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Ernst Mally’s Deontik (1926)

GERT-JAN C. LOKHORST

Abstract In 1926, Mally proposed the first formal deontic system. As Mally
and others soon realized, this system had some rather strange consequences. We
show that the strangeness of Mally’s system is not so much due to Mally’s infor-
mal deontic principles as to the fact that he formalized those principles in terms
of the propositional calculus. If they are formalized in terms of relevant logic
rather than classical logic, one obtains a system which is related to Anderson’s
relevant deontic logic and not nearly as strange as Mally’s own system.

1 Introduction Mally, a student of Meinong, was the first philosopher to build a
formal theory of normative concepts [7]. It would be an understatement to say that
Mally’s Deontik is not held in high esteem today. Føllesdal and Hilpinen [6] call it
“strange,” “counter-intuitive,” and “not acceptable” and mainly wonder “Where did
Mally go wrong?” Meyer and Wieringa [10] mention it only “by way of curiosity”
before proceeding to what they describe as “the first ‘real’ system of deontic logic.”
In this paper, we will show that the strangeness of Mally’s system is not so much due
to his basic deontic assumptions as to the fact that he formalized those assumptions in
terms of the propositional calculus. If they are formalized in terms of relevant logic
rather than classical logic, one obtains a system which is related to Anderson’s rele-
vant deontic logic [1] and not nearly as strange as Mally’s own system.

2 Mally’s Deontik Mally adopted the following informal deontic principles
([7], §2):

1. If A requires B and if B then C, then A requires C.

2. If A requires B and if A requires C, then A requires B and C.

3. A requires B if and only if it is obligatory that if A then B.

4. The unconditionally obligatory is obligatory.

5. The unconditionally obligatory does not require its own negation.
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In order to formalize these principles, Mally used the propositional calculus PC sup-
plemented with a propositional constant U, which he read as ‘the unconditionally
obligatory’ (das unbedingt Geforderte) and with a monadic propositional operator !
which he read as ‘it is obligatory that’ (he read !A as ‘es sei A’ or as ‘A soll sein’). He
translated ‘A requires B’ as A ⊃ !B. As a result he obtained the following axioms:

MD1 ((A ⊃ !B) ∧ (B ⊃ C)) ⊃ (A ⊃ !C)

MD2 ((A ⊃ !B) ∧ (A ⊃ !C)) ⊃ (A ⊃ !(B ∧ C))

MD3 (A ⊃ !B) ≡ !(A ⊃ B)

MD4 !U
MD5 ¬(U ⊃ !¬U)

Mally formalized (4) as ∃U!U. We agree with Føllesdal and Hilpinen ([6], pp. 2–3)
that this formula is not well-formed and should be replaced by !U. Mally viewed the
latter formula as a theorem ([7], §3, formula 15).

Mally’s principles sound more or less natural but many of the theorems of his
system are decidedly strange. For example, one may prove the following theorem:

(†) !A ≡ A

Proof: We have ((!A ⊃ !A) ∧ (A ⊃ B)) ⊃ (!A ⊃ !B) in virtue of MD1, whence
(A ⊃ B) ⊃ (!A ⊃ !B) by PC. (For the rest of the proof, see [6], p. 4, formulas 9–21.)
(†) implies that Mally’s system is trivial. It has no genuine deontic content. The de-
ontic operator ! has a purely decorative function and can be defined away by !A = A.

�

Although he did not actually discuss (†), Mally was well aware of the fact that his
theory had many strange consequences. Indeed, he classified thirteen of the thirty-five
theorems which he derived as befremdlich. Mally defended these strange theorems,
but all later deontic logicians (starting with Menger [9]) have regarded them as fatal
to his theory.

In their well known account of Mally’s system, Føllesdal and Hilpinen added
one additional rule of inference: A ≡ B / !A ≡ !B ([6], p. 3). This rule is, however,
derivable from (A ≡ B) ⊃ (!A ≡ !B) which is a theorem in virtue of MD1, so there
is no need to introduce it as a primitive rule. These authors also added the following
axiom: !A ≡ ∀P(P ⊃ !A) ([6], p. 3). But if propositional quantifiers are introduced
in the usual way, then A ≡ ∀P(P ⊃ A) will be a theorem, so !A ≡ ∀P(P ⊃ !A) will
also be a theorem. There is therefore no reason to introduce this formula as an axiom.

3 Relevant logic Where did Mally go wrong? Like Føllesdal and Hilpinen, we
suspect that the unacceptability of his system is not so much due to his informal de-
ontic principles as to the fact that he formalized those principles in terms of the propo-
sitional calculus. Føllesdal and Hilpinen suggested that Mally should perhaps have
used strict implication instead of material implication. They did not explore this idea
and we will not do so either. Rather, we will investigate the consequences of replacing
Mally’s material implication by relevant implication as formalized in the Anderson-
Belnap logic of relevant implication R. R is defined as follows ([3], chap. 5).
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Syntax A is a formula if and only if: (i) A is an atomic sentence or
(ii) B and C are formulas and A = ¬B or A = (B → C)

or A = (B & C) or A = (B ∨ C). Outer parentheses will
usually be omitted.

Definitions A ←→ B = (A → B) & (B → A), A ◦ B = ¬(A →
¬B), A + B = ¬A → B.

Axioms and rules

Self-implication A → A
Prefixing (A → B) → ((C → A) → (C → B))

Contraction (A → (A → B)) → (A → B)

Permutation (A → (B → C)) → (B → (A → C))

&Elim (A & B) → A, (A & B) → B
&Int ((A → B) & (A → C)) → (A → (B & C))

∨Int A → (A ∨ B), B → (A ∨ B)

∨Elim ((A → C) & (B → C)) → ((A ∨ B) → C)

Distribution (A & (B ∨ C)) → ((A & B) ∨ C)

Double negation ¬¬A → A
Contraposition (A → ¬B) → (B → ¬A)

Modus Ponens A, A → B / B
Adjunction A, B / A & B

System RFtu is defined as follows.

Syntax The same as that of R, except that there are three proposi-
tional constants, F, t, and u (F and t are discussed in [3],
§27.1.2). F is ‘the conjunction of all propositions’, t is ‘the
conjunction of all truths’, u is ‘the unconditionally obliga-
tory’.

Axioms The same as those of R, plus

RF F → A
Rt A ←→ (t → A)

RFtu is a conservative extension of R in the sense that all theorems of RFtu which
contain no occurrences of F, t, and u are theorems of R. The term ‘system R’ will
from now on refer to system RFtu rather than R.

In the following, we will occasionally refer to the following theorems and de-
rived rule of inference of R (the proofs are left to the reader):

&Importation (A → (B → C)) → ((A & B) → C)

Contraposition′ (A → B) ←→ (¬B → ¬A)

MP′ A → B, B → C / A → C

4 RelevantDeontik Our first system of Relevant Deontik, RD, is defined as fol-
lows.

Language A is a formula if and only if: (i) A is a formula of the language of
R, or (ii) B is a formula and A = OB. OA is read as ‘it is obliga-
tory that A’.
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Alethic axioms and rules System R.

Deontic axioms (compare axioms MD1–MD5 above)

RD1 ((A → OB) & (B → C)) → (A → OC)

RD2 ((A → OB) & (A → OC)) → (A → O(B & C))

RD3 (A → OB) ←→ O(A → B)

RD4 Ou
RD5 ¬(u → O¬u)

Our second system of Relevant Deontik, RD*, is defined in the same way as RD ex-
cept that there is one additional axiom:

RD6 OA → (u → A)

The formula !A ⊃ (U ⊃ A)—the counterpart of RD6 in Mally’s language—does not
occur in Mally’s book (but see Theorem 18′ below). !A ⊃ (U ⊃ A) is equivalent
with !A ⊃ (¬A ⊃ U

), where

U

is the unconditionally forbidden. According to An-
derson ([1], p. 348), the latter formula was first discussed by Bohnert in 1945 [4].

Theorem 4.1 RD6 is not a theorem of RD.

Proof: Define a function T from the language of RD into the language of R as fol-
lows: T (a) = a, where a is an atomic sentence, T (¬A) = ¬T (A), T (A � B) =
T (A) � T (B), where � is →, &, or ∨, T (F) = F, T (t) = t, T (u) = p → p, where
p is some atomic sentence, T (OA) = T (A). T transforms all axioms of RD into
theorems of R.

Proof of T (RD1):

1. (A → B) → ((B → C) → (A → C)) Pref, Perm, MP
2. ((A → B) & (B → C)) → (A → C) 1, &Imp, MP
3. T (((A → OB) & (B → C)) → (A → OC)) 2, Def T

Proof of T (RD2): From &Int and Def T .

Proof of T (RD3): From Self-impl, Adj, and Def T .

Proof of T (RD4): From Self-impl and Def T .

Proof of T (RD5):

1. ((p → p) → ¬(p → p)) → ¬(p → p) Reductio [3], §14.1.3
2. (p → p) → ¬((p → p) → ¬(p → p)) 1, Contrapos, MP
3. ¬((p → p) → ¬(p → p)) 2, Self-impl, MP
4. T (¬(u → O¬u)) 3, Def T

T also transforms all rules of RD into rules of R. So T transforms all theorems of
RD into theorems of R. T (RD6) = A → ((p → p) → A) which is certainly not a
theorem of R, so RD6 is not a theorem of RD which was to be proven. �
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5 Anderson’s relevant deontic logic Anderson’s relevant deontic logic, AL, is de-
fined as follows ([1], [2], [8]).

Language The same as that of R, with the following additional defi-
nition:

OA = u → A.
Anderson read u as “the good thing” ([2], p. 277). (He ac-
tually took a propositional constant V (“the bad thing”) as
primitive and defined u as ¬V . We could, of course, define
V as ¬u.)

Axioms and rules R + u ◦ u. u ◦ u may also be written as ¬O¬u in virtue
of Anderson’s definition of O. This axiom is known as the
‘Axiom of Avoidance’ (see [2], p. 280 and [8], pp. 146–48).

We will be not so much interested in AL as in a weaker system AL′, which is defined
in the same way as AL except that the Axiom of Avoidance is replaced by u ◦ u ◦ u.
This axiom is provably equivalent with ¬(u → O¬u) in virtue of Def O and R. AL′

is weaker than AL because u ◦ u → u ◦ u ◦ u is a theorem of R whereas u ◦ u is not a
theorem of R + u ◦ u ◦ u.

6 RD* and AL′

Theorem 6.1 RD* and AL ′ have exactly the same theorems.

Proof: We first show that all theorems of RD* are theorems of AL′. Because all
rules of inference of RD* are rules of AL′, it is sufficient to prove that all axioms of
RD* are theorems of AL′.

1. (B → C) → ((u → B) → (u → C)) Pref
2. (B → C) → (OB → OC) 2, Def O
3. (OB → OC) → ((A → OB) → (A → OC)) Pref
4. (B → C) → ((A → OB) → (A → OC)) 2, 3, MP′

5. (A → OB) → ((B → C) → (A → OC)) 4, Perm, MP
RD1 ((A → OB) & (B → C)) → (A → OC) 5, &Imp, MP

1. ((u → B) & (u → C)) → (u → (B & C)) &Int
2. (OB & OC) → O(B & C) 1, Def O
3. ((A → OB) & (A → OC)) → (A → (OB & OC)) &Int
4. (A → (OB & OC)) → (A → O(B & C)) 2, Pref, MP
RD2 ((A → OB) & (A → OC)) → (A → O(B & C)) 3, 4, MP′

1. (A → (u → B)) → (u → (A → B)) Perm
2. (u → (A → B)) → (A → (u → B)) Perm
3. (A → (u → B)) ←→ (u → (A → B)) 1, 2, Adj
RD3 (A → OB) ←→ O(A → B) 3, Def O

1. u → u Self-impl
RD4 Ou 1, Def O
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1. u ◦ u ◦ u Axiom
2. ¬(u → (u → ¬u)) 1, Contrapos′, MP
RD5 ¬(u → O¬u) 2, Def O

1. (u → A) → (u → A) Self-impl
RD6 OA → (u → A) 1, Def O

With this we have proven that all theorems of RD* are theorems of AL′.
We now show that all theorems of AL′ are theorems of RD*. We first show that

(u → A) → OA is a theorem of RD.

1. Ou → Ou Self-impl
2. (u → A) → (u → A) Self-impl
3. u → ((u → A) → A) 2, Perm, MP
4. (Ou → Ou) & (u → ((u → A) → A)) 1, 3, Adj
5. Ou → O((u → A) → A) 4, RD1, MP
6. O((u → A) → A) 5, RD4, MP
7. (u → A) → OA 6, RD3, &Elim, MP

In conjunction with RD6 this result implies that OA ←→ (u → A) is a theorem of
RD*. Furthermore, RD* has the following theorem:

Replacement ((A ←→ B) & (C → C)) → (C ←→ C[A / B]),

where C[A / B] is the result of replacing zero or more occurrences of A in C by B
(proof: by induction on the length of C; see [5], §1.6 for some details). Using these
facts we may prove that if A is a theorem of AL′, A is a theorem of RD*. The proof is
by induction on the length of a proof of A in AL′. All cases are obvious, except one.
Suppose that Def O is used to derive A[OA / u → A] or A[u → A / OA] from A.
One may then use OA ←→ (u → A), Replacement, and MP to carry out the same
derivation in RD*. Thus any proof of A in AL′ is replicable in RD*. This implies
that each theorem of AL′ is a theorem of RD*. This ends the proof of Theorem 6.1.

�
In sum, the sets of theorems of the four relevant deontic systems we have discussed
are related as follows:

Th(RD) ⊂ Th(RD*) = Th(AL′) ⊂ Th(AL).

Note that neither A → OA nor OA → A is a theorem of AL because neither A →
(u → A) nor (u → A) → A is a theorem of R + u ◦ u. It follows from this that RD,
RD*, AL′, and AL are not trivial.

The above may be summarized as follows: if you add OA → (u → A) to Rel-
evant Deontik and strengthen ¬(u → O¬u) to ¬O¬u, then you get Anderson’s sys-
tem.

7 Mally’s Deontik revisited In [7], Sections 4–7, Mally discussed thirty-five the-
orems of his Deontik. He classified thirteen of these theorems as “strange” (be-
fremdlich). He apparently regarded the other twenty-two theorems as “plausible.”

Let TX(A) denote the translation of A into the language of system X. Let us say
that A agrees with Mally’s pretheoretical intuitions from the perspective of system
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X if and only if either (i) A is “plausible” according to Mally and TX(A) is deriv-
able in X, or (ii) A is “strange” according to Mally and TX(A) is not derivable in
X. Let N (X) denote the number of formulas on Mally’s list of theorems which
agree with Mally’s intuitions from the perspective of system X. Let us say that sys-
tem X is in better accordance with Mally’s intuitions than system Y if and only if
N (X) > N (Y ). And let MD denote Mally’s original Deontik. In this section we
will show that N (MD) = 22, N (RD) = 25, and N (RD*) = 27. So we have the
following theorem.

Theorem 7.1 RD is in better accordance with Mally’s pretheoretical intuitions
than his own system MD was, and RD* is even better.

Proof: We use the following table to translate Mally’s formulas into the language
of RD:

MD RD
⊃ →
!A OA
A f B A → OB
A∞B O(A ←→ B)

MD RD
∀M(M ⊃ A) t → A
∀M(A ⊃ OM) A → OF
∧ &
∨ ∨

MD RD
U u

U ¬u
V t

V ¬t

In Theorems 12 and 13 of List I below, ∧ will be translated by ◦ and ∨ by +.

We divide Mally’s theorems into five categories for the sake of clarity.

7.1 List I The following list includes all “plausible” theorems of MD whose trans-
lations are theorems of RD.

3 ((M f A) ∨ (M f B)) ⊃ (M f (A ∨ B))

4 ((M f A) & (N f B)) ⊃ ((M & N) f (A & B))

5 !A ≡ ∀M(M f A)

6 (!A ∧ (A → B)) ⊃ !B
8 ((A f B) & (Bf C)) ⊃ (A f C)

9 (!A ∧ (A f B)) ⊃ !B
10 (!A ∧ !B) ≡ !(A ∧ B)

11 (A∞B) ≡ !(A ≡ B)

12 (A f B) ≡ (A ⊃ !B) ≡ !(A ⊃ B) ≡ !¬(A ∧ ¬B) ≡ !(¬A ∨ B)

13 (A ⊃ !B) ≡ ¬(A ∧ ¬!B) ≡ (¬A ∨ !B)

14 (A f B) ≡ (¬Bf ¬A)

15 ∀M(M f U)

16 (U ⊃ A) ⊃ !A

The translations of these formulas are as follows. The numbers of translated formulas
are underlined.
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3 ((A → OB) ∨ (A → OC)) → (A → O(B ∨ C))

4 ((A → OB) & (C → OD)) → ((A & C) → O(B & D))

5 OA ←→ (t → OA)

6 (OA & (A → B)) → OB
8 ((A → OB) & (B → OC)) → (A → OC)

9 (OA & (A → OB)) → OB
10 (OA & OB) ←→ O(A & B)

11 O(A ←→ B) ←→ O(A ←→ B)

12 (A → OB) ←→ (A → OB) ←→ O(A → B) ←→
O¬(A ◦ ¬B) ←→ O(¬A + B)

13 (A → OB) ←→ ¬(A ◦ ¬OB) ←→ (¬A + OB)

14 (A → OB) ←→ (¬B → O¬A)

15 t → Ou
16 (u → A) → OA

The RD-proofs of the translated formulas are generally easy. We only give a hint
for 8: the antecedent is provably equivalent with O((A → B) & (B → C)). 16 was
already proven in the proof of Theorem 6.1.

7.2 List II The following list includes all “plausible” theorems of MD whose trans-
lations do not seem to be derivable in RD but which are derivable in RD*.

17 (U f A) ⊃ !A 17 (u → OA) → OA
18 !!A ⊃ !A 18 OOA → OA

Mally derived 17 from 8 and MD4 but the corresponding derivation does not go
through in RD. Mally derived 18 from 17 with the help of the following principle
which he mentioned only informally:

18′ !!A ⊃ (U f A) 18′ OOA → (u → OA)

18′ is definitely not a theorem of RD (proof: as in the proof of Theorem 4.1). 17 and
18 are theorems of RD* in virtue of Contraction, RD6, and 16. 18′ is a theorem of
RD* because it is an instance of RD6.

7.3 List III The following list includes all “plausible” theorems whose translations
are not derivable in RD*.

19 !A ≡ !!A 19 OA ←→ OOA
20 (U f A) ≡ (A∞U) 20 (u → OA) ←→ O(A ←→ u)

21 !A ≡ (A∞U) 21 OA ←→ O(A ←→ u)

23 V∞U 23 O(t ←→ u)

24 A f A 24 A → OA
25 (A ⊃ B) ⊃ (A f B) 25 (A → B) → (A → OB)

26 (A ≡ B) ⊃ (A∞B) 26 (A ←→ B) → O(A ←→ B)

The translated formulas are not derivable in RD* because they are not derivable in
AL′ as is easily checked. For example, in AL′, 19 is an abbreviation of (u → A) ←→
(u → (u → A)), which is not a theorem of R + u ◦ u ◦ u.

Most, if not all, of the just-presented seven theorems are less “plausible” than
Mally thought. For example, the “strange” formula 22 below is an immediate conse-
quence of V (an axiom of Mally’s system), theorem 24, and modus ponens. If 22 is
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strange, then 24 should be regarded as strange too. But then 19, 23, 25, and 26, which
Mally derived from 22 and 24, should not be accepted without hesitation either.

7.4 List IV The following list includes all ‘strange’ theorems whose translations
are not derivable in RD*.

1 (A f B) ⊃ (A f V ) 1 (A → OB) → (A → Ot)
2 (A f

V

) ≡ ∀M(A f M) 2 (A → O¬t) ←→ (A → OF)

7 !A ⊃ !V 7 OA → Ot
22 !V 22 Ot
27 ∀M(

U

f M) 27 ¬u → OF
28

U

f

U

28 ¬u → O¬u
29

U

f U 29 ¬u → Ou
31

U∞ V

31 O(¬u ←→ ¬t)
32 ¬(U f

V

) 32 ¬(u → O¬t)
33 ¬(U ⊃ V

) 33 ¬(u → ¬t)
34 U ≡ V 34 u ←→ t
35

U≡ V

35 ¬u ←→ ¬t

7.5 List V There is only one formula left. Mally regarded it as strange, but its trans-
lation is a theorem of RD.

30 U f

V

30 ¬u → O¬t

30 is a theorem of RD because we have ¬u → (u → ¬t) in virtue of Rt and Contra-
position, whence ¬u → O¬t by 16.

Taking stock, we see that N (MD) = 22 (Lists I–III), N (RD) = 25 (Lists I
and IV), and N (RD*) = 27 (Lists I, II, and IV). So RD is in better accordance with
Mally’s intuitions than his own system MD was, and RD* is even better. This ends
the proof of Theorem 7.1. �

8 Four final observations First, RD* is in better accordance with Mally’s intu-
itions than AL (Anderson’s own relevant deontic logic) because the “strange” for-
mula 32 is a theorem of AL in virtue of the Axiom of Avoidance (so N (AL) = 26).

Second, we are now in a position to state where Mally went wrong. In a general
sense: by formalizing his deontic principles in terms of classical propositional logic.
In a specific sense: at each theorem of MD whose translation is not derivable in RD
(Lists II, III, and IV).

Third, Mally regarded 34 (and 35, which is just the contraposed version of 34)
as the strangest of his strange theorems. From the perspective of RD*, 1, 2, 7, 20,
21, 27, and 29 are even stranger because the translations of these formulas are not
derivable in RD* + 34.

Fourth, (†), the strange consequence of Mally’s theory with which we started,
is in a certain sense stranger than 34 because OA → A does not seem to be a theorem
of RD + 34. (The converse formula, A → OA, is a theorem in virtue of 16, 34, and
Rt.) For although RD1 entails ((u → OA) & (A → ¬u)) → (u → O¬u), whence
¬((u → OA) & (A → ¬u)) by RD5 and Contraposition, whence ¬(OA & ¬A) by
34 and Rt, the latter formula does not entail OA → A. But if RD1 is strengthened to
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(A → OB) → ((B → C) → (A → OC)), then OA → A does become a theorem
in the presence of 34. (The proof is similar to the proof of ¬(OA & ¬A).)

9 Conclusion We do not wish to defend any of the systems we have discussed.
Mally’s system is unacceptable because of its triviality. The relevant deontic systems
are problematic for the reasons given in [8]. We only wanted to make it clear where
Mally went wrong. It was his reliance on classical logic which led him into trouble.
If Mally’s ideas are expressed in terms of relevant logic rather than classical logic, we
obtain a system which is similar to Anderson’s relevant deontic logic and not nearly
as strange as Mally’s original system.
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