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Ernst Mally’s Deontik (1926)

GERT-JAN C. LOKHORST

Abstract 1n 1926, Mally proposed thefirst formal deontic system. AsMally
and others soon realized, this system had somerather strange consequences. We
show that the strangeness of Mally’s system isnot so much dueto Mally’sinfor-
mal deontic principlesasto the fact that he formalized those principlesin terms
of the propositional calculus. If they are formalized in terms of relevant logic
rather than classical logic, one obtains a system which isrelated to Anderson’s
relevant deontic logic and not nearly as strange as Mally’s own system.

1 Introduction Mally, a student of Meinong, was the first philosopher to build a
formal theory of normative concepts [7]. It would be an understatement to say that
Mally’s Deontik is not held in high esteem today. Feallesdal and Hilpinen [6] call it
“strange,” “counter-intuitive,” and “not acceptable” and mainly wonder “Where did
Mally go wrong?’" Meyer and Wieringa [[IQ] mention it only “by way of curiosity”
before proceeding to what they describe as “the first ‘rea’ system of deontic logic.”
In this paper, we will show that the strangeness of Mally’s system is not so much due
to hisbasic deontic assumptions asto the fact that he formalized those assumptionsin
terms of the propositional calculus. If they are formalized in terms of relevant logic
rather than classical logic, one obtains a system which is related to Anderson’s rele-
vant deontic logic [1] and not nearly as strange as Mally’s own system.

2 Mally's Deontik  Mally adopted the following informal deontic principles
(@, 82):

1. If Arequires B andif B then C, then A requiresC.

2. If Arequires B and if A requiresC, then A requires B and C.

3. Arequires Bif and only if it isobligatory that if A then B.

4. The unconditionally obligatory is obligatory.

5. The unconditionally obligatory does not require its own negation.
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In order to formalize these principles, Mally used the propositional calculus PC sup-
plemented with a propositional constant U, which he read as ‘the unconditionally
obligatory’ (das unbedingt Geforderte) and with a monadic propositional operator !
which heread as‘itisobligatory that’ (heread! Aas‘essel A’ oras‘ Asoll sein’). He
translated * A requires B’ as A D ! B. Asaresult he obtained the following axioms:

MD1 ((ADIB)A(BDC))D(AD!IC)

MD2 (ADIB)A(ADIC) D (ADI(BAC))
MD3 (AD!B)=!(ADB)

MDA4 U

MD5 —(U D> !=U)

Mally formalized (4) as3U!U. We agree with Fallesdal and Hilpinen (6], pp. 2-3)
that thisformulais not well-formed and should be replaced by 'U. Mally viewed the
|atter formula as atheorem ([Z, &3, formula 15).

Mally’s principles sound more or less natural but many of the theorems of his
system are decidedly strange. For example, one may prove the following theorem:

(M A=A

Proof: Wehave (lAD!'A)A (AD B)) D (!AD!B) invirtue of MD1, whence
(AD B) D ('AD!B) by PC. (For therest of the proof, see [E], p. 4, formulas 9-21.)
(1) impliesthat Mally’s system istrivial. It has no genuine deontic content. The de-
ontic operator ! hasapurely decorative function and can be defined away by ' A = A.

O

Although he did not actually discuss (1), Mally was well aware of the fact that his
theory had many strange consequences. |ndeed, he classified thirteen of thethirty-five
theorems which he derived as befremdlich. Mally defended these strange theorems,
but all later deontic logicians (starting with Menger [[9]) have regarded them as fatal
to his theory.

In their well known account of Mally’s system, Fallesdal and Hilpinen added
one additional rule of inference: A= B /!A=!B([[], p. 3). Thisruleis, however,
derivablefrom (A= B) D (A =!B) whichisatheorem in virtue of MD1, so there
isno need to introduce it as a primitive rule. These authors also added the following
axiom: 'A=VP(P D !A) ([E], p. 3). But if propositional quantifiers are introduced
in the usual way, then A= VP(P D A) will beatheorem, so!A=VP(P D! A) will
also be atheorem. Thereistherefore no reason to introduce thisformulaasan axiom.

3 Relevant logic Where did Mally go wrong? Like Fallesdal and Hilpinen, we
suspect that the unacceptability of his system is not so much due to hisinformal de-
ontic principlesasto thefact that he formalized those principlesin terms of the propo-
sitional calculus. Fallesdal and Hilpinen suggested that Mally should perhaps have
used strict implication instead of material implication. They did not explorethisidea
and wewill not do so either. Rather, wewill investigate the consequences of replacing
Mally’s material implication by relevant implication as formalized in the Anderson-
Belnap logic of relevant implication R. R is defined as follows ([3], chap. 5).
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Syntax Aisaformulaif and only if: (i) Aisanatomic sentence or
(ii) Band C areformulasand A=—-Bor A= (B— C)
or A= (B& C) or A= (B v C). Outer parentheses will
usually be omitted.

Definitions A«~—B=(A—-B&B— A,AcB=—-(A—>
-B), A+ B=—-A— B.

Axioms and rules

Self-implication A— A

Prefixing (A— B)— ((C—» A)— (C— B))
Contraction (A—- (A—B) - (A— B)
Permutation (A= (B—C)) — (B— (A= C))
&Elim (A& B)— A (A& B)— B

&Int (A B&(A—-C)— (A= (B&QC))
vint A— (AvB),B— (AvB)

VEIim (A—-C)&(B—-C)— (AvB)— 0O
Distribution (A& (BvC)) — (A& B)vC)

Double negation -—A—> A
Contraposition (A— —=B) - (B— —A)
M odus Ponens A/A—>B/B
Adjunction A,B/A&B

System RF! is defined as follows.

Syntax The same as that of R, except that there are three proposi-
tional constants, F, t, and u (F and t are discussed in [IE],
§27.1.2). Fis‘theconjunction of all propositions’, tis‘the
conjunction of all truths', uis‘the unconditionally obliga-
tory’.

Axioms The same asthose of R, plus

RF F— A
Rt A«— (t— A

RFW js a conservative extension of R in the sense that all theorems of RF which
contain no occurrences of F, t, and u are theorems of R. The term ‘system R’ will
from now on refer to system R rather than R.

In the following, we will occasionally refer to the following theorems and de-
rived rule of inference of R (the proofs are | eft to the reader):

& Importation (A— (B—>C)) — (A& B)— 0O)
Contraposition’ (A — B) «— (=B — —A)
MP A—-BB—-C/A->C

4 RelevantDeontik  Our first system of Relevant Deontik, RD, is defined as fol-
lows.

Language Aisaformulaif and only if: (i) Aisaformulaof the language of
R, or (ii) Bisaformulaand A= OB. OAisread as‘itisobliga-
tory that A'.
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Alethic axioms and rules System R.
Deontic axioms (compare axioms MD1-MD?5 above)

RD1 (A—-0B)& (B—C)) - (A— 0OC)

RD2 ((A— OB)& (A— 0OC)) -» (A— O(B& Q)
RD3 (A— OB) «— O(A— B)

RD4 Ou

RD5 =(u— O—u)

Our second system of Relevant Deontik, RD*, is defined in the same way as RD ex-
cept that there is one additional axiom:

RD6 OA— (U— A)

Theformula! A > (U > A)—the counterpart of RD6 in Mally’s language—does not
occur in Mally’s book (but see Theorem 18 below). 'A > (U D A) is equivalent
with!A D> (=A D N), where N is the unconditionally forbidden. According to An-
derson ([, p. 348), the latter formula was first discussed by Bohnert in 1945 [[4].

Theorem 4.1 RD6 is not a theorem of RD.

Proof: Defineafunction 7 from the language of RD into the language of R asfol-
lows: 7(a) = a, where a is an atomic sentence, 7 (—A) = =7 (A), 7(Ax B) =
T(A)xT(B),wherexis—,&,orv,T(F)=F,7@{)=t,7() = p— p,where

p is some atomic sentence, 7 (OA) = 7 (A). T transforms all axioms of RD into
theorems of R.

Proof of 7 (RD1):

1. (A= B)— ((B— C)— (A— C)) Pref, Perm, MP
2. (A—> B)& (B— C)) = (A— C) 1, &Imp, MP
3. T(((A— OB)& (B— C)) > (A— OC)) 2,Def T

Proof of 7 (RD2): From &Int and Def 7.
Proof of 7 (RD3): From Self-impl, Adj, and Def 7.
Proof of 7(RD4): From Self-impl and Def 7.

Proof of 7 (RD5):

L (p—=>p —>—(p—>pP)—>—(pP—> P Reductio [3], §14.1.3
2. (p=>p—>—(p—=>p ——-(p—p) 1, Contrapos, MP

3. =((p—~>p) ——~(p—>pP) 2, Self-impl, MP

4. T(=(u— O-u)) 3, Def T

T dso transforms all rules of RD into rules of R. So 7 transforms all theorems of
RD into theoremsof R. 7(RD6) = A — ((p— p) — A) whichiscertainly not a
theorem of R, so RD6 is not atheorem of RD which was to be proven. O
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5 Anderson’s relevant deontic logic Anderson’srelevant deonticlogic, AL, isde-
fined as follows ([[], [2], [B]).

Language The same as that of R, with the following additional defi-

nition:
OA=u— A

Anderson read u as “the good thing” ([2]], p. 277). (He ac-
tually took a propositional constant V (“the bad thing”) as
primitive and defined u as—V. We could, of course, define
V as—u.)

Axiomsandrules R+ UoU. UoUu may aso be written as —O-u in virtue

of Anderson’s definition of O. Thisaxiom isknown asthe

‘ Axiom of Avoidance’ (see[2], p.280and [[8], pp. 146-48).
We will be not so much interested in AL asin aweaker system AL’, which isdefined
in the same way as AL except that the Axiom of Avoidanceis replaced by uo uo u.
Thisaxiom is provably equivalent with —(u — O—u) invirtue of Def Oand R. AL’
isweaker than AL becauseuou — Uo Uo Uuisatheorem of R whereasuo uisnot a
theoremof R+ uouou.

6 RD*and ALY
Theorem 6.1 RD* and AL’ have exactly the same theorems.
Proof: We first show that all theorems of RD* are theorems of AL’. Because all

rules of inference of RD* arerules of AL, itis sufficient to prove that all axioms of
RD* are theorems of AL’.

1. B—-C — (u—=B)— (u—0)) Pref

2. (B—C)— (OB— 0OC) 2, Def O

3. (OB— OC) — ((A— 0OB) - (A— 00Q)) Pref

4, (B—-C — (A— OB)— (A— 00)) 2,3, MP

5. (A—- 0B — (B—-C)— (A— 00)) 4, Perm, MP
RD1 (A— OB)& (B— C)) - (A— 0OC) 5, &Imp, MP
1. (Uu—>B)&W—>C)—> (uUu—> (B&C)) &lInt

2. (OB& OC) — O(B& ©O) 1, Def O

3. ((A—> OB)& (A— 0C)) > (A— (OB& OC)) &lnt

4, (A— (OB& 0OC)) - (A— O(B& O)) 2, Pref, MP

RD2 ((A— OB)& (A— 0OC)) - (A— O(B& C)) 3,4, MP

1. (A—- (u—> B)) — (u— (A— B)) Perm
2. u— (A= B)— (A— (u— B)) Perm
3. (A= (U= B)) «— (u— (A— B)) 1,2 Ad
RD3 (A— OB) «— O(A— B) 3,Def O
1 u—u Sdf-impl

RD4 Ou 1, Def O
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1. UouUou Axiom

2. =(U— (U— —u)) 1, Contrapos’, MP
RD5 —(u— O—-u) 2, Def O

1 uUu— A — (U= A Self-impl

RD6 OA— (u— A) 1, Def O

With this we have proven that all theorems of RD* are theorems of AL’.
We now show that all theorems of AL’ are theorems of RD*. Wefirst show that
(u— A) - OAisatheorem of RD.

1 Ou— Ou Self-impl

2. uUu— A — (U= A Self-impl

3. u— ((u—> A — A 2, Perm, MP

4, (Ou— Ou) & (U— (U= A)— A) 1,3 Ad

5. Ou— O((u— A — A 4, RD1, MP

6. O((u— A) — A 5, RD4, MP

7. (u— A) — OA 6, RD3, &Elim, MP

In conjunction with RDG this result implies that OA «— (u — A) is atheorem of
RD*. Furthermore, RD* has the following theorem:

Replacement (A<—B)& (C— C)) » (C<«— C[A/ B)]),

where C[ A / B] isthe result of replacing zero or more occurrences of Ain C by B
(proof: by induction on the length of C; see [[5], §1.6 for some details). Using these
factswemay provethat if Aisatheoremof AL’, Aisatheorem of RD*. Theproof is
by induction on the length of aproof of Ain AL’. All cases are obvious, except one.
Suppose that Def O is used to derive A[OA / u— A] or Alu — A / OA] from A.
One may then use OA «<— (u— A), Replacement, and MP to carry out the same
derivation in RD*. Thus any proof of Ain AL’ isreplicablein RD*. Thisimplies
that each theorem of AL’ is atheorem of RD*. This ends the proof of Theorem[G.1]

O

In sum, the sets of theorems of the four relevant deontic systems we have discussed
are related as follows:

Th(RD) c Th(RD*) = Th(AL") c Th(AL).

Note that neither A — OA nor OA — Aisatheorem of AL because neither A —
(u— A) nor (u— A) — Aisatheoremof R + uou. It followsfrom thisthat RD,
RD*, AL’, and AL arenot trivial.

The above may be summarized as follows: if you add OA — (u — A) to Rel-
evant Deontik and strengthen —(u — O—u) to =O-u, then you get Anderson’s sys-
tem.

7 Mally’s Deontik revisited In [[Z], Sections 4-7, Mally discussed thirty-five the-
orems of his Deontik. He classified thirteen of these theorems as “strange”’ (be-
fremdlich). He apparently regarded the other twenty-two theorems as “plausible.”
Let 7x(A) denotethetranslation of A into thelanguage of system X. Let us say
that A agrees with Mally’s pretheoretical intuitions from the perspective of system
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X if and only if either (i) Ais“plausible” according to Mally and 7x(A) is deriv-
ablein X, or (ii) Ais“strange” according to Mally and 7x(A) is not derivable in
X. Let A(X) denote the number of formulas on Mally’s list of theorems which
agree with Mally’s intuitions from the perspective of system X. Let us say that sys-
tem X isin better accordance with Mally’s intuitions than system Y if and only if
AN(X) > N(Y). And let MD denote Mally’s original Deontik. In this section we
will show that A'(MD) = 22, A (RD) = 25, and \(RD*) = 27. So we have the
following theorem.

Theorem 7.1 RD is in better accordance with Mally’s pretheoretical intuitions
than his own system MD was, and RD* is even better.

Proof: We use the following table to trandate Mally’s formulas into the language
of RD:

MD | RD MD | RD MD | RD
D — YM(M D A) t— A U u
IA OA VM(AD OM) | A— OF n | -u
AfB | A— OB A & Vot
AccB | O(A «— B) \Y, \Y N —t

In Theorems 12 and 13 of List | below, A will be trandated by o and v by +.
We divide Mally’s theorems into five categories for the sake of clarity.

7.1 Listl Thefollowinglistincludesall “plausible” theoremsof M D whose trans-
lations are theorems of RD.

(MfA) Vv (MfB)) D (Mf(AV B))
(MfA)& (NfB)) > (M & N)f (A& B))
IA=YM(MfA)

(IAA (A= B))D !B

((AfB) & (BfC)) D (AfC)

(IAA (AfB)) D !B

10 (IAA!B)=!(AA B)

11 (AcoB)=!(A= B)

12 (AfB)=(AD!B)=!(AD> B)=!=(AA—B)=!(=AV B)
13 (AD!B)=—(AA—IB)= (—AV!B)
14 (AfB) = (—Bf—A)

15 YM(MfU)

16 (U>D>A)D!A

©O© 0o 0k w

Thetrans ations of theseformulas are asfollows. The numbers of translated formulas
are underlined.
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((A— OB)V (A— OC)) — (A— O(BVvC))

((A— 0OB)& (C— OD)) —» ((A&C) — O(B& D))

OA «—— (t — OA)

(OA& (A— B)) — OB

((A—> 0OB)& (B—~ 0OC)) - (A— 0OC)

(OA& (A— OB)) — OB

(OA& OB) < O(A& B)

O(A «— B) «— O(A<«— B)

(A— OB) «— (A— 0OB) «— O(A— B) «—
O—(Ao—-B) «— O(—A+B)

(A— OB) «— =(A0o—-0B) «— (—=A+ OB)

(A— OB) «— (-B— 0O—-A)

15 t— Ou

16 (u—> A)— OA

The RD-proofs of the trandated formulas are generally easy. We only give a hint
for 8: the antecedent is provably equivalent with O((A — B) & (B — C)). 16 was
already proven in the proof of Theorem[6.1]

It
NIk IOlolo oo Ix W

= [
&R

7.2 Listll Thefollowinglistincludesall “plausible’ theoremsof M D whosetrans-
lations do not seem to be derivablein RD but which are derivable in RD*.

17 (UfA)D!'A 17 (u— OA) — OA

18 HADIA 18 OOA— OA
Mally derived 17 from 8 and MD4 but the corresponding derivation does not go
through in RD. Mally derived 18 from 17 with the help of the following principle
which he mentioned only informally:

18 IAD (UfA) 18 OOA — (u— OA)

18 isdefinitely not atheorem of RD (proof: asin the proof of Theoremd1). 17 and
18 are theorems of RD* in virtue of Contraction, RD6, and 16. 18’ is a theorem of
RD* becauseit is an instance of RDG6.

7.3 Listlll  Thefollowinglistincludesall “plausible” theoremswhosetrand ations
are not derivablein RD*.

19 IA=11A 19 OA<«— OOA

20 (UfA) = (AxU) 20 (u— OA) «— O(A<—u)

21 'A= (AxU) 21 OA <«— O(A<—u)

23 VooU 23 O(t«<—u)

24  AfA 24 A— OA

25 (A> B)> (AfB) 25 (A— B)— (A— OB)

26 (A= B)> (AxB) 26 (A< B)—> O(A«<— B)

The translated formulas are not derivable in RD* because they are not derivable in
AL’ asiseasily checked. For example, inAL’, 19isanabbreviationof (u— A) «—
(Uu— (u— A)),whichisnot atheoremof R+ uouou.

Most, if not all, of the just-presented seven theorems are less “plausible” than
Mally thought. For example, the “strange” formula 22 below is an immediate conse-
guence of V (an axiom of Mally’s system), theorem 24, and modus ponens. If 22 is
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strange, then 24 should be regarded as strangetoo. But then 19, 23, 25, and 26, which
Mally derived from 22 and 24, should not be accepted without hesitation either.

7.4 ListIV  Thefollowing list includes all ‘strange’ theorems whose translations
are not derivable in RD*.

1 (AfB) > (AfV) 1 (A— OB)— (A— Ot)
2 (AfA) =VYM(AFM) 2 (A— O-t) <« (A— OF)
7 'ADIV 7 OA— Ot

22 1V 22 Ot

27 YM(NfM) 27 —-u— OF

28 NfN 28 —u— O—u

29 Nnfu 29 —-u— Ou

31 NooA 31 O(—u<«— —it)

32 —(UfA) 32 —(u— O-t)

33 =(UDNA 383 —(u— —t)

34 U=V 34 u<—t

3B N=A 3B —U<«— —t

7.5 ListV Thereisonly oneformulaleft. Mally regardedit asstrange, but itstrans-
lation is atheorem of RD.

30 UfA 30 —u— O-t

30 isatheorem of RD because we have —u — (u — —t) invirtue of Rt and Contra-
position, whence —u — O-—t by 16.

Taking stock, we see that AL(MD) = 22 (Lists I-11), A{(RD) = 25 (Lists |
and 1V), and A\ (RD*) = 27 (Lists|, I, and V). So RD isin better accordance with
Mally’s intuitions than his own system M D was, and RD* is even better. This ends
the proof of Theorem([Z1] O

8 Four final observations First, RD* isin better accordance with Mally’s intu-
itions than AL (Anderson’s own relevant deontic logic) because the “ strange” for-
mula 32 is atheorem of AL in virtue of the Axiom of Avoidance (so N\ (AL ) = 26).

Second, we are now in aposition to state where Mally went wrong. In ageneral
sense: by formalizing his deontic principlesin terms of classical propositional logic.
In a specific sense: at each theorem of M D whose trandation is not derivablein RD
(Listsll, I, and 1V).

Third, Mally regarded 34 (and 35, which is just the contraposed version of 34)
as the strangest of his strange theorems. From the perspective of RD*, 1, 2, 7, 20,
21, 27, and 29 are even stranger because the trandations of these formulas are not
derivable in RD* + 34.

Fourth, (1), the strange consequence of Mally’s theory with which we started,
isin acertain sense stranger than 34 because OA — A does not seem to be atheorem
of RD + 34. (The converse formula, A — OA, isatheorem in virtue of 16, 34, and
Rt.) For athough RD1 entails ((u - OA) & (A — —-u)) — (u— O-u), whence
—=((u— OA) & (A — —u)) by RD5 and Contraposition, whence =(OA & —A) by
34 and Rt, the latter formula does not entail OA — A. But if RD1 is strengthened to
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(A— 0OB) — ((B— C) — (A— 0QC)), then OA — A does become a theorem
in the presence of 34. (The proof is similar to the proof of =(OA& —A).)

9 Conclusion We do not wish to defend any of the systems we have discussed.
Mally’s system is unacceptable because of itstriviaity. The relevant deontic systems
are problematic for the reasons given in [[8]. We only wanted to make it clear where
Mally went wrong. It was hisreliance on classical logic which led him into trouble.
If Maly’sideasare expressed in terms of relevant logic rather than classical logic, we
obtain a system which is similar to Anderson’s relevant deontic logic and not nearly
as strange as Madly’s original system.
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