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An Undecidable Linear Order That
Is n-Decidable for All n

JOHN CHISHOLM and MICHAEL MOSES

Abstract  Alinear orderisn-decidableif itsuniverseisN andtherelationsde-
fined by X, formulasare uniformly computable. Thismeansthat thereisacom-
putable procedure which, when applied to a 3, formula ¢(X) and a sequence a
of elements of thelinear order, will determine whether or not ¢(a) istruein the
structure. A linear order isdecidableif the relations defined by all formulasare
uniformly computable.

These definitions suggest two questions. Arethere, for each n, n-decidable lin-
ear orders that are not (n + 1)-decidable? Are there linear orders that are n-
decidablefor all n but not decidable? The former was answered in the positive
by Mosesin 1993. Here we answer the latter, also positively.

1 Introduction The study of computable algebraic structures has a long and by
now widely known history. Beginning in the “finitistic” demands of the algebraists
of the late 1800s and early 1900s, it hit its stride in the papers of Frohlich and Shep-
herdson [[4] and Rabin [[Z] which set the tone for much of what wasto follow. A good
introduction to such a computable analysis as applied to linear ordersis provided in
the final chapter of Rosenstein [[8]; a more current and comprehensive, almost ency-
clopedic treatment in Downey [[I].

A linear order iscomputableif itsuniverseisN (we will take thisto be the case
from here on) and the quantifier-free formulas uniformly denote computable rela-
tions. This means that there is a computable procedure, which, when applied to a
quantifier-free formula ¢ (X) and a sequence a of elements of the linear order, will de-
termine whether or not ¢(@) istrue in the structure. (Quite clearly thisis equivalent
to demanding just that the order relation be computable.) A linear order is decidable
if all formulas uniformly denote computable relations. Between these two concepts
lies that of an n-decidable linear order, defined to be one in which the ,, formulas
uniformly denote computable relations.

Moses [[6] answered thefirst of the questionsin our abstract by constructing, for
each n, alinear order that is n-decidable but not (n+ 1)-decidable and, in fact, hasno
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(n+ 1)-decidable copy. In this paper we answer the second by constructing alinear
order that is n-decidable for all n but is not decidable and, in fact, has no decidable
copy. To makethe linear order n-decidable we will arrange that the X, formulas uni-
formly denote computable relations. To ensure it has no decidable copy we will ar-
range that the set of sentencestruein our linear order is not computable. These con-
flicting requirements, that truth can be effectively determined for X, formulas, but
that this cannot be done uniformly in n, not even for sentences, produces the tension
in our construction. This paper then will be devoted to establishing the following.

Theorem 1.1 Thereisalinear order £ that is n-decidable for all n but has no de-
cidable copy.

Our terminology will be standard, as presented for instance in [[8], or will be obvi-
ous from the context. We will sometimes replace a sub- or superscript by the wild-
card symbol * to allow easy reference to the structures denoted by the range of the
sub/superscript: L., forinstance, will represent (any and every) oneof L4, Lo,. .., L.
Note that we will mean L, to denote any and every oneof L4, Lo, ..., Lx everytime
we use it, that is, repeated usage, even in the same sentence, is intended to denote
(possibly) different linear orders. If we wish to refer repeatedly to a specific one of
them wewill usethe more standard L;. We mean the label sto denote (classical) order
types; we will not use individual labels for the several separate copies of each order
type. We believe, or at least hope, that this conservation of symbols will not cause
confusion.

2 Ehrenfeucht-Frais®e Games We extend the notation L; = L, (elementary
equivalence) to L, =p L, meaning that thetwo linear orders satisfy the same X, sen-
tences. To establish Ly = Lo, we will use a modification of the Ehrenfeucht-Fraisse
Games. Consider a two-person game played on the linear orders L1 and L, by the
players P1 and P2. Two numbers are set before the game begins: n, the number of
moves each player will make, and k, whose usage will be described below. The play-
erswill moveinturn, with P1 playing first. At each move P1will select asequence of
at most k elementswholly contained in either one of the linear orders and P2 will se-
lect a sequence of the same length in the other. P2'saim isto arrange that the (finite)
suborder of L1 that consists of all the elements selected so far (by P1 and P2) isiso-
morphic to the corresponding set of elementsin L, viathe mapping that identifiesthe
sequences chosen by the two playersat each move. If P2 isableto match P1'schoice
for n moves, extending the isomorphism to include the new sequence each time, we
say P2 haswon the n-k E-F Game; otherwise P1 isthe victor.

Note that the number of moves and the maximum length of the sequences se-
lected at each move are established in advance. Notice also that the sequence P1 se-
lects may come from either linear order and that P2's sequence must produce an iso-
morphism that extends the existing isomorphism. The original Ehrenfeucht-Fraissé
Games, introduced implicitly in Fraisse [[] and explicitly in Ehrenfeucht [2], and ap-
plied extensively to linear ordersin [[8], isthe restriction of our games caused by fixing
k at 1. The obvious modification of the arguments presented there establishes this:

For each n, L, =, L, if, for every k, P2 can win every n-k E-F Game
played on L; and L.
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Allow us to reiterate: the relation =p, corresponding to our version of the
Ehrenfeucht-Fraissé Games, is different from the usual one, most often denoted ~,,
which, in our notation, would require only that P2 can win every n-1 E-F Game, and
impliesonly that L; and L, satisfy the same sentences of quantifier depth n. Thisis
not strong enough for our purposes.

3 Shuffles Theshuffleof linear orders Ly, Ly, ..., Ly, denotedo (L, Lo, ..., Ly),
is the linear order produced by partitioning n, the dense linear order without end-
points, into k subsets, each of which is dense in 5, and replacing each point in the
ith of these subsets with a copy of L;.

We will construct our linear order £ as the limit of a sequence of linear orders
L1, Ly, L, .... Each L; will beashuffle (enclosed within apair of endpoints) of lin-
earordersL! ;L2 ,,..., LK ,, produced at the previous stage, thefirst of which will
be Li_;. We beginwith Lo = 1+ 0(2, 3,4) + 1, the shuffle of the two, three, and
four point linear orders, enclosed by a pair of points. From then on, to build L; from
Li_1, we consider the different shuffles produced by shuffling al except one of the
linear orders used in Lj_;, omitting each one in turn, and produce L; by shuffling
these (with perhaps the last one omitted) together with L;_; and enclosing them be-
tween endpoints. Lj, for instance, will be the shuffle of L together with the linear
odersl+0(3,4)+1,1+0(2,4) +1,and 1+ 0(2, 3) + 1 (with perhaps the last
one omitted), with endpoints added. L, will be produced by shuffling L, together
with the shuffles produced by leaving out from L4, in turn, each one of the linear or-
dersl4+0(3,4)+1,14+0(2,4)+1,and1+ o(2, 3) 4+ 1, and adding endpoints, and
so on.

Since we intend to construct a linear order with certain computable properties,
we need to describe our construction in some detail. We will build each Lj = 1 +
o(Lt,, ..., LK)+ 1around Li_; (whichwill be L} ,) in such away that we will
keep careful track of which elementsof N are used inwhich copy of L ,, wherethese
elementsliewithintheir separate L ;’s(i.e., with respect to thelinear ordersof which
the L ; isashuffle) and where these separate L} ;’s lie with respect to each other.
There are several ways of performing such a construction. We describe one: clearly
we can construct a copy of Lo with the required properties. Assuming that we can
perform such constructions for al the L* ,'s, we build acopy of o(LL ..., LK ;)
by first laying down copies of the L} ;’s with the required properties, in order (any
order will do, we choose the obvious one), to form the sum L | +--- + LK ;. At
each further stage we lay down several such sums, one between each adjacent pair of
existing L ,’s, oneto the extremeleft and one to the extremeright. It should be clear
that we can mesh the construction of the separate copies of the L ,’sin such away
that we know exactly where each element of the universe N lies with respect to the
particular Ly ; in which it lies, and with respect to the linear order within that L ;
(one of those shuffled to producethat L ,) inwhichit lies (and, in fact, with respect
to the linear order within that, and within that, all the way down to the copy of 1, 2,
3, or 4in which this element lies). We will seethat thiswill allow usto show that £,
the linear order constructed by this infinite process, will be n-decidable for every n.

Note that each of our L; has a decidable copy. One way to see thisisto observe
that L; can be defined, up to isomorphism, by a (first-order) sentence. The sentence
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foro(L! ,,..., LK ;) would say that each element lieswithin aclosed interval X, y]
isomorphic to one of the (finitely many) L ;’s, and that to the left of this interval
and to itsright and between it and every interval isomorphicto adifferent L ;, there
lieintervals isomorphic to each one of the L ;'s. We can write this as a sentence in
the language of linear order by incorporating sentences that define the L ,’s. That
this sentence defines the linear order up to isomorphism can be seen via a Cantor
back-and-forth argument. Sincethetheory of linear ordersisdecidable, it followsthat
Th(L;) iscomputable, and hence (by the Henkin construction, which is algorithmic)
has a decidable model which must be isomorphic to L; (sinceit satisfies the defining
sentence).

Wewill show that £ isn-decidable by providing acomputable procedure which,
when applied to any sequenceain £, will produce a sequence b in the decidable copy
of L, which satisfiesthere precisely the same X, formulasthat 4 satisfiesin £. Since
the copy of Ly isdecidable, thiswill imply that £ is n-decidable.

To guarantee that £ has no decidable copy we will make Th(£) noncomputable
by allowing each L; to be one of two possiblelinear orders, L;” and L;*, and by choos-
ing between them in such a way that we diagonalize across a list of the computably
enumerable functions, preventing each of them from being the characteristic func-
tion for Th(£). The linear orders L;” and L;* will be distinguished from each other
by aIlj 3 sentence v, true of the former but not of the latter. L;~ will be a shuffle of
L ,’sand L;" will be a shuffle of the same L ;’swith one additional L;" , shuffled
in. Thiswill be the only difference between them. Thisadditional L ,, appearingin
L;" but notin L, will contain an interval of acertain order type, definable by a i3
sentence, not isomorphic to any interval in L;”. The negation of this ¥, 3 sentence
will be the v true of L~ but not of L;*. Since v asserts the nonexistence of an in-
terval of a certain order type, it follows that it will distinguish also between an £ in
which L;~ was chosen to be L; and oneinwhich Li+ was chosen to be L. Our default
isthat Lj = L;; we begin building L;” and switch to L;" only if the ith computably
enumerable function saysthat £= ;. Thefact that Li+ isjust L;” withoneextraLy ;
shuffled in will allow us to make this switch at any time. In this manner we put the
ith computably enumerable function out of the running as a possible enumerator of
Th(L).

This strategy of ours, when employed against an L, will cause us to change
Li from L; to L;*, and consequently change every L; with j > i, and consequently
change their defining sentences ;. Even if we have already acted against these L j,
wewill need to reconsider them and perhaps act against them again once the jth com-
putably enumerabl e function has made up itsmind on thetruth, in £, of the new defin-
ing sentence v/, whence the (finite) injury in our construction.

Notice that this does not jeopardize our strategy for ensuring that £ be n-
decidable: for agiven n we just have to guess at a stage when L, ..., L, have dl
settled down (between being L or L}); we can then use the decidable copy of that
Ln (which will never again be tampered with) to provide a decision procedure for the
¥, formulasin £. It isthe uniformity, over n, of these decisions, that we will have
impaired.
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4 Construction of theL; Webeginwith Lo =1+ 0(2, 3,4) + 1. Ingenera, hav-
ing defined L;_1 to bealinear order of theform 1+ a(LI 1rees L!‘_l) + 1, wedefine
L; asfollows:

L} = 1+4o(Lt,,...,Lk)+1, thatis Li_q,
I_|2 = 1+U(LI 1""’Lik—l)+1’

Li3 — 1_|_g(|_i71, Li3_1,..., Lik_1)+l,

Lf = 140l L2 L4, L)+,

L = 14o(Ll,,..., LhH+1

and define
Lm = 1+0(Lil,Li2,---,|-=()+1’and
Lt = 14o(LL L2 ..., LKLY 41

The number k will depend on how many switches have been made from L to Lj;
k may be as few asS and asmany asi + 3. For each j > 2, LJ has exactly one L}

missing, namely, L . Notice, however, that a shuffle of any two, or more, of the
L’swill contain every oneof the L¥ ,’s. It followsthat both L;” and L;" (and hence
each L" ;) will haveall the L;"_;’sappearing, and doing so in whatever order one may

i+1
desire. Thisalows us to establish the following two facts.

Fact 41 For each LJ with j > 2 (we need this for just the last two LJ’s butitis

true in general), there isa I, sentence ¢! that is true of LJ but not of any of the
other L;’s, nor of any shuffle of (shuffles, of shuffles, of . . . ) these other L’s.

Proof: By inductiononi.

Base step (i = 1): take go‘l to be the I3 sentence that says there is no “maximal
block” of size j (i.e., j consecutive elements, the first of which has no immediate
predecessor, the last of which has no immediate successor).

Inductive step: take goi‘ to be the sentence that says that, for each x and y, the
interval [X, y] is not isomorphic to Lj_l In order to write this as a I1; ., sentence,
taketheIT; 1 sentence<pJ Ltrueof LJ r 1 but not of the other L} ;’s, asentence whose
existence is guaranteed by the |nduct|ve hypothesis, negate |t and change the first
existential quantifier from“thereareelementsx, ..., Xs suchthat . . . ” to“thereare
elements xq, ..., X, between x and y such that . . . ” We can then replace the phrase
“theinterval [X, y] is not isomorphic to LiJ__ll" with this X, formulato get the IT; ,»
sentence we desire. _

Since this sentence speaks of the nonexistence, in LiJ , of aninterval of acertain
type, the fact that it is false in every one of the other Li’s will make it falsein every
shuffle of these other Li*'s, and in every shuffle of those shuffles, and so on. O
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Consider now the sentence saying that, for each pair x, y, theinterval [X, y] isnot iso-
morphic to Lik”. Replace, as before, the phrase “the interval [X, y] isnot isomorphic
to LI with the similarly modified version of the negation of the sentence ¢k*?.
This produces a I; 3 sentence true of L;~ but not of L;", the promised sentence v,
that distinguishes between £ with L~ chosen for L;, and £ with LiJr for L.

Fact 4.2 Thel;’sareall =; to each other, and to every shuffle of (shuffles, of shuf-
fles,of .. .) L's.

Proof: By induction oni.

Base step (i = 1): the L3'sare all infinite linear orders, asis every shuffle pro-
duced from them; consequently P2 can easily win every 1-k E-F Game.

Inductive step: consider P1's opening movein an i-k E-F Game played on any
two L;’s (or shuffles, of shuffles, of . . . Li’s). Consider the L* ,’sin which the ele-
ments of P1's sequencelie; aswe have seen, the L ,’sall appear inevery L, and do
so in every possible order (with the possible exception of the very last L} , which, if
we are presently working with L, ,, appears nowhere). So P2 can pick a matching
sequence whose elements lie in identical L ,’s, and in identical positions in those
L’ ,'s, asdo the elements of P1's sequence. To show that thisis awinning move we
need to show that P2 can match P1 for the remaining i — 1 moves of the game.

Consider now the interval (a, b) between any pair a, b of elementsin P2's se-
quence. If aand b liein the same copy of some L ,, P2's strategy guarantees that
theinterval (a, b) will beisomorphic to the corresponding interval in P1's sequence.
Otherwise, if aand b lie in separate L;" ,'s, the interval (a, b) will have order type
a+ B+ y, where o will be the left-open, right-closed interval which istheend of a's
L’ ,, y the left-closed, right-open interval which is the beginning of b’s L} ,, both
of which will be isomorphic to the corresponding parts of the corresponding interval
for P1's sequence, and B will have order type 81 + B2 + B3, Where 81 isthetail end
of a’s L ; (and hencean L, itself, with the left endpoint removed), B3 is the front
end of b’'s L ; (and hence an L}, itself, with the right endpoint removed), and >
isashuffleof L ;'s. Thiswill also be true of the corresponding interval for P1's se-
guence; that is, that sequence also will be of theform« + 81 + B2 + B3 + v, withthe
five summands as described. Since the two «’s and the two y’s will be isomorphic,
and for each j, thetwo g;’swill, by theinductive hypothesis, be =;_1, it follows that
P2 can beat P1 at every (i — 1)-k E-F Game played within these two intervals. [

This, and the fact that each L; has a decidable copy, alows us to show that £ isi-
decidable for each i. Consider any sequence ain £. Wait for astage j > i by which
a has been enumerated into the construction and lies wholly within some copy of L,
and further still, for astage when Ly, ..., Lj have al settled down (between being
L, or LJ). Thislatter stage cannot be recognized during the construction (this is
where the nonuniformity comesin: our algorithmfor i is predicated on guessing such
astage). Our construction allows us to determine exactly how the elements of a lie
within their copiesof L;’s. Find asequence b in the decidable copy of L; withitsele-
mentsin the same situation with respect to L*'s (al existing L’ soccur in L;, inevery
possible order). The intervals between the copies of L¥'sin L; are shuffles of L’s,
andin L;, and £, are shuffles, of shuffles, of . . . L*’s, and therefore, by Fact[4.2] are
al =j. Consequently a satisfies precisely the same % formulasin Lj, and in £, as
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doesbinitscopy of L;. Sincethat copy is decidable, we have provided acomputable
procedure that determines exactly which X, formulas & satisfiesin £.

5 Construction of€  Theconstruction of £ isastandard, finite-injury, priority con-
struction.

Stage 1:  Begin constructing acopy of L7 as described before.

Stages: Look for the least e < sthat requires attention and may be addressed
at thisstage. (An erequiresattention if it has never been addressed or
if it has been injured since it was last addressed. It may be addressed
at this stage if the eth computably enumerable function has shown its
hand on v, and says that that sentence istrue in £.) Address e by
changing Le from Lg to Ld. Thiswill also change all the L's with
i > e and consequently change al those L;, and their distinguishing
sentences ;. Consider al thosei to beinjured at this stage. Continue
the construction of (the present versions) of L4, ..., Ls_; and begin
the construction of Lg around this, as described before.

By the argument presented in the paragraph following the proof of Fact[4.2] the linear
order £ so produced is n-decidable for every n. It has no decidable copy since the set
of sentences true in £ is not computable: the eth computably enumerable function
could not possibly denote exactly which sentencesweretruein £ since, if it werethe
first computably enumerable function on the list to do so, there would come a stage
in the construction after which none of the earlier computably enumerable functions
are ever addressed (and hence v would never change), when e would both require
attention and may be addressed, and consequently would be, thus causing it to be in
error on thetruth in £ of the sentence . This completes the proof of our theorem.

6 Intrinsically n-decidable It should be noted that the linear order we have con-
structed does have computable copies that are not n-decidable for all n, in fact, com-
putable copies that are not even 1-decidable. It follows from the characterization
of intrinsically 1-decidable linear orders (i.e., 1-decidable linear orders al of whose
computable copies are also 1-decidable) in Moses [[5] that every such linear order is
decidable. So there is no linear order that is n-decidable for all n and intrinsically
n-decidable for al n but has no decidable copy.

Consider, however, the language of linear order expanded by adding a constant
symbol for each element of the £ we constructed and the structure M in thislanguage
produced from £ by interpreting each constant symbol by the corresponding el ement.
It isclear from our construction of £ that Th(“M) is noncomputable whereas for each
n, theset of ¥, sentencestruein M iscomputable. It followsthat M hasno decidable
copy but is n-decidable for al n, and intrinsically so (every element in a computable
copy of M will beaconstant and hence, for every =, formulag and sequenceadin that
copy, ¢(@) will bea X, sentencein thelanguage). We have established thefollowing.

Corollary 6.1 Thereisastructurethat isn-decidableand intrinsically n-decidable
for all n but has no decidable copy.
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Wedo not know whether thereisamorenatural structurewith thisproperty; Chisholm
can show that thereis no tree.
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