� |= �;ψ

(xix)
�1;�1 |= ϕ∨ψ;�
�2, ϕ;�2 |= χ;�
�3, ψ;�3 |= χ;�


 =⇒ �1,�2,�3;�1, �2, �3 |= χ;�

(xx)
�1;�1 |= ϕ∨ψ;�
�2, ϕ;�2 |= �;χ

�3, ψ;�3 |= �;χ


 =⇒ �1,�2,�3;�1, �2, �3 |= �;χ.

Proof: (xii) Suppose thatM is an interpretation such that 1∈νM (�1,�2,�3) and
0∈νM (�1, �2, �3). Then, as�1;�1 |= �;ϕ∧ψ, wehave 0∈νM (ϕ∧ψ). Therefore,
0∈νM (ϕ) or 0∈νM (ψ). Suppose 0∈νM (ϕ). Then, as�2;�2, ϕ |= χ;�, we have
1∈ νM (χ). Suppose 0∈ νM (ψ). Then, as�3;�3, ψ |= χ;�, we have 1∈ νM (χ).
Hence 1∈νM (χ). Therefore,�1,�2,�3;�1, �2, �3 |= �;χ.

The other cases can be proved analogously. �

Theorem 4.2 (Soundness ofNDFDE) Let�,�⊆F andϕ∈F . Then

(i) �;� → ϕ;� =⇒ �;� |= ϕ;�,
(ii) �;� → �;ϕ =⇒ �;� |= �;ϕ.
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Proof: The proof is by induction on the depth of derivation. All that needs to be
checked is that the rules preserve truth and falsity in the appropriate way. This can
be shown using Lemma4.1. �

5 Completeness We now prove the completeness theorem forNDFDE. Priest [9]
demonstrates techniques to prove completeness theorems for natural deduction sys-
tems for various relevant and paraconsistent logics.12 Although Priest defines valid-
ity and derivability in a standard way, his techniques provide some insights into the
structure of the proof for the theorem. Here we adapt his techniques in our proof.

Definition 5.1 Let �,� ⊆ F . Then〈�;�〉 is a theory, if〈�;�〉 is closed under
deducibility, that is, if both

(i) �;� → ϕ;� =⇒ ϕ∈�,
(ii) �;� → �;ϕ =⇒ ϕ∈�.

Definition 5.2 Let 〈�;�〉 be a theory. Then〈�;�〉 is dual prime, if〈�;�〉 has
both the disjunction property and the conjunction property, that is, if both

(i) ϕ∨ψ ∈ � =⇒ ϕ ∈ � or ψ ∈ �,
(ii) ϕ∧ψ ∈ � =⇒ ϕ ∈ � or ψ ∈ �.

Lemma 5.3 Let�,�⊆F andϕ,ψ∈F . Let 〈�;�〉 be a dual prime theory. Then

(i) ϕ∧ψ∈� ⇐⇒ ϕ∈� and ψ∈�,
(ii) ϕ∧ψ∈� ⇐⇒ ϕ∈� or ψ∈�,

(iii) ϕ∨ψ∈� ⇐⇒ ϕ∈� or ψ∈�,
(iv) ϕ∨ψ∈� ⇐⇒ ϕ∈� and ψ∈�,
(v) ϕ∈� ⇐⇒ ¬ϕ∈�,

(vi) ¬ϕ∈� ⇐⇒ ϕ∈�.

Proof:

(i) Supposeϕ∧ψ∈�. Then�;� → ϕ∧ψ;�. So�;� → ϕ;� and�;� → ψ;�
by ∧E�. Since〈�;�〉 is a theory,ϕ∈� andψ∈�. Supposeϕ∈� andψ∈�.
By ∧I�, �;� → ϕ∧ψ;�. Since〈�;�〉 is a theory,ϕ∧ψ∈�.

(ii) Supposeϕ∧ψ∈�. By dual primeness,ϕ∈� or ψ∈�. Supposeϕ∈� or ψ∈�.
By ∧I�, �;� → �;ϕ∧ψ. Since〈�;�〉 is a theory,ϕ∧ψ∈�.

(iii) Supposeϕ∨ψ ∈ �. By dual primeness,ϕ ∈ � or ψ ∈ �. Supposeϕ ∈ � or
ψ∈�. By ∨I�, �;� → ϕ∨ψ;�. Since〈�;�〉 is a theory,ϕ∨ψ∈�.

(iv) Supposeϕ∨ψ∈�. By ∨E�, �;� → �;ϕ and�;� → �;ψ. Since〈�;�〉 is
atheory,ϕ∈� andψ∈�. Supposeϕ∈� andψ∈�. By ∨I�, �;� → �;ϕ∨ψ.
Since〈�;�〉 is a theory,ϕ∨ψ∈�.

(v) Supposeϕ ∈ �. By ¬I�, �;� → �;¬ϕ. Since〈�;�〉 is a theory,¬ϕ ∈ �.
Suppose¬ϕ∈�. By ¬E�, �;� → ϕ;�. Since〈�;�〉 is a theory,ϕ∈�.

(vi) Suppose¬ϕ∈�. By ¬E�, �;� → �;ϕ. Since〈�;�〉 is a theory,ϕ∈�. Sup-
poseϕ∈�. By ¬I�, �;� → ¬ϕ;�. Since〈�;�〉 is a theory,¬ϕ∈�.

�
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Definition 5.4 Let �,�,�,	⊆F . Then

(i) �;� → �;�⇐⇒There areδ1, . . . , δn ∈ � such that�;� → δ1∨ · · · ∨δn;�,
(ii) �;� → �;	⇐⇒There areσ1, . . . , σn ∈ 	 such that�;� → �;σ1∧ · · · ∧σn.

Lemma 5.5 Let�,�,�⊆F such that�;� �→ �;�. Thenthere are sets�∗⊇�,
�∗ ⊇� and�∗ ⊇� such that

(i) �∗;�∗ �→ �∗;�,
(ii) 〈�∗;�∗〉 is a theory,

(iii) 〈�∗;�∗〉 is dual prime.

Proof: Assume that�;� �→ �;� for �,�,� ⊆ F . Let χ0, χ2, χ4, . . . be an
enumeration ofF . Let m ∈ {0,2,4, . . .}. We define by recursion the sequence
〈�n;�n;�n〉 (n ∈ ω) as follows:

〈�0;�0;�0〉 := 〈�;�;�〉

〈�m+1;�m+1;�m+1〉 :=




〈�m, χm;�m;�m〉, if
�m, χm;�m �→ �m;�

〈�m;�m;�m, χm〉, if
�m, χm;�m → �m;�.

〈�m+2;�m+2;�m+2〉 :=




〈�m+1;�m+1, χm;�m+1〉, if
�m+1;�m+1, χm �→ �m+1;�

〈�m+1;�m+1;�m+1,¬χm〉, if
�m+1;�m+1, χm → �m+1;�.

Wedefine the following by means of the sequence defined above thus:

〈�∗;�∗;�∗〉 := 〈⋃n∈ω �n;
⋃

n∈ω �n;
⋃

n∈ω �n〉.

(i) We show that �∗;�∗ �→ �∗;� by induction on the construction of
〈�∗;�∗;�∗〉.
Basis: n=0. Then�0;�0 �→ �0;� by assumption.
Induction Hypothesis:�n;�n �→ �n;�.
Induction Step:We must show that�n+1;�n+1 �→ �n+1;�. Thereare two
cases: (a) n+1= m+1 for somem∈ {0,2,4, . . .}, and(b) n+1= m+2 for
somem∈{0,2,4, . . .}.
(a) Suppose thatn+ 1 = m+ 1 for somem ∈ {0,2,4, . . .}. Then there

are two cases based on the construction of〈�m+1;�m+1;�m+1〉 from
〈�m;�m;�m〉.

(a′) 〈�m+1;�m+1;�m+1〉=〈�m, χm;�m;�m〉. By the construction, it must
be that�m, χm;�m �→ �m;�. Hence�m+1;�m+1 �→ �m+1;�. There-
fore,�n+1;�n+1 �→ �n+1;�.

(a′′) 〈�m+1;�m+1;�m+1〉=〈�m;�m;�m, χm〉. By the construction, it must
be that �m, χm;�m → �m;�. Suppose that �m+1;
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�m+1 → �m+1;�. Then�m;�m → �m, χm;�. By an application of
∨E�, wehave that�m;�m → �m;�, that is,�n;�n → �n;�, contrary
to the Induction Hypothesis.

(b) Suppose thatn+ 1 = m+ 2 for somem ∈ {0,2,4, . . .}. Then there
are two cases based on the construction of〈�m+2;�m+2;�m+2〉 from
〈�m+1;�m+1;�m+1〉.

(b′) 〈�m+2;�m+2;�m+2〉 = 〈�m+1;�m+1, χm;�m+1〉. By the construction,
it must be that �m+1;�m+1, χm �→ �m+1;�. Hence �m+2;
�m+2 �→ �m+2;�. Therefore,�n+1;�n+1 �→ �n+1;�.

(b′′) 〈�m+2;�m+2;�m+2〉 = 〈�m+1;�m+1;�m+1,¬χm〉. By the construc-
tion, it must be that�m+1;�m+1, χm → �m+1;�. Suppose that�m+2;
�m+2 → �m+2;�. Then�m+1;�m+1 → �m+1,¬χm;�. By applica-
tions of¬E� and∨E�, �m+1;�m+1 → �m+1;�. Therefore,�n;�n →
�n;�, contrary to the Induction Hypothesis.

By (a) and (b), �n+1;�n+1 �→ �n+1;�. Hence�n;�n �→ �n;� for all
n by induction. Therefore,�∗;�∗ �→ �∗;�.

(ii) We show that〈�∗;�∗〉 is a theory. Assume that�∗;�∗ → ϕ;�. Now suppose
thatϕ �∈�∗. Then by the construction, for somem∈{0,2,4, . . .} whereϕ=χm,
it is not the case that�m, χm;�m �→ �m;�. So�m, χm;�m → �m;�. Hence
ϕ∈�m+1⊆�∗. Thus�∗;�∗ → �∗;�, contrary to (i) proved above.
Assume that�∗;�∗ → �;ϕ, or equivalently,�∗;�∗ → ¬ϕ;� by ¬I�. Now
suppose thatϕ �∈�∗. Then by the construction, for somem∈{0,2,4, . . .} where
ϕ=χm, it is not the case that�m+1;�m+1, χm �→ �m+1;�. So�m+1;�m+1,

χm → �m+1;�. Hence¬ϕ∈�m+2⊆ �∗. Thus�∗;�∗ → �∗;�, contrary to
(i) proved above.

(iii) We show that〈�∗;�∗〉 is dual prime. Assume thatϕ∨ψ∈�∗. Then�∗;�∗ →
ϕ∨ψ;�. Now suppose thatϕ �∈ �∗ andψ �∈ �∗. By the construction, for
somem∈ {0,2,4, . . .} whereϕ = χm andn ∈ {0,2,4, . . .} whereψ = χn, it
is not the case that�m, χm;�m �→ �m;�, nor that�n, χn;�n �→ �n;�. So
�m, χm;�m → �m;� and�n, χn;�n → �n;�. Henceϕ∈�m+1 ⊆�∗ and
ψ∈�n+1⊆�∗. Therefore�∗;�∗ → �∗;�, contrary to (i) proved above.
Assume thatϕ∧ψ∈�∗. Then�∗;�∗ → �;ϕ∧ψ, or equivalently,�∗;�∗ →
¬ϕ∨¬ψ;� by DeM�. Now suppose thatϕ �∈�∗ andψ �∈�∗. By the construc-
tion, for somem∈{0,2,4, . . .} whereϕ=χm andn∈{0,2,4, . . .} whereψ=χn,
it is not the case that�m+1;�m+1, χm �→ �m+1;�, nor that�n+1;�n+1, χn �→
�n+1;�. So�m+1;�m+1, χm → �m+1;� and�n+1; �n+1, χn → �n+1;�.
Hence¬ϕ ∈ �m+2 ⊆ �∗ and¬ψ ∈ �n+2 ⊆ �∗. Therefore�∗;�∗ → �∗;�,
contrary to (i) proved above.

�

Lemma 5.6 Let�,�,	⊆F such that�;� �→ �;	. Then there are sets�∗⊇�,
�∗ ⊇� and	∗ ⊇	 such that

(i) �∗;�∗ �→ �;	∗,
(ii) 〈�∗;�∗〉 is a theory,

(iii) 〈�∗;�∗〉 is dual prime.
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Proof: Assume that�;� �→ �;	 for �,�,	 ⊆ F . Let χ0, χ2, χ4, . . . be an
enumeration ofF . Let m ∈ {0,2,4, . . .}. We define by recursion the sequence
〈�n;�n;	n〉 (n ∈ ω) as follows:

〈�0;�0;	0〉 := 〈�;�;	〉

〈�m+1;�m+1;	m+1〉 :=




〈�m, χm;�m;	m〉, if
�m, χm;�m �→ �;	m

〈�m;�m;	m,¬χm〉, if
�m, χm;�m → �;	m.

〈�m+2;�m+2;	m+2〉 :=




〈�m+1;�m+1, χm;	m+1〉, if
�m+1;�m+1, χm �→ �;	m+1

〈�m+1;�m+1;	m+1, χm〉, if
�m+1;�m+1, χm → �;	m+1.

Then (i), (ii), and (iii) can be proved as in Lemma5.5. �

Lemma 5.7 Let�,�⊆F andϕ∈F . Then

�;� |= ϕ;� =⇒ �;� → ϕ;�.

Proof: Suppose that�;� �→ ϕ;� for �,�⊆F andϕ∈F . By applying Lemma5.5
with {ϕ} as�, there is a dual prime theory〈�∗;�∗〉 for �∗⊇� and�∗⊇� and�∗⊇
�, such that�∗;�∗ �→ �∗;�.

Let M (= 〈F , ν〉) be an interpretation andp∈A . Wedefine an evaluationν as:

1∈νM (p) ⇐⇒ p∈�∗,
0∈νM (p) ⇐⇒ p∈�∗.

It is then asserted that the above conditions extend to all formulas:

1∈νM (ϕ) ⇐⇒ ϕ∈�∗,
0∈νM (ϕ) ⇐⇒ ϕ∈�∗.

The assertion is proved by structural induction onϕ.

Basis:By assumption:

1∈νM (ϕ) ⇐⇒ ϕ∈�∗,
0∈νM (ϕ) ⇐⇒ ϕ∈�∗.

Induction Hypothesis:For allψ with fewer logical operators thanϕ:

1∈νM (ψ) ⇐⇒ ψ∈�∗,
0∈νM (ψ) ⇐⇒ ψ∈�∗.

Induction Step:There are six cases based on the connectives inϕ.
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1∈νM (ψ1∧ψ2) ⇐⇒ 1∈νM (ψ1) and 1∈νM (ψ2) by Definition2.3
⇐⇒ ψ1∈�∗ andψ2∈�∗ by Induction Hypothesis
⇐⇒ ψ1∧ψ2∈�∗ by Lemma5.3.

0∈νM (ψ1∧ψ2) ⇐⇒ 0∈νM (ψ1) or 0∈νM (ψ2) by Definition2.3
⇐⇒ ψ1∈�∗ or ψ2∈�∗ by Induction Hypothesis
⇐⇒ ψ1∧ψ2∈�∗ by Lemma5.3.

Similarly, we have

1∈νM (ψ1∨ψ2) ⇐⇒ ψ1∨ψ2∈�∗,

0∈νM (ψ1∨ψ2) ⇐⇒ ψ1∨ψ2∈�∗,

1∈νM (¬ψ) ⇐⇒ ¬ψ∈�∗,

0∈νM (¬ψ) ⇐⇒ ¬ψ∈�∗.

Hence the evaluation conditions defined above hold for all formulas by induction.
Since�∗;�∗ �→ �∗;�, we have thatϕ �∈ �∗. By the above conditions then, 1�∈
νM (ϕ). But 1∈ νM (ψ) and 0∈ νM (χ) for all ψ∈�∗ andχ∈�∗. Hence�∗;�∗ �|=
ϕ;�. �

Lemma 5.8 Let�,�⊆F andϕ∈F . Then

�;� |= �;ϕ =⇒ �;� → �;ϕ.

Proof: Suppose that�;� �→ �;ϕ for �,�⊆F andϕ∈F . By applying Lemma5.6
with {ϕ} as	, there is a dual prime theory〈�∗;�∗〉 for �∗⊇� and�∗⊇� and	∗⊇
	, such that�∗;�∗ �→ �;	∗.

Let M (= 〈F , ν〉) be an interpretation andp∈A . Wedefine an evaluationν as:

1∈νM (p) ⇐⇒ p∈�∗,
0∈νM (p) ⇐⇒ p∈�∗.

It is then asserted that the above conditions extend to all formulas:

1∈νM (ϕ) ⇐⇒ ϕ∈�∗,
0∈νM (ϕ) ⇐⇒ ϕ∈�∗.

This assertion is proved as in Lemma5.7. Since�∗;�∗ �→ �;	∗, we have thatϕ �∈
�∗. By the above conditions, then, 0�∈νM (ϕ). But 1∈νM (ψ) and 0∈νM (χ) for all
ψ∈�∗ andχ∈�∗. Hence�∗;�∗ �|= �;ϕ. �

Theorem 5.9 (Completeness ofNDFDE) Let�,�⊆F andϕ∈F . Then

(i) �;� |= ϕ;� ⇐⇒ �;� → ϕ;�,
(ii) �;� |= �;ϕ ⇐⇒ �;� → �;ϕ.

Proof: The result follows from Theorem4.2, Lemma5.7, and Lemma5.8. �
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6 Rejection eliminated? Although the systemNDFDE captures the underlying idea
of Dunn’s semantics, one might argue that the introduction of rejected formulas is
theoretically redundant. The argument runs as follows.NDFDE takes� as a falsity
operator understood semantically. So stating� ϕ amounts to stating thatϕ is false.
But then� ϕ is just � ¬ϕ. Hence ‘�’ may be replaced by ‘� ¬’. Once we have
adopted this convention, ‘�’ can be dropped from the system, since we need not in-
dicate the status (asserted or rejected) of a formula anymore. For example, the rule
¬I� becomes

D
ϕ ¬¬I¬¬ϕ

and∧Eu,v
� becomes

D1

¬(ϕ∧ψ)

[¬ϕ]u

D2
χ

[¬ψ]v

D3
χ ¬∧ Eu,v.χ

Moreover, if we add the De Morgan rules as primitive, there will be some rules of
inference which are redundant. For example,¬∧ Eu,v in the new system will be a
special case of∨Eu,v. The resulting system will then be that of Priest [9], as can
easily be checked.13

These changes give rise to changes to the definitions of validity and derivability
as well. Since every (rejected) formula in� in our definition of validity, that is, Def-
inition 2.5, can be incorporated into� by placing ‘¬’ i n front of the formulas under
consideration, validity is defined standardly. Similarly, derivability is defined stan-
dardly. Then soundness and completeness can be established as in [9].

The fact thatNDFDE collapses under the proposed substitution to a standard sys-
tem, such as Priest’s, however, does not imply the inferiority of the system presented
in this paper, as there are some obvious advantages of our combined system over the
standard ones. First,NDFDE visually reflects the underlying idea of Dunn’s semantics:
truth and falsity are evaluated separately. Second, because of the introduction of both
asserted and rejected formulas in our proof system, our system, contrary to Priest’s,
does not have any rules for combinations of logical operators: each operator has two
introduction rules and two elimination rules, according to the status (asserted or re-
jected) of the formula which serves as a premise in the application of a rule. Rules
which necessitate combinations of operators obscure the meanings of the operators.
In constructing a proof tree in our system, at each step only the principal operator
needs to be considered. This procedure makes the construction of proofs intuitive
and mechanical, which is the main purpose of formal logics.

Third, NDFDE has conjunction elimination rules which have the same forms as
disjunction elimination rules. Standardly, the disjunction elimination rule includes
subproof trees, while the conjunction elimination rule does not. So they have dif-
ferent forms. InNDFDE, the conjunction elimination rule,∧E�, has the same form
as the disjunction elimination rule,∨E�, and∧E� does the same as∨E�. Thus the
elimination rules for conjunction and disjunction are dual. This feature of the sys-
tem, therefore, provides symmetric proofs which capture the semantics in a natural
way without any technical complications.
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Finally, our definition of validity may be extended to capture more general con-
sequence relations as follows.

Definition 6.1 Let �,�,	,� ⊆ F andϕ ∈ F . Then

(i) �;�;	;� |= ϕ;�;�;� ⇐⇒ For allM : if 1∈νM (�) and 0∈νM (�)

and 1�∈νM (	) and 0�∈νM (�), then 1∈
νM (ϕ),

(ii) �;�;	;� |= �;ϕ;�;� ⇐⇒ For allM : if 1∈νM (�) and 0∈νM (�)

and 1�∈νM (	) and 0�∈νM (�), then 0∈
νM (ϕ),

(iii) �;�;	;� |= �;�;ϕ;� ⇐⇒ For allM : if 1∈νM (�) and 0∈νM (�)

and 1�∈νM (	) and 0�∈νM (�), then 1�∈
νM (ϕ),

(iv) �;�;	;� |= �;�;�;ϕ ⇐⇒ For allM : if 1∈νM (�) and 0∈νM (�)

and 1�∈νM (	) and 0�∈νM (�), then 0�∈
νM (ϕ).

Proof-theoretical characterizations of the above consequence relations have yet to be
investigated. However, it does not seem impossible to give a proof theory in the style
of Konikowska [6]. Moreover, these general consequence relations may be studied
in the context of many logics other thanFDE as well.
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NOTES

1. Or Relevance Logics. ‘Relevantlogics’ is often preferred by Australian relevant logi-
cians. ‘Relevancelogics’, on the other hand, is preferred by American relevance logi-
cians.

2. The paper is included in Anderson, Belnap, and Dunn [3] which is the second volume
of Anderson and Belnap [2].

3. See Priest and Sylvan [10].

4. SomeParaconsistent Logicsare developed based on this idea. Unsurprisingly,FDE is
often considered to be a paraconsistent logic, as well as a relevant logic.

5. Brentano writes: “Da jedem Urteil eine Vorstellung zugrunde liegt, so wird die Aussage
als Ausdruck des Urteils notwendig einen Namen enthalten. Dazu wird aber noch ein
anderes Zeichen kommen müssen, das demjenigen inneren Zustand entspricht, den wir
eben Urteilen nennen, d.h. ein Zeichen, das den bloßen Namen zum Satz ergänzt. Und
da dieses Urteilen von doppelter Art sein kann, nämlich ein Anerkennen oder Verwer-
fen, so wird auch das Zeichen dafür ein doppeltes sein m̈ussen, eines für die Bejahung
und eines f̈ur die Verneinung. F̈ur sich allein bedeuten diese Zeichen nichts [...], aber in
Verbindung mit einem Namen sind sie Ausdruck eines Urteils. Das allgemeinste Schema
der Aussage lautet daher:A ist (A +) und A ist nicht (A −).” ([ 4], pp. 97–98.)
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6. Łukasiewicz writes: “I wish to assert truth and only truth, and to reject falsehood and
only falsehood.” (Łukasiewicz [7], p. 91)

7. For a synopsis of the history of theories of rejection forCPL, the reader may have re-
course to Tamminga [13].

8. For a discussion of this feature of combined systems, see [13].

9. Standardly, validity forFDE is defined as in classical logic as follows:

� |= ϕ ⇐⇒ For all M : if 1 ∈νM (�), then 1∈νM (ϕ).

10. After the development of Dunn’s semantics, the history ofFDE is largely anecdotal. For
this reason, it is uncertain whether the system provided by Priest will be the first. How-
ever, there do not seem to be any published papers that introduce natural deduction sys-
tems forFDE. This claim was suggested in conversations with Dunn and Priest.

11. The notational conventions used here are a slight modification of those of Troelstra and
Schwichtenberg [15].

12. A completeness proof for a classical natural deduction system can be found in Ten-
nant [14].

13. Smullyan [12] shows a similar result for a classical tableaux system.
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