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An Undecidable Linear Order That
Is n-Decidable for All n

JOHN CHISHOLM and MICHAEL MOSES

Abstract A linear order is n-decidable if its universe is N and the relations de-
fined by �n formulas are uniformly computable. This means that there is a com-
putable procedure which, when applied to a �n formula ϕ(x̄) and a sequence ā
of elements of the linear order, will determine whether or not ϕ(ā) is true in the
structure. A linear order is decidable if the relations defined by all formulas are
uniformly computable.

These definitions suggest two questions. Are there, for each n, n-decidable lin-
ear orders that are not (n + 1)-decidable? Are there linear orders that are n-
decidable for all n but not decidable? The former was answered in the positive
by Moses in 1993. Here we answer the latter, also positively.

1 Introduction The study of computable algebraic structures has a long and by
now widely known history. Beginning in the “finitistic” demands of the algebraists
of the late 1800s and early 1900s, it hit its stride in the papers of Fröhlich and Shep-
herdson [4] and Rabin [7] which set the tone for much of what was to follow. A good
introduction to such a computable analysis as applied to linear orders is provided in
the final chapter of Rosenstein [8]; a more current and comprehensive, almost ency-
clopedic treatment in Downey [1].

A linear order is computable if its universe is N (we will take this to be the case
from here on) and the quantifier-free formulas uniformly denote computable rela-
tions. This means that there is a computable procedure, which, when applied to a
quantifier-free formula ϕ(x̄) and a sequence ā of elements of the linear order, will de-
termine whether or not ϕ(ā) is true in the structure. (Quite clearly this is equivalent
to demanding just that the order relation be computable.) A linear order is decidable
if all formulas uniformly denote computable relations. Between these two concepts
lies that of an n-decidable linear order, defined to be one in which the �n formulas
uniformly denote computable relations.

Moses [6] answered the first of the questions in our abstract by constructing, for
each n, a linear order that is n-decidable but not (n + 1)-decidable and, in fact, has no
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(n + 1)-decidable copy. In this paper we answer the second by constructing a linear
order that is n-decidable for all n but is not decidable and, in fact, has no decidable
copy. To make the linear order n-decidable we will arrange that the �n formulas uni-
formly denote computable relations. To ensure it has no decidable copy we will ar-
range that the set of sentences true in our linear order is not computable. These con-
flicting requirements, that truth can be effectively determined for �n formulas, but
that this cannot be done uniformly in n, not even for sentences, produces the tension
in our construction. This paper then will be devoted to establishing the following.

Theorem 1.1 There is a linear order L that is n-decidable for all n but has no de-
cidable copy.

Our terminology will be standard, as presented for instance in [8], or will be obvi-
ous from the context. We will sometimes replace a sub- or superscript by the wild-
card symbol ∗ to allow easy reference to the structures denoted by the range of the
sub/superscript: L∗, for instance, will represent (any and every) one of L1, L2,. . ., Lk.
Note that we will mean L∗ to denote any and every one of L1, L2, . . . , Lk every time
we use it, that is, repeated usage, even in the same sentence, is intended to denote
(possibly) different linear orders. If we wish to refer repeatedly to a specific one of
them we will use the more standard Li. We mean the labels to denote (classical) order
types; we will not use individual labels for the several separate copies of each order
type. We believe, or at least hope, that this conservation of symbols will not cause
confusion.

2 Ehrenfeucht-Fräısśe Games We extend the notation L1 ≡ L2 (elementary
equivalence) to L1 ≡n L2, meaning that the two linear orders satisfy the same �n sen-
tences. To establish L1 ≡n L2 we will use a modification of the Ehrenfeucht-Fraı̈ssé
Games. Consider a two-person game played on the linear orders L1 and L2 by the
players P1 and P2. Two numbers are set before the game begins: n, the number of
moves each player will make, and k, whose usage will be described below. The play-
ers will move in turn, with P1 playing first. At each move P1 will select a sequence of
at most k elements wholly contained in either one of the linear orders and P2 will se-
lect a sequence of the same length in the other. P2’s aim is to arrange that the (finite)
suborder of L1 that consists of all the elements selected so far (by P1 and P2) is iso-
morphic to the corresponding set of elements in L2 via the mapping that identifies the
sequences chosen by the two players at each move. If P2 is able to match P1’s choice
for n moves, extending the isomorphism to include the new sequence each time, we
say P2 has won the n-k E-F Game; otherwise P1 is the victor.

Note that the number of moves and the maximum length of the sequences se-
lected at each move are established in advance. Notice also that the sequence P1 se-
lects may come from either linear order and that P2’s sequence must produce an iso-
morphism that extends the existing isomorphism. The original Ehrenfeucht-Fraı̈ssé
Games, introduced implicitly in Fraı̈ssé [3] and explicitly in Ehrenfeucht [2], and ap-
plied extensively to linear orders in [8], is the restriction of our games caused by fixing
k at 1. The obvious modification of the arguments presented there establishes this:

For each n, L1 ≡n L2 if, for every k, P2 can win every n-k E-F Game
played on L1 and L2.
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Allow us to reiterate: the relation ≡n, corresponding to our version of the
Ehrenfeucht-Fraı̈ssé Games, is different from the usual one, most often denoted ∼n,
which, in our notation, would require only that P2 can win every n-1 E-F Game, and
implies only that L1 and L2 satisfy the same sentences of quantifier depth n. This is
not strong enough for our purposes.

3 Shuffles The shuffle of linear orders L1, L2, . . . , Lk, denoted σ(L1, L2, . . . , Lk),
is the linear order produced by partitioning η, the dense linear order without end-
points, into k subsets, each of which is dense in η, and replacing each point in the
ith of these subsets with a copy of Li.

We will construct our linear order L as the limit of a sequence of linear orders
L1, L2, L3, . . . . Each Li will be a shuffle (enclosed within a pair of endpoints) of lin-
ear orders L1

i−1, L2
i−1, . . . , Lk

i−1, produced at the previous stage, the first of which will
be Li−1. We begin with L0 = 1 + σ(2, 3, 4) + 1, the shuffle of the two, three, and
four point linear orders, enclosed by a pair of points. From then on, to build Li from
Li−1, we consider the different shuffles produced by shuffling all except one of the
linear orders used in Li−1, omitting each one in turn, and produce Li by shuffling
these (with perhaps the last one omitted) together with Li−1 and enclosing them be-
tween endpoints. L1, for instance, will be the shuffle of L0 together with the linear
orders 1 + σ(3, 4) + 1, 1 + σ(2, 4) + 1, and 1 + σ(2, 3) + 1 (with perhaps the last
one omitted), with endpoints added. L2 will be produced by shuffling L1 together
with the shuffles produced by leaving out from L1, in turn, each one of the linear or-
ders 1 + σ(3, 4)+ 1, 1 + σ(2, 4)+ 1, and 1 + σ(2, 3)+ 1, and adding endpoints, and
so on.

Since we intend to construct a linear order with certain computable properties,
we need to describe our construction in some detail. We will build each Li = 1 +
σ(L1

i−1, . . . , Lk
i−1) + 1 around Li−1 (which will be L1

i−1) in such a way that we will
keep careful track of which elements of N are used in which copy of L∗

i−1, where these
elements lie within their separate L∗

i−1’s (i.e., with respect to the linear orders of which
the L∗

i−1 is a shuffle) and where these separate L∗
i−1’s lie with respect to each other.

There are several ways of performing such a construction. We describe one: clearly
we can construct a copy of L0 with the required properties. Assuming that we can
perform such constructions for all the L∗

i−1’s, we build a copy of σ(L1
i−1, . . . , Lk

i−1)

by first laying down copies of the L∗
i−1’s with the required properties, in order (any

order will do, we choose the obvious one), to form the sum L1
i−1 + · · · + Lk

i−1. At
each further stage we lay down several such sums, one between each adjacent pair of
existing L∗

i−1’s, one to the extreme left and one to the extreme right. It should be clear
that we can mesh the construction of the separate copies of the L∗

i−1’s in such a way
that we know exactly where each element of the universe N lies with respect to the
particular L∗

i−1 in which it lies, and with respect to the linear order within that L∗
i−1

(one of those shuffled to produce that L∗
i−1) in which it lies (and, in fact, with respect

to the linear order within that, and within that, all the way down to the copy of 1, 2,
3, or 4 in which this element lies). We will see that this will allow us to show that L,
the linear order constructed by this infinite process, will be n-decidable for every n.

Note that each of our Li has a decidable copy. One way to see this is to observe
that Li can be defined, up to isomorphism, by a (first-order) sentence. The sentence
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for σ(L1
i−1, . . . , Lk

i−1) would say that each element lies within a closed interval [x, y]
isomorphic to one of the (finitely many) L∗

i−1’s, and that to the left of this interval
and to its right and between it and every interval isomorphic to a different L∗

i−1, there
lie intervals isomorphic to each one of the L∗

i−1’s. We can write this as a sentence in
the language of linear order by incorporating sentences that define the L∗

i−1’s. That
this sentence defines the linear order up to isomorphism can be seen via a Cantor
back-and-forth argument. Since the theory of linear orders is decidable, it follows that
Th(Li) is computable, and hence (by the Henkin construction, which is algorithmic)
has a decidable model which must be isomorphic to Li (since it satisfies the defining
sentence).

We will show that L is n-decidable by providing a computable procedure which,
when applied to any sequence ā in L, will produce a sequence b̄ in the decidable copy
of Ln which satisfies there precisely the same �n formulas that ā satisfies in L. Since
the copy of Ln is decidable, this will imply that L is n-decidable.

To guarantee that L has no decidable copy we will make Th(L) noncomputable
by allowing each Li to be one of two possible linear orders, L−

i and L+
i , and by choos-

ing between them in such a way that we diagonalize across a list of the computably
enumerable functions, preventing each of them from being the characteristic func-
tion for Th(L). The linear orders L−

i and L+
i will be distinguished from each other

by a �i+3 sentence ψi, true of the former but not of the latter. L−
i will be a shuffle of

L∗
i−1’s and L+

i will be a shuffle of the same L∗
i−1’s with one additional L∗

i−1 shuffled
in. This will be the only difference between them. This additional L∗

i−1, appearing in
L+

i but not in L−
i , will contain an interval of a certain order type, definable by a �i+3

sentence, not isomorphic to any interval in L−
i . The negation of this �i+3 sentence

will be the ψi true of L−
i but not of L+

i . Since ψi asserts the nonexistence of an in-
terval of a certain order type, it follows that it will distinguish also between an L in
which L−

i was chosen to be Li and one in which L+
i was chosen to be Li. Our default

is that Li = L−
i ; we begin building L−

i and switch to L+
i only if the ith computably

enumerable function says that L|= ψi. The fact that L+
i is just L−

i with one extra L∗
i−1

shuffled in will allow us to make this switch at any time. In this manner we put the
ith computably enumerable function out of the running as a possible enumerator of
Th(L).

This strategy of ours, when employed against an Li, will cause us to change
Li from L−

i to L+
i , and consequently change every L j with j > i, and consequently

change their defining sentences ψj. Even if we have already acted against these L j,
we will need to reconsider them and perhaps act against them again once the jth com-
putably enumerable function has made up its mind on the truth, in L, of the new defin-
ing sentence ψj, whence the (finite) injury in our construction.

Notice that this does not jeopardize our strategy for ensuring that L be n-
decidable: for a given n we just have to guess at a stage when L1, . . . , Ln have all
settled down (between being L−∗ or L+∗ ); we can then use the decidable copy of that
Ln (which will never again be tampered with) to provide a decision procedure for the
�n formulas in L. It is the uniformity, over n, of these decisions, that we will have
impaired.



n-DECIDABLE LINEAR ORDER 523

4 Construction of theLi We begin with L0 = 1 + σ(2, 3, 4) + 1. In general, hav-
ing defined Li−1 to be a linear order of the form 1 + σ(L1

i−1, . . . , Lk
i−1)+ 1, we define

Li as follows:

L1
i = 1 + σ(L1

i−1, . . . , Lk
i−1) + 1, that is, Li−1,

L2
i = 1 + σ(L2

i−1, . . . , Lk
i−1) + 1,

L3
i = 1 + σ(L1

i−1, L3
i−1, . . . , Lk

i−1) + 1,

L4
i = 1 + σ(L1

i−1, L2
i−1, L4

i−1, . . . , Lk
i−1) + 1,

...

L j
i = 1 + σ(L1

i−1, . . . , L j−2
i−1 , L j

i−1, . . . , Lk
i−1) + 1,

...

Lk+1
i = 1 + σ(L1

i−1, . . . , Lk−1
i−1 ) + 1

and define

L−
i = 1 + σ(L1

i , L2
i , . . . , Lk

i ) + 1, and

L+
i = 1 + σ(L1

i , L2
i , . . . , Lk

i , Lk+1
i ) + 1.

The number k will depend on how many switches have been made from L−∗ to L+∗ ;
k may be as few as 3 and as many as i + 3. For each j ≥ 2, L j

i has exactly one L∗
i−1

missing, namely, L j−1
i−1 . Notice, however, that a shuffle of any two, or more, of the

L∗
i ’s will contain every one of the L∗

i−1’s. It follows that both L−
i and L+

i (and hence
each L∗

i+1) will have all the L∗
i−1’s appearing, and doing so in whatever order one may

desire. This allows us to establish the following two facts.

Fact 4.1 For each L j
i with j ≥ 2 (we need this for just the last two L j

i ’s, but it is

true in general), there is a �i+2 sentence ϕ
j
i that is true of L j

i but not of any of the
other L∗

i ’s, nor of any shuffle of (shuffles, of shuffles, of . . . ) these other L∗
i ’s.

Proof: By induction on i.
Base step (i = 1): take ϕ

j
1 to be the �3 sentence that says there is no “maximal

block” of size j (i.e., j consecutive elements, the first of which has no immediate
predecessor, the last of which has no immediate successor).

Inductive step: take ϕ
j
i to be the sentence that says that, for each x and y, the

interval [x, y] is not isomorphic to L j−1
i−1 . In order to write this as a �i+2 sentence,

take the �i+1 sentence ϕ
j−1
i−1 true of L j−1

i−1 but not of the other L∗
i−1’s, a sentence whose

existence is guaranteed by the inductive hypothesis, negate it, and change the first
existential quantifier from “there are elements x1, . . . , xn such that . . . ” to “there are
elements x1, . . . , xn between x and y such that . . . ” We can then replace the phrase
“the interval [x, y] is not isomorphic to L j−1

i−1 ” with this �i+1 formula to get the �i+2

sentence we desire.
Since this sentence speaks of the nonexistence, in L j

i , of an interval of a certain
type, the fact that it is false in every one of the other L∗

i ’s will make it false in every
shuffle of these other L∗

i ’s, and in every shuffle of those shuffles, and so on. �
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Consider now the sentence saying that, for each pair x, y, the interval [x, y] is not iso-
morphic to Lk+1

i . Replace, as before, the phrase “the interval [x, y] is not isomorphic
to Lk+1

i ” with the similarly modified version of the negation of the sentence ϕk+1
i .

This produces a �i+3 sentence true of L−
i but not of L+

i , the promised sentence ψi,
that distinguishes between L with L−

i chosen for Li, and L with L+
i for Li.

Fact 4.2 The L∗
i ’s are all ≡i to each other, and to every shuffle of (shuffles, of shuf-

fles, of . . . ) L∗
i ’s.

Proof: By induction on i.
Base step (i = 1): the L∗

1’s are all infinite linear orders, as is every shuffle pro-
duced from them; consequently P2 can easily win every 1-k E-F Game.

Inductive step: consider P1’s opening move in an i-k E-F Game played on any
two L∗

i ’s (or shuffles, of shuffles, of . . . L∗
i ’s). Consider the L∗

i−2’s in which the ele-
ments of P1’s sequence lie; as we have seen, the L∗

i−2’s all appear in every L∗
i , and do

so in every possible order (with the possible exception of the very last L∗
i−2 which, if

we are presently working with L−
i−2, appears nowhere). So P2 can pick a matching

sequence whose elements lie in identical L∗
i−2’s, and in identical positions in those

L∗
i−2’s, as do the elements of P1’s sequence. To show that this is a winning move we

need to show that P2 can match P1 for the remaining i − 1 moves of the game.
Consider now the interval (a, b) between any pair a, b of elements in P2’s se-

quence. If a and b lie in the same copy of some L∗
i−2, P2’s strategy guarantees that

the interval (a, b) will be isomorphic to the corresponding interval in P1’s sequence.
Otherwise, if a and b lie in separate L∗

i−2’s, the interval (a, b) will have order type
α + β + γ, where α will be the left-open, right-closed interval which is the end of a’s
L∗

i−2, γ the left-closed, right-open interval which is the beginning of b’s L∗
i−2, both

of which will be isomorphic to the corresponding parts of the corresponding interval
for P1’s sequence, and β will have order type β1 + β2 + β3, where β1 is the tail end
of a’s L∗

i−1 (and hence an L∗
i−1 itself, with the left endpoint removed), β3 is the front

end of b’s L∗
i−1 (and hence an L∗

i−1 itself, with the right endpoint removed), and β2

is a shuffle of L∗
i−1’s. This will also be true of the corresponding interval for P1’s se-

quence; that is, that sequence also will be of the form α + β1 + β2 + β3 + γ, with the
five summands as described. Since the two α’s and the two γ’s will be isomorphic,
and for each j, the two β j’s will, by the inductive hypothesis, be ≡i−1, it follows that
P2 can beat P1 at every (i − 1)-k E-F Game played within these two intervals. �
This, and the fact that each Li has a decidable copy, allows us to show that L is i-
decidable for each i. Consider any sequence ā in L. Wait for a stage j ≥ i by which
ā has been enumerated into the construction and lies wholly within some copy of L j,
and further still, for a stage when L1, . . . , L j have all settled down (between being
L−∗ or L+∗ ). This latter stage cannot be recognized during the construction (this is
where the nonuniformity comes in: our algorithm for i is predicated on guessing such
a stage). Our construction allows us to determine exactly how the elements of ā lie
within their copies of L∗

i ’s. Find a sequence b̄ in the decidable copy of Li with its ele-
ments in the same situation with respect to L∗

i ’s (all existing L∗
i ’s occur in Li, in every

possible order). The intervals between the copies of L∗
i ’s in Li are shuffles of L∗

i ’s,
and in L j, and L, are shuffles, of shuffles, of . . . L∗

i ’s, and therefore, by Fact 4.2, are
all ≡i. Consequently ā satisfies precisely the same �i formulas in L j, and in L, as
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does b̄ in its copy of Li. Since that copy is decidable, we have provided a computable
procedure that determines exactly which �n formulas ā satisfies in L.

5 Construction ofL The construction of L is a standard, finite-injury, priority con-
struction.

Stage 1: Begin constructing a copy of L−
1 as described before.

Stage s: Look for the least e < s that requires attention and may be addressed
at this stage. (An e requires attention if it has never been addressed or
if it has been injured since it was last addressed. It may be addressed
at this stage if the eth computably enumerable function has shown its
hand on ψe and says that that sentence is true in L.) Address e by
changing Le from L−

e to L+
e . This will also change all the L∗

i ’s with
i > e and consequently change all those Li, and their distinguishing
sentences ψi. Consider all those i to be injured at this stage. Continue
the construction of (the present versions) of L1, . . . , Ls−1 and begin
the construction of L−

s around this, as described before.

By the argument presented in the paragraph following the proof of Fact 4.2, the linear
order L so produced is n-decidable for every n. It has no decidable copy since the set
of sentences true in L is not computable: the eth computably enumerable function
could not possibly denote exactly which sentences were true in L since, if it were the
first computably enumerable function on the list to do so, there would come a stage
in the construction after which none of the earlier computably enumerable functions
are ever addressed (and hence ψe would never change), when e would both require
attention and may be addressed, and consequently would be, thus causing it to be in
error on the truth in L of the sentence ψe. This completes the proof of our theorem.

6 Intrinsically n-decidable It should be noted that the linear order we have con-
structed does have computable copies that are not n-decidable for all n, in fact, com-
putable copies that are not even 1-decidable. It follows from the characterization
of intrinsically 1-decidable linear orders (i.e., 1-decidable linear orders all of whose
computable copies are also 1-decidable) in Moses [5] that every such linear order is
decidable. So there is no linear order that is n-decidable for all n and intrinsically
n-decidable for all n but has no decidable copy.

Consider, however, the language of linear order expanded by adding a constant
symbol for each element of the L we constructed and the structure M in this language
produced from L by interpreting each constant symbol by the corresponding element.
It is clear from our construction of L that Th(M ) is noncomputable whereas for each
n, the set of �n sentences true in M is computable. It follows that M has no decidable
copy but is n-decidable for all n, and intrinsically so (every element in a computable
copy of M will be a constant and hence, for every �n formula ϕ and sequence ā in that
copy, ϕ(ā) will be a �n sentence in the language). We have established the following.

Corollary 6.1 There is a structure that is n-decidable and intrinsically n-decidable
for all n but has no decidable copy.
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We do not know whether there is a more natural structure with this property; Chisholm
can show that there is no tree.
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