A Syntactic Approach to Maksimova's Principle of Variable Separation for Some Substructural Logics

H. NARUSE, BAYU SURARSO, and H. ONO

Abstract

Maksimova's principle of variable separation says that if propositional formulas $A_{1} \supset A_{2}$ and $B_{1} \supset B_{2}$ have no propositional variables in common and if a formula $A_{1} \wedge B_{1} \supset A_{2} \vee B_{2}$ is provable, then either $A_{1} \supset A_{2}$ or $B_{1} \supset B_{2}$ is provable. Results on Maksimova's principle until now are obtained mostly by using semantical arguments. In the present paper, a proof-theoretic approach to this principle in some substructural logics is given, which analyzes a given cut-free proof of the formula $A_{1} \wedge B_{1} \supset A_{2} \vee B_{2}$ and examines how the formula is derived. This analysis will make clear why Maksimova's principle holds for these logics.

1 Introduction In her paper (8] (see also [10]), Maksimova proved a theorem on some relevant logics, including \mathbf{R} and \mathbf{E}, which implies the following:

Suppose that propositional formulas $A_{1} \supset A_{2}$ and $B_{1} \supset B_{2}$ have no propositional variables in common. If a formula $A_{1} \wedge B_{1} \supset A_{2} \vee B_{2}$ is provable, then either $A_{1} \supset A_{2}$ or $B_{1} \supset B_{2}$ is provable.

When the above property holds for a given logic \mathbf{L}, we say that Maksimova's principle of variable separation (or simply Maksimova's principle) holds for \mathbf{L}. (In this case, \mathbf{L} is said to be Maksimova-complete in Chagrov and Zakharyaschev [4].) In [8], she gave also an example of a relevant logic for which Maksimova's principle doesn't hold. Some relationships among Maksimova's principle, the disjunction property and Halldén-completeness for intermediate logics are studied in 44. An algebraic characterization of Maksimova's principle is given in [11].

Most of the results on Maksimova's principle obtained so far are proved by using semantical methods. In the present paper, by using a syntactic method, we will show that Maksimova's principle holds for many of the basic substructural logics,
all of which are extensions of the logic FL which has no structural rules. First, we will show Maksimova's principle for logics without weakening. By using the same idea but slightly modifying the proof, we will next show Maksimova's principle for logics with weakening. We will show Maksimova's principle also for some distributive substructural logics including the relevant logics $\mathbf{R}_{+}, \mathbf{R} \mathbf{W}_{+}$and $\mathbf{T W} \mathbf{W}_{+}$, in which the distributive law between additive conjunctions and disjunctions holds. Although we will discuss here only Maksimova's principle for some propositional logics, the proof can be naturally extended to their predicate extensions. All the results on Maksimova's principle shown in the present paper except that for \mathbf{R}_{+}are new.

The basic calculus $\mathbf{F L}$ is, roughly speaking, the system obtained from the sequent calculus $\mathbf{L J}$ for the intuitionistic logic by deleting all of $\mathbf{L J}$'s structural rules. The language of $\mathbf{F L}$ consists of logical constants t, f, \top, and \perp, logical connectives \supset, \wedge, \vee, and $*$ (multiplicative conjunction or fusion). (We can dispense with \top, as it can be defined by $\perp \supset \perp$.) To make the present paper self-contained, we will give here the definition of $\mathbf{F L}$.
Definition 1.1 For consistency of notation throughout the present paper, we assume that any sequent in FL is of the form $A_{1} ; \ldots ; A_{m} \rightarrow B$ where $m \geq 0$ and B may be empty. Also, different from the notation in Ono [14], we will use the constant symbols t and f instead of 1 and 0 .

FL consists of the following initial sequents:

Initial sequents

$$
\begin{array}{ll}
\text { 1. } & A \rightarrow A, \\
\text { 2. } & \Gamma ; \perp ; \Delta \rightarrow C, \\
\text { 3. } & \Gamma \rightarrow T, \\
\text { 4. } & \rightarrow t, \\
\text { 5. } & f \rightarrow,
\end{array}
$$

and the following rules of inference:
Cut rule

$$
\frac{\Gamma \rightarrow A \quad \Delta ; A ; \Sigma \rightarrow C}{\Delta ; \Gamma ; \Sigma \rightarrow C}
$$

Rules for logical constants

$$
\frac{\Gamma ; \Delta \rightarrow C}{\Gamma ; t ; \Delta \rightarrow C}(t w) \quad \frac{\Gamma \rightarrow}{\Gamma \rightarrow f}(f w)
$$

Rules for logical connectives

$$
\begin{array}{cc}
\frac{\Gamma ; A \rightarrow B}{\Gamma \rightarrow A \supset B}(\rightarrow \supset) & \frac{\Gamma \rightarrow A}{\Delta ; A \supset B ; \Gamma ; \Sigma \rightarrow C}(\supset \rightarrow) \\
\frac{\Gamma \rightarrow A}{\Gamma \rightarrow A \vee B}(\rightarrow \vee 1) & \frac{\Gamma \rightarrow B}{\Gamma \rightarrow A \vee B}(\rightarrow \vee 2)
\end{array}
$$

$$
\begin{gathered}
\frac{\Gamma ; A ; \Delta \rightarrow C \quad \Gamma ; B ; \Delta \rightarrow C}{\Gamma ; A \vee B ; \Delta \rightarrow C}(\vee \rightarrow) \\
\frac{\Gamma \rightarrow A \quad \Gamma \rightarrow B}{\Gamma \rightarrow A \wedge B}(\rightarrow \wedge) \\
\frac{\Gamma ; A ; \Delta \rightarrow C}{\Gamma ; A \wedge B ; \Delta \rightarrow C}(\wedge 1 \rightarrow) \\
\frac{\Gamma \rightarrow A \Delta \rightarrow B}{\Gamma ; \Delta \rightarrow A * B}(\rightarrow *) \quad \frac{\Gamma ; A ; B ; \Delta \rightarrow C}{\Gamma ; A * B ; \Delta \rightarrow C}(* \rightarrow) .
\end{gathered}
$$

Sequent calculi $\mathbf{F L}_{\mathbf{w}}, \mathbf{F L}_{\mathbf{c}}$, and $\mathbf{F L}_{\mathbf{e}}$ are defined to be the systems obtained from $\mathbf{F L}$ by adding the following weakening, contraction, and exchange rules, respectively:

$$
\begin{array}{cl}
\frac{\Gamma ; \Sigma \rightarrow C}{\Gamma ; A ; \Sigma \rightarrow C}(w \rightarrow) & \frac{\Gamma \rightarrow}{\Gamma \rightarrow C}(\rightarrow w) \\
\frac{\Gamma ; A ; A ; \Sigma \rightarrow C}{\Gamma ; A ; \Sigma \rightarrow C}(\text { con }) & \frac{\Gamma ; B ; A ; \Sigma \rightarrow C}{\Gamma ; A ; B ; \Sigma \rightarrow C}(e x) .
\end{array}
$$

We will use any combination of suffixes e, c, and w to denote the calculus obtained from FL by adding structural rules corresponding to these suffixes. For instance, $\mathbf{F L}_{\text {ew }}$ denotes the system $\mathbf{F L}$ with both the exchange and the weakening rules. For more information on substructural logics introduced here, see, for example, Ono [13] and [14. Since all logics discussed in this paper are formulated as sequent calculi, we will sometimes identify a sequent calculus with the logic determined by it. We can prove the following theorems. (See Ono and Komori [15] and [13].)
Theorem 1.2 Cut elimination theorem holds for $\mathbf{F L}, \mathbf{F L}_{\mathbf{e}}, \mathbf{F L}_{\mathbf{w}}, \mathbf{F L}_{\mathbf{e w}}, \mathbf{F L}_{\mathbf{e c}}$, and $\mathrm{FL}_{\text {ecw }}$.

Theorem 1.3 Craig's interpolation theorem holds for $\mathbf{F L}, \mathbf{F L}_{\mathbf{e}}, \mathbf{F L}_{\mathbf{w}}, \mathbf{F L}_{\mathbf{e w}}, \mathbf{F L}_{\mathbf{e c}}$, and $\mathbf{F L}_{\text {ecw }}$.

Note here that the cut elimination theorem doesn't hold for $\mathbf{F L}_{\mathbf{c}}$, as shown in Bayu Surarso and Ono [3].

2 Maksimova's principle for logics without weakening To explain the idea of our proof of Maksimova's principle, in this section we will discuss Maksimova's principle for the substructural logics without weakening. As shown in the next section, more complicated arguments will be necessary to show Maksimova's principle for logics with weakening. Throughout this section, we assume that our language does not contain any propositional constant. This assumption will eliminate nonessential complications in expressing our main theorem (Theorem 2.3] in this section, since
the weakening rule becomes admissible for some particular constants, for example, the rule ($t w$) for the constant t. In the following, $S(A)$ denotes the set of subformulas of a formula A.

Lemma 2.1 Suppose that formulas $A_{1} \supset A_{2}$ and $B_{1} \supset B_{2}$ have no propositional variables in common. If $\Gamma \rightarrow D$ is a sequent satisfying the following three conditions

1. all formulas occurring in the sequent are subformulas of either $A_{1} \wedge B_{1}$ or $A_{2} \vee B_{2}$,
2. at least one of them belongs to $S\left(A_{1}\right) \cup S\left(A_{2}\right)$,
3. at least one of them belongs to $S\left(B_{1}\right) \cup S\left(B_{2}\right)$,
then it is not provable in $\mathbf{F} \mathbf{L}_{\mathbf{e c}}$.
Proof: To the contrary, suppose that $\Gamma \rightarrow D$ is provable. Then there must be a cutfree proof Π in $\mathbf{F} \mathbf{L}_{\text {ec }}$ whose endsequent is $\Gamma \rightarrow D$. It is easily seen that in any application of a rule of inference in Π, if the lower sequent satisfies the above three conditions then at least one of its upper sequents must also satisfy these conditions. Notice here that this holds for any application of either $(\rightarrow *)$ or $(\supset \rightarrow)$ since its principal formula must be a member of the set $S\left(A_{1}\right) \cup S\left(A_{2}\right) \cup S\left(B_{1}\right) \cup S\left(B_{2}\right)$. So, at least one of initial sequents of Π must satisfy these three conditions. But, clearly no initial sequent can satisfy all of these conditions. Clearly, the above argument doesn't hold when we have the weakening rule.

Corollary 2.2 Suppose that $A_{1} \supset A_{2}$ and $B_{1} \supset B_{2}$ have no propositional variables in common and that \mathbf{L} is any one of $\mathbf{F L}, \mathbf{F L}_{\mathbf{e}}$ and $\mathbf{F L}_{\mathbf{e c}}$. If Π is a cut-free proof in \mathbf{L} of a sequent $\Gamma \rightarrow D$ such that
(*) all formulas in it are subformulas of either $A_{1} \wedge B_{1}$ or $A_{2} \vee B_{2}$, and at least one of them belongs to $S\left(A_{1}\right) \cup S\left(A_{2}\right)$,
then every sequent in Π satisfies also (*). Moreover, no applications of the following rules of inference appear in Π.

$$
\begin{gathered}
\frac{\Gamma ; B_{1} ; \Delta \rightarrow E}{\Gamma ; A_{1} \wedge B_{1} ; \Delta \rightarrow E}(\wedge 2 \rightarrow) \quad \frac{\Delta \rightarrow A_{1} \Delta \rightarrow B_{1}}{\Delta \rightarrow A_{1} \wedge B_{1}}(\rightarrow \wedge) \\
\frac{\Gamma ; A_{2} ; \Delta \rightarrow E \quad \Gamma ; B_{2} ; \Delta \rightarrow E}{\Gamma ; A_{2} \vee B_{2} ; \Delta \rightarrow E}(\vee \rightarrow) \quad \frac{\Delta \rightarrow B_{2}}{\Delta \rightarrow A_{2} \vee B_{2}}(\rightarrow \vee 2) .
\end{gathered}
$$

Proof: We can show that
for any application I of rules of inference in Π, if the lower sequent of I satisfies condition (*) then the upper sequent also satisfies (or both of its upper sequents satisfy) condition ($*$).

This can be proved without difficulty, except in the case where I is either $(\rightarrow *)$ or $(\supset \rightarrow)$. Suppose that I is an application of $(\rightarrow *)$ of the following form.

$$
\frac{\Gamma \rightarrow D \quad \Delta \rightarrow E}{\Gamma ; \Delta \rightarrow D * E}
$$

By the subformula property, the formula $D * E$ must be either in $S\left(A_{1}\right) \cup S\left(A_{2}\right)$ or in $S\left(B_{1}\right) \cup S\left(B_{2}\right)$. Suppose that the latter holds. Then, both D and E belong to $S\left(B_{1}\right) \cup$ $S\left(B_{2}\right)$. By our assumption, some formulas in $\Gamma ; \Delta$ belong to $S\left(A_{1}\right) \cup S\left(A_{2}\right)$. Hence, either $\Gamma \rightarrow D$ or $\Delta \rightarrow E$ satisfies all of three conditions in Lemma 2.1 and thus it is not provable. This is a contradiction. Thus, $D * E$, and hence both D and E belong to $S\left(A_{1}\right) \cup S\left(A_{2}\right)$. Therefore, the above statement holds in this case. Similarly, we can show that this holds also for $(\supset \rightarrow)$. Thus, every sequent in Π also satisfies $(*)$.

Now suppose that any one of the applications stated in Corollary 2.2 appears in Π. Then, by what we have shown in the above, its upper sequent(s) must satisfy $(*)$. On the other hand, (at least one of) the upper sequent(s) contains either B_{1} or B_{2}. Then the sequent, which is of course provable, satisfies all three of the conditions in Lemma 2.1. This is a contradiction.

Theorem 2.3 Maksimova's principle holds for $\mathbf{F L}, \mathbf{F L}_{\mathbf{e}}$, and $\mathbf{F L}_{\mathbf{e c}}$. More precisely, suppose that formulas $A_{1} \supset A_{2}$ and $B_{1} \supset B_{2}$ have no propositional variables in common. Then the following hold for each logic in the above.

1. If a sequent $A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow B_{2}$ is provable.
2. If a sequent $A_{1} \wedge B_{1} \rightarrow A_{2}$ is provable, then the sequent $A_{1} \rightarrow A_{2}$ is provable.
3. If a sequent $A_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then the sequent $A_{1} \rightarrow A_{2}$ is provable.

Proof: Suppose that the sequent $A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}$ is provable in the logic \mathbf{L}, where \mathbf{L} is any one of $\mathbf{F L}, \mathbf{F L}_{\mathbf{e}}$, and $\mathbf{F L}_{\mathbf{e c}}$. Clearly, it is not an initial sequent. So we can assume that its cut-free proof Π in \mathbf{L} (and consequently in $\mathbf{F L}_{\mathbf{e c}}$) is of the following form, where I is a rule of inference other than exchange and contraction.

$$
\frac{\vdots}{\frac{A_{1} \wedge B_{1} ; \ldots ; A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}}{(\text { (some exchanges and contractions) }}} A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}
$$

Then, I must be one of the following rules of inference; $(\wedge 1 \rightarrow),(\wedge 2 \rightarrow),(\rightarrow \vee 1)$, and $(\rightarrow \vee 2)$. Suppose that I is $(\wedge 1 \rightarrow)$. That is,

$$
\frac{A_{1} \wedge B_{1} ; \ldots ; A_{1} ; \ldots ; A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}}{A_{1} \wedge B_{1} ; \ldots ; A_{1} \wedge B_{1} ; \ldots ; A_{1} \wedge B 1 \rightarrow A_{2} \vee B_{2}}(\wedge 1 \rightarrow)
$$

Here, the left side of the upper sequent of I contains only one A_{1} and others are $A_{1} \wedge$ B_{1}. Then by Corollary 2.2. the proof of the upper sequent and hence the whole proof doesn't contain any application of the following rules of inference:

$$
\begin{gathered}
\frac{\Gamma ; B_{1} ; \Delta \rightarrow E}{\Gamma ; A_{1} \wedge B_{1} ; \Delta \rightarrow E}(\wedge 2 \rightarrow) \quad \frac{\Delta \rightarrow A_{1} \Delta \rightarrow B_{1}}{\Delta \rightarrow A_{1} \wedge B_{1}}(\rightarrow \wedge) \\
\frac{\Gamma ; A_{2} ; \Delta \rightarrow E \quad \Gamma ; B_{2} ; \Delta \rightarrow E}{\Gamma ; A_{2} \vee B_{2} ; \Delta \rightarrow E}(\vee \rightarrow) \quad \frac{\Delta \rightarrow B_{2}}{\Delta \rightarrow A_{2} \vee B_{2}}(\rightarrow \vee 2) .
\end{gathered}
$$

It means that when an occurrence of the formulas $A_{1} \wedge B_{1}$ and $A_{2} \vee B_{2}$ is introduced in the proof Π, it must be introduced only by rules of the following form:

$$
\frac{\Gamma ; A_{1} ; \Delta \rightarrow E}{\Gamma ; A_{1} \wedge B_{1} ; \Delta \rightarrow E}(\wedge 1 \rightarrow) \quad \frac{\Delta \rightarrow A_{2}}{\Delta \rightarrow A_{2} \vee B_{2}}(\rightarrow \vee 1) .
$$

(Note that these $A_{1} \wedge B_{1}$ and $A_{2} \vee B_{2}$ may be introduced in several places in Π.) Now, we replace first all occurrences of $A_{1} \wedge B_{1}$ by A_{1} and of $A_{2} \vee B_{2}$ by A_{2} in Π, and then remove every redundant application that occurs by this replacement. The figure thus obtained is in fact a proof in \mathbf{L} whose endsequent is $A_{1} \rightarrow A_{2}$. When I is any one of the other rules, by using the similar argument we can get the proof of either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow B_{2}$.

As we mentioned at the beginning of the present section, it is necessary to modify Theorem 2.3 slightly when our language contains propositional constants. For instance, it is easy to see that the sequent $p \wedge(r \wedge t) \rightarrow q \supset q$ is provable in $\mathbf{F L}$, where t is the propositional constant introduced in Section 1 and p, q, and r are mutually distinct constants. On the other hand, $p \rightarrow q \supset q$ is not provable in it. Thus, Case 2 of Theorem 2.3 doesn't hold in the present form.

3 Maksimova's principle for logics with weakening When we have weakening, the situation becomes different from what we mentioned in the previous section. For instance, $p \rightarrow \neg p \vee(q \supset q)$ is provable in $\mathbf{F L}_{\mathbf{w}}$, as shown by the following.

$$
\begin{gathered}
\frac{q \rightarrow q}{\rightarrow q \supset q}(\rightarrow \supset) \\
\frac{\rightarrow \neg p \vee(q \supset q)}{p \rightarrow \neg p \vee(q \supset q)}(\rightarrow \vee) \\
(w \rightarrow) .
\end{gathered}
$$

The sequent $p \rightarrow \neg p$ is not provable in it (cf. the third case of Theorem 2.3. So it will be necessary to modify the statement of the principle of variable separation. Basically, our proof of Maksimova's principle for logics without weakening still works. So, when a cut-free proof of a sequent $A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}$ is given, from the endsequent upward in the proof we will search for such an application of rules by which either $A_{1} \wedge B_{1}$ or $A_{2} \vee B_{2}$ is introduced, that is, the last application of either $(\wedge \rightarrow)$ whose principal formula is $A_{1} \wedge B_{1}$, or ($\rightarrow \vee$) whose principal formula is $A_{2} \vee B_{2}$. When \mathbf{L} is one of logics without weakening discussed in Section 2, if $A_{1} \wedge B_{1}$ is obtained from A_{1} by an application of $(\wedge \rightarrow)$ then $A_{2} \vee B_{2}$ must be obtained from A_{2} but not from B_{2}, by an application of $(\rightarrow \vee)$, as shown in Corollary 2.2. Hence, we can transform the original proof into a proof with the endsequent $A_{1} \rightarrow A_{2}$, by replacing all occurrences of $A_{1} \wedge B_{1}$ by A_{1} and of $A_{2} \vee B_{2}$ by A_{2}, respectively.

But this argument doesn't work well for logics with weakening, since the weakening rule may cause various possibilities. To avoid this, we will consider a cut-free proof of the sequent $A_{1} ; B_{1} \rightarrow A_{2} \vee B_{2}$, instead of that of $A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}$, since the provability of the former sequent follows from the provability of the latter by using weakening rule (though the converse doesn't always hold). Then we can focus our attention only on when and how $A_{2} \vee B_{2}$ will be introduced. The previous argument seems to work well except the case where $(\vee \rightarrow)$ is applied before $A_{2} \vee B_{2}$ is
introduced, or more precisely, there exists an application of $(\vee \rightarrow)$ below the application of ($\rightarrow \vee$) whose principal formula is $A_{2} \vee B_{2}$. In such a case $A_{2} \vee B_{2}$ will appear in different branches in the proof, and therefore it might be obtained from A_{2} in one place but from B_{2} in other places. If this happens, then it is impossible to replace the formula $A_{2} \vee B_{2}$ by only one of A_{2} and B_{2} throughout the proof, preserving the correctness of the proof. In the following, however, we will show that such an application of $(\vee \rightarrow)$ is avoidable.

In this section, we suppose that our language may contain some propositional constants. We note that when we have the weakening rule, constants 0 and 1 are logically equivalent to \perp and T, respectively. The following lemma is proved as a special case of Craig's interpolation theorem given in 15] (Theorem 2.4).

Lemma 3.1 Let Γ, Σ, and Π be finite sequences of formulas and E be a formula. Suppose that the sequence Σ and the sequence Γ, Π, E have no propositional variables in common. Then for each calculus $\mathbf{F L}_{\mathbf{w}}, \mathbf{F L}_{\mathbf{e w}}$, and $\mathbf{F L}_{\mathbf{e c w}}$, if the sequent $\Gamma ; \Sigma ; \Pi \rightarrow E$ is provable then either $\Sigma \rightarrow$ or $\Gamma ; \Pi \rightarrow E$ is provable.

Lemma 3.2 Let \mathbf{L} be any one of $\mathbf{F L}_{\mathbf{w}}, \mathbf{F L}_{\mathbf{e w}}$, and $\mathbf{F L}_{\text {ecw }}$. Suppose that $A_{1} \supset A_{2}$ and $B_{1} \supset B_{2}$ have no propositional variables in common and that $\Lambda($ and $\Theta)$ is an arbitrary finite (possibly empty) sequence of subformulas of A_{1} (and B_{1}, respectively). If the sequent $\Lambda ; \Theta \rightarrow A_{2} \vee B_{2}$ is provable in \mathbf{L}, then

1. there exists a cut-free proof of this sequent in \mathbf{L} which has no applications
of $(\vee \rightarrow)$ to sequents with $A_{2} \vee B_{2}$ on the right-hand side,
2. either $\Lambda ; \Theta \rightarrow A_{2}$ or $\Lambda ; \Theta \rightarrow B_{2}$ is provable in \mathbf{L}.

Proof: We will prove our lemma for $\mathbf{F L}_{\mathbf{w}}$. By a slight modification of the proof, we can prove it for other cases. Let Π be a cut-free proof of the sequent $\Lambda ; \Theta \rightarrow A_{2} \vee B_{2}$. We will prove our lemma using the induction on the height n of Π. When $n=1$, $\Lambda ; \Theta \rightarrow A_{2} \vee B_{2}$ must be an initial sequent. But this happens only when \perp occurs in the sequence Λ, Θ. Then replacing $A_{2} \vee B_{2}$ by A_{2}, we will get a sequent $\Lambda ; \Theta \rightarrow A_{2}$, which is still an intial sequent. Thus, we have (2). Clearly, this proof satisfies (1).

Next suppose that $n>1$. Since Π is a cut-free proof, if a sequent in it has $A_{2} \vee B_{2}$ on the right-hand side then its left-hand side must always be of the form $\Lambda^{*} ; \Theta^{*}$, where Λ^{*} and Θ^{*} are finite (possibly empty) sequences of subformulas of A_{1} and B_{1}, respectively. Now, let I be the last inference in Π. We suppose first that the principal formula of I is $A_{2} \vee B_{2}$. Then I must be one of $(\rightarrow w),(\rightarrow \vee 1)$ and $(\rightarrow \vee 2)$. Obviously, (1) is satisfied in this case, since the upper sequent is one of the following; $\Lambda ; \Theta \rightarrow, \Lambda ; \Theta \rightarrow A_{2}$ and $\Lambda ; \Theta \rightarrow B_{2}$. Neither of them has $A_{2} \vee B_{2}$ on the right-hand side. Thus (1) holds. Also, (2) follows immediately.

Suppose next that the principal formula of I is not $A_{2} \vee B_{2}$ and moreover that I is not $(\vee \rightarrow)$. Then, the upper sequent (or only one of the upper sequents when I is ($\supset \rightarrow)$) is of the form $\Lambda^{\dagger} ; \Theta^{\dagger} \rightarrow A_{2} \vee B_{2}$, where Λ^{\dagger} and Θ^{\dagger} are finite (possibly empty) sequences of subformulas of A_{1} and B_{1}. Then, by the hypothesis of induction, this sequent has a cut-free proof which has no applications of $(\vee \rightarrow)$ to sequents with $A_{2} \vee B_{2}$ on the right-hand side. Since I is not $(\vee \rightarrow)$, (1) holds. Also, by the hypothesis of induction, either $\Lambda^{\dagger} ; \Theta^{\dagger} \rightarrow A_{2}$ or $\Lambda^{\dagger} ; \Theta^{\dagger} \rightarrow B_{2}$ is provable. By applying I to either of them, we can get the proof of either $\Lambda ; \Theta \rightarrow A_{2}$ or $\Lambda ; \Theta \rightarrow B_{2}$.

Finally suppose that I is $(\vee \rightarrow)$. Without loss of generality, we can assume that Λ is of the form $\Lambda_{1} ; A^{\prime} \vee A^{\prime \prime} ; \Lambda_{2}$ (and hence $A^{\prime} \vee A^{\prime \prime}$ is a subformula of A_{1}) such that $A^{\prime} \vee A^{\prime \prime}$ is the principal formula of I. Then the inference I will be of the following form:

$$
\frac{\Lambda_{1} ; A^{\prime} ; \Lambda_{2} ; \Theta \rightarrow A_{2} \vee B_{2} \quad \Lambda_{1} ; A^{\prime \prime} ; \Lambda_{2} ; \Theta \rightarrow A_{2} \vee B_{2}}{\Lambda_{1} ; A^{\prime} \vee A^{\prime \prime} ; \Lambda_{2} ; \Theta \rightarrow A_{2} \vee B_{2}}(\vee \rightarrow) .
$$

By the hypothesis of induction, both of the upper sequents have proofs which have no applications of $(\vee \rightarrow)$ to sequents having $A_{2} \vee B_{2}$ on the right-hand side. Also, either $\Lambda_{1} ; A^{\prime} ; \Lambda_{2} ; \Theta \rightarrow A_{2}$ or $\Lambda_{1} ; A^{\prime} ; \Lambda_{2} ; \Theta \rightarrow B_{2}$ is provable, and either $\Lambda_{1} ; A^{\prime \prime} ; \Lambda_{2} ; \Theta \rightarrow$ A_{2} or $\Lambda_{1} ; A^{\prime \prime} ; \Lambda_{2} ; \Theta \rightarrow B_{2}$ is provable. When $\Theta \rightarrow B_{2}$ is provable, then by applying ($w \rightarrow$) repeatedly, we have $\Lambda_{1} ; A^{\prime} \vee A^{\prime \prime} ; \Lambda_{2} ; \Theta \rightarrow B_{2}$. So, by ($\rightarrow \vee 2$) we get $\Lambda_{1} ; A^{\prime} \vee A^{\prime \prime} ; \Lambda_{2} ; \Theta \rightarrow A_{2} \vee B_{2}$. Thus, both (1) and (2) hold. Next suppose that $\Theta \rightarrow B_{2}$ is not provable. When $\Lambda_{1} ; A^{\prime} ; \Lambda_{2} ; \Theta \rightarrow B_{2}$ is provable, then $\Lambda_{1} ; A^{\prime} ; \Lambda_{2} \rightarrow$ must be provable by Lemma 3.1. and hence $\Lambda_{1} ; A^{\prime} ; \Lambda_{2} ; \Theta \rightarrow A_{2}$ is provable, by using weakening. But, since either $\Lambda_{1} ; A^{\prime} ; \Lambda_{2} ; \Theta \rightarrow A_{2}$ or $\Lambda_{1} ; A^{\prime} ; \Lambda_{2} ; \Theta \rightarrow B_{2}$ is provable by our assumption, $\Lambda_{1} ; A^{\prime} ; \Lambda_{2} ; \Theta \rightarrow A_{2}$ must be provable in either case. Similarly, we can show that $\Lambda_{1} ; A^{\prime \prime} ; \Lambda_{2} ; \Theta \rightarrow A_{2}$ is provable. So, applying $(\vee \rightarrow)$, we get $\Lambda_{1} ; A^{\prime} \vee A^{\prime \prime} ; \Lambda_{2} \rightarrow A_{2}$. Note that in this application of $(\vee \rightarrow)$, the right-hand side of the sequent is A_{2}, not $A_{2} \vee B_{2}$. So, $\Lambda_{1} ; A^{\prime} \vee A^{\prime \prime} ; \Lambda_{2} ; \Theta \rightarrow A_{2} \vee B_{2}$ follows from this. Hence, both (1) and (2) also hold in this case.

Using these lemmas, we have the following theorem on Maksimova's principle for logics with weakening in a stronger form.
Theorem 3.3 Suppose that $A_{1} \supset A_{2}$ and $B_{1} \supset B_{2}$ have no propositional variables in common. Then the following hold for $\mathbf{F L}_{\mathbf{w}}, \mathbf{F L}_{\mathbf{e w}}$, and $\mathbf{F L}_{\mathbf{e c w}}$.

1. If a sequent $A_{1} * B_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow$ B_{2} is provable.
2. If a sequent $A_{1} * B_{1} \rightarrow A_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow$ is provable.
3. If a sequent $A_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $\rightarrow B_{2}$ is provable.
Proof: We will give a proof of (1). It is clear that $A_{1} * B_{1} \rightarrow A_{2} \vee B_{2}$ is provable if and only if $A_{1} ; B_{1} \rightarrow A_{2} \vee B_{2}$ is provable. Taking A_{1} and B_{1} for Λ and Θ, respectively, in Lemma3.2 we have that either $A_{1} ; B_{1} \rightarrow A_{2}$ or $A_{1} ; B_{1} \rightarrow B_{2}$ is provable. Then, by Lemma 3.1 (and then by applying the weakening rule, if necessary), either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow B_{2}$ is provable. Similarly, we can prove our theorem for (2) and (3).

Corollary 3.4 Maksimova's principle holds for $\mathbf{F L}_{\mathbf{w}}, \mathbf{F L}_{\mathbf{e w}}$, and $\mathbf{F L}_{\text {ecw. }}$. More precisely, suppose that $A_{1} \supset A_{2}$ and $B_{1} \supset B_{2}$ have no propositional variables in common. Then the following holds for each logic in the above.

1. If a sequent $A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow$ B_{2} is provable.
2. If a sequent $A_{1} \wedge B_{1} \rightarrow A_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow$ is provable.
3. If a sequent $A_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $\rightarrow B_{2}$ is provable.

Proof: When we have the weakening, $A_{1} * B_{1} \rightarrow A_{1} \wedge B_{1}$ is provable. So our corollary follows immediately from Theorem 3.3.

We have discussed Maksimova's principle for various intuitionistic substructural logics, that is, substructural logics obtained from the intuitionistic logic by deleting some of structural rules. But our method works well also for the classical substructural logics. Let GL be Girard's linear logic (without exponentials). Also let $\mathbf{G L}_{\mathbf{c}}$ and $\mathbf{G L}_{\mathbf{w}}$ be logics obtained from GL by adding the contraction and the weakening, respectively. Then we have the following.

Theorem 3.5 Maksimova's principle holds for $\mathbf{G L}, \mathbf{G L}_{\mathbf{c}}$, and $\mathbf{G L}_{\mathbf{w}}$.

4 Adding the distributive law In this and the next sections, we will discuss Maksimova's principle for the positive relevant logics \mathbf{R}_{+}and $\mathbf{R} \mathbf{W}_{+}$and also for the logics DBCC and DBCK introduced in 15]. A common feature among them is that the following distributive law

$$
A \wedge(B \vee C) \rightarrow(A \wedge B) \vee(A \wedge C)
$$

holds in all of them. In fact, the logics $\mathbf{D B C C}$ and $\mathbf{D B C K}$ can be obtained from $\mathbf{F L}_{\mathbf{w}}$ and $\mathbf{F L} \mathbf{L e w}$, respectively, by adding the distributive law as initial sequents.

In Dunn 5] and Giambrone 7], sequent systems without the cut rule for \mathbf{R}_{+}and $\mathbf{R} \mathbf{W}_{+}$are introduced and discussed. Also, Slaney introduced in 16 sequent systems without the cut rule $\mathbf{L L}_{\mathbf{D B C C}}$ and $\mathbf{L L}_{\mathbf{D B C K}}$ for $\mathbf{D B C C}$ and $\mathbf{D B C K}$, respectively.

In the following, we will give a definition of these systems, but in a slightly modified form. We will take the same set of logical connectives as that introduced in $\S 1$. On the other hand, we will take no logical constants for both \mathbf{R}_{+}and $\mathbf{R} \mathbf{W}_{+}$, and take only the logical constant \perp for the other distributive logics. First, we will introduce structures, which are called bunches in [16, recursively as follows:

1. any formula is a structure;
2. for $n \geq 2$, if X_{i} is a structure for $i=1, \ldots, n$, then both sequences $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(X_{1} ; \ldots ; X_{n}\right)$ are structures.
Structures of the form $\left(X_{1}, \ldots, X_{n}\right)$-and of the form $\left(X_{1} ; \ldots ; X_{n}\right)$-are said to be extensional (and intensional, respectively). Each structure X_{i} is called an immediate constituent of $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(X_{1} ; \ldots ; X_{n}\right)$. For simplicity's sake, we assume that no immediate constituents of an extensional (and an intensional) structure are extensional (and intensional, respectively). (Thus, a structure of the form $(X ;(Y ; Z) ; W)$ will be identified with the structure $(X ; Y ; Z ; W)$.) In other words, extensional structures and intensional structures will appear alternately in a given structure. We will omit parentheses when no confusions will occur.

Intuitively, a structure $A_{1}, \ldots, A_{n}\left(\right.$ and $\left.A_{1} ; \ldots ; A_{n}\right)$ expresses the formula $A_{1} \wedge$ $\cdots \wedge A_{n}$ (and $A_{1} * \cdots * A_{n}$, respectively). In the following, capital letters X, Y, and Z, and so on, with or without subscripts will denote structures. Substructures of a given structure Z can be defined in the usual way. Sometimes, we will pay special attention
to a particular occurrence of a substructure X of Z. In such a case, the occurrence X is called a structure-occurrence of X (in Z) which is indicated. An expression such as $\Gamma(X)$ will be used for denoting a structure with an indicated structure-occurrence of X in it. Sequents in the following calculi are expressions of the form $X \rightarrow A$, where X is a structure (possibly empty) and A is a formula.

Now, we will introduce a sequent system LDFL for the basic distributive logic DFL as follows.

Initial sequents

1. $A \rightarrow A$
2. $\perp \rightarrow$

Structural rules for extensional structures

$$
\begin{gathered}
\frac{\Gamma(Y, X) \rightarrow C}{\Gamma(X, Y) \rightarrow C}(E-e x) \quad \frac{\Gamma(X) \rightarrow C}{\Gamma(X, Y) \rightarrow C}(E-\text { weak }) \\
\frac{\Gamma(X, X) \rightarrow C}{\Gamma(X) \rightarrow C}(E-\text { con })
\end{gathered}
$$

Rules for logical connectives

$$
\begin{aligned}
& \frac{X ; A \rightarrow B}{X \rightarrow A \supset B}(\rightarrow \supset) \quad \frac{X \rightarrow A \quad \Gamma(B) \rightarrow C}{\Gamma(A \supset B ; X) \rightarrow C}(\supset \rightarrow) \\
& \frac{X \rightarrow A}{X \rightarrow A \vee B}(\rightarrow \vee 1) \quad \frac{X \rightarrow B}{X \rightarrow A \vee B}(\rightarrow \vee 2) \\
& \frac{\Gamma(A) \rightarrow C \quad \Gamma(B) \rightarrow C}{\Gamma(A \vee B) \rightarrow C}(\vee \rightarrow) \\
& \frac{X \rightarrow A \quad Y \rightarrow B}{X, Y \rightarrow A \wedge B}(\rightarrow \wedge) \quad \frac{\Gamma(A, B) \rightarrow C}{\Gamma(A \wedge B) \rightarrow C}(\wedge \rightarrow) \\
& \frac{X \rightarrow A \quad Y \rightarrow B}{X ; Y \rightarrow A * B}(\rightarrow *) \quad \frac{\Gamma(A ; B) \rightarrow C}{\Gamma(A * B) \rightarrow C}(* \rightarrow) .
\end{aligned}
$$

Some comments would be necessary here for understanding some expressions that appear in the above rules. Let us take the rule $(\supset \rightarrow)$ in the above, for instance. Here, $\Gamma(A \supset B ; X)$ means the structure obtained from $\Gamma(B)$ by replacing the indicated occurrence of B by the expression $A \supset B ; X$. As mentioned in the above, we assume that extensional structures and intensional structures must appear alternately. So, when the indicated occurrence of B appears in an intensional substructure such as $Y ; B ; Z$ in $\Gamma(B)$, the substructure resulting from this replacement is not $Y ;(A \supset B ; X) ; Z$, but $Y ; A \supset B ; X ; Z$. By our definition of sequents, it may happen
that X is empty. In such a case, the lower sequent $\Gamma(A \supset B ; X) \rightarrow C$ must be understood as $\Gamma(A \supset B) \rightarrow C$. Similar considerations will be necessary also for $(\rightarrow \wedge)$ and $(\rightarrow *)$ when at least one of X and Y is empty.

In ($E-$ weak), we must assume that $\Gamma(X)$ is nonempty. Otherwise, it will work just like the weakening rule for sequents with empty antecedents. We allow ($E-$ con) to apply to a sequent of the form $Y, X, X, Z \rightarrow C$ and to get the sequent $Y, X, Z \rightarrow C$. Thus, X, X in $\Gamma(X, X)$ will be understood not as a substructure but as a subexpression. We will use these sloppy definitions simply to avoid unnecessary complications. (See footnotes 28 and 29 in Dunn [6].)

Next, we will define some extensions of LDFL. To do so, let us consider the following structural rules for intensional structures:

$$
\begin{array}{cc}
\frac{\Gamma(Y ; X) \rightarrow C}{\Gamma(X ; Y) \rightarrow C}(I-e x) & \frac{\Gamma(X ; X) \rightarrow C}{\Gamma(X) \rightarrow C}(I-c o n) \\
\frac{\Gamma(X) \rightarrow C}{\Gamma(X ; Y) \rightarrow C}(I-\text { weak }) & \frac{X \rightarrow}{X \rightarrow C}(\rightarrow w)
\end{array}
$$

Different from (E-weak), it is possible to apply ($I-$ weak) when $\Gamma(X)$ is empty. In this case, $\Gamma(X ; Y)$ must be understood as Y.

The sequent system $\mathbf{L} \mathbf{R} \mathbf{W}_{+}$(and $\mathbf{L} \mathbf{R}_{+}$) for the relevant logics $\mathbf{R} \mathbf{W}_{+}$(and \mathbf{R}_{+}) is obtained from LDFL by adding $(I-e x)$ (and both $(I-e x)$ and ($I-c o n$), respectively). In the sequent systems LDBCC and LDBCK for the distributive logic DBCC and DBCK, we will allow any sequent of the form $X \rightarrow$ where X is a structure. They are obtained from LDFL by first adding the initial sequent of the form:

$$
\text { 2. } \quad \perp \rightarrow
$$

and then adding ($I-$ weak) and $(\rightarrow w)$ for LDBCC, and $(I-$ weak), $(\rightarrow w)$, and $(I-e x)$ for LDBCK, respectively. The cut rule in these calculi is a rule of the following form:

$$
\frac{X \rightarrow A \quad \Gamma(A) \rightarrow C}{\Gamma(X) \rightarrow C}
$$

Although the cut rule is admissible in both LDBCC and LDBCK, it is not necessarily admissible in $\mathbf{L R} \mathbf{W}_{+}$and $\mathbf{L} \mathbf{R}_{+}$(when we don't have the constant t). But still, they are adequate systems for $\mathbf{R} \mathbf{W}_{+}$and \mathbf{R}_{+}, respectively. (See [7] for $\mathbf{R} \mathbf{W}_{+}$, and [5] and Mints [12] for \mathbf{R}_{+}.)

Now we will show Maksimova's principle for $\mathbf{R} \mathbf{W}_{+}$and \mathbf{R}_{+}. In the following, we will prove several lemmas which hold for both $\mathbf{L R} W_{+}$and $\mathbf{L} \mathbf{R}_{+}$. In the rest of this section, we assume that formulas $A_{1} \supset A_{2}$ and $B_{1} \supset B_{2}$ are given and that they have no propositional variables in common. What we want to show now is that if the sequent $A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow B_{2}$ is provable. A formula D is an A-formula (a B-formula) if D belongs to the set $S\left(A_{1}\right) \cup S\left(A_{2}\right)$ (the set $S\left(B_{1}\right) \cup S\left(B_{2}\right)$, respectively). Similarly, a structure X is an A-structure (a B-structure) if only A-formulas (B-formulas, respectively) appear in it.

The basic idea of our proof comes from the proof given in $\S 2$. But there seem to be difficulties which are peculiar to these sequent calculi introduced in this section.

To see this, consider a proof of the sequent $A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}$. The sequent may be obtained from the sequent $\left(A_{1}, B_{1}\right) \rightarrow A_{2} \vee B_{2}$ by applying $(\wedge \rightarrow)$. If we look at the proof of this sequent from the bottom upward, one would expect the existence of an application of (E-weak) by which $\left(A_{1}, B_{1}\right)$ is decomposed into either A_{1} or B_{1}. But this may not always happen in these calculi, since a formula A_{1} or B_{1} (in $\left.\left(A_{1}, B_{1}\right)\right)$ may be decomposed prior to an application of ($E-$ weak).

The following result is known for \mathbf{R} as the relevance principle or the variablesharing property. (See Anderson and Belnap 11, p. 417.) Obviously, this also holds for both $\mathbf{R} \mathbf{W}_{+}$and \mathbf{R}_{+}since they are subsystems of \mathbf{R}.

Lemma 4.1 Suppose Z is a structure and D is a formula such that they have no propositional variables in common. Then $Z \rightarrow D$ is not provable.

Lemma 4.2 Let Z; C be a structure and D a formula such that they have no propositional variables in common. Then if $Z \rightarrow C \vee D$ is provable, $Z \rightarrow C$ is provable.

Proof: Let Π be a (cut-free) proof of $Z \rightarrow C \vee D$. Clearly there is no sequent in Π which contains $C \vee D$ in its antecedent. So $C \vee D$ must be introduced in Π by applying $(\rightarrow \vee 1)$ or $(\rightarrow \vee 2)$ of the following form:

$$
\frac{Z^{\prime} \rightarrow C}{Z^{\prime} \rightarrow C \vee D}(\rightarrow \vee 1) \quad \frac{Z^{\prime} \rightarrow D}{Z^{\prime} \rightarrow C \vee D}(\rightarrow \vee 2)
$$

By the subformula property of Π, we can show that $Z^{\prime} ; C$ and D have no propositional variables in common. But $Z^{\prime} \rightarrow D$ cannot be provable by Lemma4.1. So, Π doesn't contain any application of $(\rightarrow \vee 2)$ of the above form. Thus, in each branch of the proof $\Pi, C \vee D$ must be introduced by an application of $(\rightarrow \vee 1)$ whose upper sequent is of the form $Z^{\prime} \rightarrow C$. Now, by replacing every occurrence of formula $C \vee D$ in Π by the formula C and removing redundant sequents, we can get the proof of $Z \rightarrow C$.

Lemma 4.3 Suppose that D is an A-formula and Z is a structure which consists only of the formula $A_{1} \wedge B_{1}$, A-formulas, and B-formulas. Let Z^{\prime} be an arbitrary structure obtained from Z by replacing each occurrence of $A_{1} \wedge B_{1}$ by A_{1} and each occurrence of a B-formula by any A-structure. Then, if $Z \rightarrow D$ is provable, $Z^{\prime} \rightarrow D$ is also provable.

Proof: Let Π be a (cut-free) proof of $Z \rightarrow D$. We will prove our lemma by induction on the length of Π. Here we will give a proof only when the last inference I of Π is one of $(E-$ weak $),(\supset \rightarrow)$, and $(\wedge \rightarrow)$.

Case 1: The last inference is ($E-$ weak). We can assume that $Z \rightarrow D$ is of the form $\Gamma(X, Y) \rightarrow D$ and I is of the following form.

$$
\frac{\Gamma(X) \rightarrow D}{\Gamma(X, Y) \rightarrow D}(E-\text { weak })
$$

We can assume that by any replacement mentioned in the above, the lower sequent of I will change into the sequent of the form $\Gamma^{\prime}\left(X^{\prime}, Y^{\prime}\right) \rightarrow D$. By the hypothesis of induction, $\Gamma\left(X^{\prime}\right) \rightarrow D$ is provable. Therefore, $\Gamma^{\prime}\left(X^{\prime}, Y^{\prime}\right) \rightarrow D$ is also provable by applying $(E-$ weak $)$.

Case 2: The last inference is $(\supset \rightarrow)$. In this case, we can assume that $Z \rightarrow D$ is of the form $\Gamma\left(C_{1} \supset C_{2} ; X\right) \rightarrow D$ and the last inference is of the following form.

$$
\frac{X \rightarrow C_{1} \quad \Gamma\left(C_{2}\right) \rightarrow D}{\Gamma\left(C_{1} \supset C_{2} ; X\right) \rightarrow D}(\supset \rightarrow)
$$

By the subformula property, the formula $C_{1} \supset C_{2}$ is either an A-formula or a B formula. Suppose first that it is an A-formula. Then the result of the lower sequent by a given replacement will be of the form $\Gamma^{\prime}\left(C_{1} \supset C_{2} ; X^{\prime}\right) \rightarrow D$. By the hypothesis of induction, both $X^{\prime} \rightarrow C_{1}$ and $\Gamma^{\prime}\left(C_{2}\right) \rightarrow D$ are provable. Thus, by $(\supset \rightarrow)$ we can get a proof of $\Gamma^{\prime}\left(C_{1} \supset C_{2} ; X^{\prime}\right) \rightarrow D$.

On the other hand, when $C_{1} \supset C_{2}$ is a B-formula, we will get a sequent of the form $\Gamma^{\prime}\left(U ; X^{\prime}\right) \rightarrow D$ by a replacement, where U is an A-structure. By using the hypothesis of induction for the right upper sequent of I, we can show that $\Gamma^{\prime}(V) \rightarrow D$ is provable for any A-structure V. Thus, $\Gamma^{\prime}\left(U ; X^{\prime}\right) \rightarrow D$ is provable by taking $U ; X^{\prime}$ for V since $U ; X^{\prime}$ is an A-structure.

Case 3: The last inference is $(\wedge \rightarrow)$. When the principal formula of the inference is different from $A_{1} \wedge B_{1}$, the proof goes essentially in the same way as Case 2 . When the principal formula is $A_{1} \wedge B_{1}$, the last inference is of the following form.

$$
\frac{\Gamma\left(A_{1}, B_{1}\right) \rightarrow D}{\Gamma\left(A_{1} \wedge B_{1}\right) \rightarrow D}(\wedge \rightarrow)
$$

Then the result of the lower sequent by a replacement will be of the form $\Gamma^{\prime}\left(A_{1}\right) \rightarrow$ D. By the hypothesis of induction, $\Gamma\left(A_{1}, U\right) \rightarrow D$ is provable for any A-structure U. In particular, by taking A_{1} for U, we have that $\Gamma\left(A_{1}, A_{1}\right) \rightarrow D$ is provable. Using (E-con), we can derive that $\Gamma^{\prime}\left(A_{1}\right) \rightarrow D$ is provable.

Lemma 4.4 Suppose Z is a structure that consists only of the formula $A_{1} \wedge B_{1}, A$ formulas, and B-formulas. Let $Z_{A}\left(\right.$ and $\left.Z_{B}\right)$ be an arbitrary structure obtained from Z by first replacing each occurrence of $A_{1} \wedge B_{1}$ by A_{1} (and B_{1}) and then replacing each occurrence of a B-formula (and an A-formula) in Z by an A-structure (and a B-structure, respectively). Then if $Z \rightarrow A_{2} \vee B_{2}$ is provable, either $Z_{A} \rightarrow A_{2} \vee B_{2}$ is provable for any such Z_{A} or $Z_{B} \rightarrow A_{2} \vee B_{2}$ is provable for any such Z_{B}.

Proof: Let Π be a (cut-free) proof of $Z \rightarrow A_{2} \vee B_{2}$. We will prove our lemma by induction on the length of the proof Π. In the following, we will give a proof here when the last inference I is one of $(\supset \rightarrow),(\vee \rightarrow),(\rightarrow \vee 1)$, and $(\wedge \rightarrow)$.
Case 1: The last inference is $(\supset \rightarrow)$. Here $Z \rightarrow A_{2} \vee B_{2}$ is of the form $\Gamma\left(C_{1} \supset\right.$ $\left.C_{2} ; X\right) \rightarrow A_{2} \vee B_{2}$ and the last inference is of the following form.

$$
\frac{X \rightarrow C_{1} \quad \Gamma\left(C_{2}\right) \rightarrow A_{2} \vee B_{2}}{\Gamma\left(C_{1} \supset C_{2} ; X\right) \rightarrow A_{2} \vee B_{2}}(\supset \rightarrow) .
$$

Without a loss of generality, we can assume that $C_{1} \supset C_{2}$ is an A-formula. Also, we can suppose that Z_{A} and Z_{B} are of the form $\Gamma_{A}\left(C_{1} \supset C_{2} ; X_{A}\right)$ and $\Gamma_{B}\left(U_{B} ; X_{B}\right)$, respectively, where U_{B} is an arbitrary B-structure. Let us consider the right upper
sequent of I. By the hypothesis of induction, either $\Gamma_{A}\left(C_{2}\right) \rightarrow A_{2} \vee B_{2}$ is provable, or $\Gamma_{B}\left(V_{B}\right) \rightarrow A_{2} \vee B_{2}$ is provable for any B-structure V_{B}. Suppose first that $\Gamma_{A}\left(C_{2}\right) \rightarrow A_{2} \vee B_{2}$ is provable. By Lemma 4.3. $X_{A} \rightarrow C_{1}$ is provable. Hence, by using $(\supset \rightarrow)$ we can get a proof of $\Gamma_{A}\left(C_{1} \supset C_{2} ; X_{A}\right) \rightarrow A_{2} \vee B_{2}$. Suppose otherwise. Then, by taking V_{B} for $U_{B} ; X_{B}$ we can get a proof of $\Gamma_{B}\left(U_{B} ; X_{B}\right) \rightarrow A_{2} \vee B_{2}$ for any U_{B}.

Case 2: The last inference is $(\vee \rightarrow)$. In this case, $Z \rightarrow A_{2} \vee B_{2}$ is of the form $\Gamma\left(C_{1} \vee C_{2}\right) \rightarrow A_{2} \vee B_{2}$ and the last inference is of the following form.

$$
\frac{\Gamma\left(C_{1}\right) \rightarrow A_{2} \vee B_{2} \quad \Gamma\left(C_{2}\right) \rightarrow A_{2} \vee B_{2}}{\Gamma\left(C_{1} \vee C_{2}\right) \rightarrow A_{2} \vee B_{2}}(\vee \rightarrow)
$$

Without a loss of generality, we can assume that $C_{1} \vee C_{2}$ is an A-formula. Also, we suppose that Z_{A} and Z_{B} are of the form $\Gamma_{A}\left(C_{1} \vee C_{2}\right)$ and $\Gamma_{B}\left(U_{B}\right)$ for a B-structure U_{B}, respectively. Taking both of the upper sequents and using the hypothesis of induction, we have that either

1. $\Gamma_{A}\left(C_{1}\right) \rightarrow A_{2} \vee B_{2}$ is provable
or
2. $\Gamma_{B}\left(V_{B}\right) \rightarrow A_{2} \vee B_{2}$ is provable for any B-structure V_{B},
and also that either
3. $\Gamma_{A}\left(C_{2}\right) \rightarrow A_{2} \vee B_{2}$ is provable
or
4. $\Gamma_{B}\left(W_{B}\right) \rightarrow A_{2} \vee B_{2}$ is provable for any B-structure W_{B}.

Now suppose that either (2) or (4) is the case. Then by taking U_{B} for V_{B} or W_{B}, we can get a proof of $\Gamma_{B}\left(U_{B}\right) \rightarrow A_{2} \vee B_{2}$ for an arbitrary U_{B}. Suppose otherwise. Then both (1) and (3) hold. By applying $(\vee \rightarrow)$ to these sequents, we can get a proof of $\Gamma_{A}\left(C_{1} \vee C_{2}\right) \rightarrow A_{2} \vee B_{2}$.

Case 3: The last inference is $(\rightarrow \vee 1)$. Here the last inference is of the following form.

$$
\frac{Z \rightarrow A_{2}}{Z \rightarrow A_{2} \vee B_{2}}(\rightarrow \vee 1) .
$$

Let us consider the upper sequent. By Lemma 4.3. $Z_{A} \rightarrow A_{2}$ is provable (for any Z_{A}). Now by using ($\rightarrow \vee 1$), we have a proof of $Z_{A} \rightarrow A_{2} \vee B_{2}$.

Case 4: The last inference is $(\wedge \rightarrow)$. When the principal formula of the inference is different from $A_{1} \wedge B_{1}$, the proof goes essentially in the same way as the above cases. When the principal formula is $A_{1} \wedge B_{1}$, the last inference is of the following form.

$$
\frac{\Gamma\left(A_{1}, B_{1}\right) \rightarrow A_{2} \vee B_{2}}{\Gamma\left(A_{1} \wedge B_{1}\right) \rightarrow A_{2} \vee B_{2}}(\wedge \rightarrow) .
$$

Here, Z is $\Gamma\left(A_{1} \wedge B_{1}\right)$ and hence we can suppose that Z_{A} and Z_{B} are of the form $\Gamma_{A}\left(A_{1}\right)$ and $\Gamma_{B}\left(B_{1}\right)$, respectively. By the hypothesis of induction, either
$\Gamma_{A}\left(A_{1}, U\right) \rightarrow A_{2} \vee B_{2}$ is provable for any A-structure U or $\Gamma_{B}\left(V, B_{1}\right) \rightarrow A_{2} \vee B_{2}$ is provable for any B-structure V. If the former holds, then we can show that $Z_{A} \rightarrow$ $A_{2} \vee B_{2}$ is provable, by taking A_{1} for U and applying $(E-$ con $)$. Similarly, $Z_{B} \rightarrow$ $A_{2} \vee B_{2}$ is provable when the latter holds.

Theorem 4.5 Maksimova's principle holds for $\mathbf{R} \mathbf{W}_{+}$and \mathbf{R}_{+}. More precisely, suppose that formulas $A_{1} \supset A_{2}$ and $B_{1} \supset B_{2}$ have no propositional variables in common. Then the following holds.

1. If a sequent $A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow$
B_{2} is provable.
2. If a sequent $A_{1} \wedge B_{1} \rightarrow A_{2}$ is provable, then $A_{1} \rightarrow A_{2}$ is provable.
3. If a sequent $A_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then $A_{1} \rightarrow A_{2}$ is provable.

Proof: (1) Applying Lemma 4.4 fo the sequent $A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}$, we have that either $A_{1} \rightarrow A_{2} \vee B_{2}$ is provable or $B_{1} \rightarrow A_{2} \vee B_{2}$ is provable. Then by Lemma4.2. $A_{1} \rightarrow A_{2}$ is provable in the former case and $B_{1} \rightarrow B_{2}$ is provable in the latter case. (2) and (3) follow immediately from Lemmas 4.3 and 4.2. respectively.

By a slight modification of the above proof, we can show the following result for the positive relevant logic $\mathbf{T W}_{+}$. As for a sequent system for $\mathbf{T} \mathbf{W}_{+}$, see [7].
Theorem 4.6 Maksimova's principle holds for $\mathbf{T W}_{+}$.
It may be interesting to compare results in this section with Maksimova's negative result on the relevant logic RM. In 8] (and also in 10]), she showed that Maksimova's principle doesn't hold for $\mathbf{R M}$ which is obtained from \mathbf{R} by adding the mingle axiom: $A \supset(A \supset A)$. In fact, Maksimova showed that for mutually distinct propositional variables p, q, r, and s, the formula $(\neg(p \supset p) \wedge q) \supset(s \vee(r \supset r))$ is provable in RM, but neither $\neg(p \supset p) \supset s$ nor $q \supset(r \supset r)$ is provable in it. Our method of proving Maksimova's principle for a logic \mathbf{L} depends highly on the existence of a cut-free system for \mathbf{L}. At this moment, it is not so clear where the limitation of our method lies.

5 Distributive logics with weakening Next, we will prove that Maksimova's principle holds for the distributive logics DBCC and DBCK, both of which have the weakening rule. In Bayu Surarso [2], the author proved Craig's interpolation theorem for both DBCC and DBCK. In fact, we can show a stronger form of Craig's interpolation theorem which is given below. To explain it, we will introduce some notations. Suppose that for $i=1, \ldots, n, Y_{i}$ is a structure-occurrence in a given structure U such that Y_{j} and Y_{k} do not intersect each other when $j \neq k$. Let Z_{i} be a structure for each i. Then $U_{\left\{Z_{i} / Y_{i}\right\}_{i}}$ denotes the structure obtained from U by replacing Y_{i} by Z_{i} for each $i=1, \ldots, n$. Also, $U_{\left\{-/ Y_{i}\right\}_{i}}$ denotes the structure obtained from U by simply omitting every Y_{i}. (In the latter case, we must also omit one of the occurrences of connections ',' or ';' (if any) at the end of each Y_{i}, to make the resulting expression a structure.) The symbol $\mathrm{V}(X)$ denotes the set of propositional variables in X in the following.

Now the following theorem holds for both LDBCC and LDBCK from which the usual Craig's interpolation theorem for DBCC and DBCK follows immediately. (See [2] for details.)

Theorem 5.1 Let U be a structure and Y_{i} is a structure-occurrence of U for $i=$ $1, \ldots, n$. Suppose that (1) Y_{j} and Y_{k} do not intersect each another when $j \neq k$ and (2) if Y_{j} and Y_{k} are substructures of structure-occurrences Z and Z^{\prime} of U, respectively, then they never appear as the form $Z ; Z^{\prime}$ in U.

If the sequent $U \rightarrow A$ is provable, then there exist formulas C_{i} for $i=1, \ldots, n$ such that

1. $Y_{j} \rightarrow C_{j}$ are provable for each j,
2. $U_{\left\{C_{i} / Y_{i}\right\}_{i}} \rightarrow$ A is provable,
3. $\mathrm{V}\left(C_{j}\right) \subset \mathrm{V}\left(Y_{j}\right) \cap\left[\mathrm{V}\left(U_{\left\{-/ Y_{i}\right\}_{i}}\right) \cup \mathrm{V}(A)\right]$ for each j.

To understand the conditions on U in the above theorem, first consider the structure $X ; Y_{1} ;\left(V, Y_{2}\right) ; W$, for instance. Take Y_{1} for Z and $\left(V, Y_{2}\right)$ for Z^{\prime}. Then the structure has a subexpression of the form $Z ; Z^{\prime}$, and hence the conditions in our theorem are not satisfied. On the other hand, when U is of the form $X, Y_{1},\left(V ; Y_{2}\right), W$, it will satisfy these conditions. If $U \rightarrow A$ is provable for this U, then the theorem says that there exist formulas C_{1} and C_{2} such that

1. both $Y_{1} \rightarrow C_{1}$ and $Y_{2} \rightarrow C_{2}$ are provable,
2. $X, C_{1},\left(V ; C_{2}\right), W \rightarrow A$ is provable,
3. $\mathrm{V}\left(C_{j}\right) \subset \mathrm{V}\left(Y_{j}\right) \cap[\mathrm{V}(X, V, W) \cup \mathrm{V}(A)]$ for $j=1,2$.

We will show in the following that Maksimova's principle holds for DBCC and DBCK by using these sequent systems LDBCC and LDBCK. First we will show that the following lemmas hold for both LDBCC and LDBCK.

Lemma 5.2 Let X_{i} and Y_{i} be (possibly empty) structures for $i=1, \ldots, n$ and D be a formula. Suppose that the structure $Y_{1} ; \ldots ; Y_{n}$ and the structure $X_{1} ; \ldots ; X_{n} ; D$ have no propositional variables in common. If the sequent $\left(X_{1} ; Y_{1}\right), \ldots,\left(X_{n} ; Y_{n}\right) \rightarrow$ D is provable, then either $X_{1}, \ldots, X_{n} \rightarrow D$ is provable or $Y_{k} \rightarrow$ is provable for some k such that $1 \leq k \leq n$. This also holds for the sequent $\left(Y_{1} ; X_{1}\right), \ldots,\left(Y_{n} ; X_{n}\right) \rightarrow D$.

Proof: Suppose that $\left(X_{1} ; Y_{1}\right), \ldots,\left(X_{n} ; Y_{n}\right) \rightarrow D$ is provable. By Theorem 5.1. there are formulas C_{i} for $i=1, \ldots, n$, each of which consists only of propositional constants such that $Y_{i} \rightarrow C_{i}$ is provable for each i and $\left(X_{1} ; C_{1}\right), \ldots,\left(X_{n} ; C_{n}\right) \rightarrow D$ is provable. On the other hand, it can be easily shown by induction on the complexity of C_{i} that either $\rightarrow C_{i}$ or $C_{i} \rightarrow$ is provable for each i. Suppose that $C_{k} \rightarrow$ is provable for some k. Then we can show that $Y_{k} \rightarrow$ is provable by using the admissibility of the cut rule. Otherwise, $\rightarrow C_{i}$ is provable for each i. Then, also by using the cut rule, we have that $X_{1}, \ldots, X_{n} \rightarrow D$ is provable. The proof goes similarly when $\left(Y_{1} ; X_{1}\right), \ldots,\left(Y_{n} ; X_{n}\right) \rightarrow D$ is provable.

The following lemma is an analogue of Lemma 3.2.
Lemma 5.3 Let \mathbf{L} be LDBCC or LDBCK. Suppose that $A_{1} \supset A_{2}$ and $B_{1} \supset$ B_{2} have no propositional variables in common. Let Z be a structure of the form $\left(U_{1} ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right)$, where each U_{i} is either empty or a structure consisting only of formulas in $S\left(A_{1}\right)$ and each V_{i} is either empty or a structure consisting only of formulas of $S\left(B_{1}\right)$. If the sequent $Z \rightarrow A_{2} \vee B_{2}$ is provable, then

1. there exists a proof of this sequent which has no applications of $(\vee \rightarrow)$ to sequents with $A_{2} \vee B_{2}$ on the right-hand side,
2. either $Z \rightarrow A_{2}$ or $Z \rightarrow B_{2}$ is provable.

Proof: We will prove our lemma for LDBCC. By a slight modification of the proof, we can prove it also for LDBCK. The proof is essentially the same as that of 3.2. Let Π be a proof (in LDBCC) of the sequent $Z \rightarrow A_{2} \vee B_{2}$. We will prove our lemma using the induction on the height n of Π.

If $n=1$, then $Z \rightarrow A_{2} \vee B_{2}$ must be an initial sequent. But this cannot happen because of the form of initial sequents of LDBCC. Thus, n must be greater than 1 . Since Π contains no applications of the cut rule, if any sequent in it has $A_{2} \vee B_{2}$ on the right-hand side then its left-hand side must be of the form $\left(U_{1}^{*} ; V_{1}^{*}\right), \ldots,\left(U_{k}^{*} ; V_{k}^{*}\right)$, where each U_{i}^{*} is either empty or a structure consisting only of subformulas of A_{1} and also each V_{i}^{*} is empty or a structure consisting only of subformulas of B_{1}. Now let I be the last inference in Π. We suppose first that the principal formula of I is $A_{2} \vee B_{2}$. Then I must be one of $(\rightarrow \vee 1),(\rightarrow \vee 2)$, and right weakening. Then the upper sequent is one of the following: $Z \rightarrow, Z \rightarrow A_{2}$, and $Z \rightarrow B_{2}$. Since none of them has $A_{2} \vee B_{2}$ on the right-hand side, (1) holds obviously. Also (2) follows from this.

Suppose next that the principal formula of I is not $A_{2} \vee B_{2}$ and, moreover, that I is not $(\vee \rightarrow)$. Then the upper sequent (or only one of the upper sequents, when I is $(\supset \rightarrow)$) is of the form ($\left.U_{1}^{\dagger} ; V_{1}^{\dagger}\right), \ldots,\left(U_{s}^{\dagger} ; V_{s}^{\dagger}\right) \rightarrow A_{2} \vee B_{2}$, where each U_{i}^{\dagger} is either empty or a structure consisting only of subformulas of A_{1} and each V_{i}^{\dagger} is either empty or a structure consisting only of subformulas of B_{1}. Then, by the hypothesis of induction, this sequent has a proof which has no applications of $(\vee \rightarrow)$ to sequents with $A_{2} \vee B_{2}$ on the right-hand side. Since I is not $(\vee \rightarrow)$, (1) holds. Also, by the hypothesis of induction, either $\left(U_{1}^{\dagger} ; V_{1}^{\dagger}\right), \ldots,\left(U_{s}^{\dagger} ; V_{s}^{\dagger}\right) \rightarrow A_{2}$ or $\left(U_{1}^{\dagger} ; V_{1}^{\dagger}\right), \ldots,\left(U_{s}^{\dagger} ; V_{s}^{\dagger}\right) \rightarrow B_{2}$ is provable. By applying I to either of them, we can get the proof of either $Z \rightarrow A_{2}$ or $Z \rightarrow B_{2}$.

Finally, suppose that I is $(\vee \rightarrow)$. Without loss of generality, we can assume that U_{1} is of the form. $\Gamma\left(A^{\prime} \vee A^{\prime \prime}\right)$ such that $A^{\prime} \vee A^{\prime \prime}$ is the principal formula of I. Then the inference I will be of the following form.

$$
\frac{\left(\Gamma\left(A^{\prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow A_{2} \vee B_{2} \quad\left(\Gamma\left(A^{\prime \prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow A_{2} \vee B_{2}}{\left(\Gamma\left(A^{\prime} \vee A^{\prime \prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow A_{2} \vee B_{2}}(\vee \rightarrow)
$$

By the hypothesis of induction, both of the upper sequents have proofs which have no applications of $(\vee \rightarrow)$ to sequents having $A_{2} \vee B_{2}$ on the right-hand side. Also, (i) either $\left(\Gamma\left(A^{\prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow A_{2}$ or $\left(\Gamma\left(A^{\prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow B_{2}$ is provable, and also (ii) either $\left(\Gamma\left(A^{\prime \prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow A_{2}$ or $\left(\Gamma\left(A^{\prime \prime}\right) ; V_{1}\right), \ldots$, $\left(U_{m} ; V_{m}\right) \rightarrow B_{2}$ is provable. Now suppose that $V_{1}, \ldots, V_{m} \rightarrow B_{2}$ is provable. Then, applying ($I-$ weak) repeatedly, we can get $\left(\Gamma\left(A^{\prime} \vee A^{\prime \prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow B_{2}$. So, by ($\rightarrow \vee 2$) we have a proof of $\left(\Gamma\left(A^{\prime} \vee A^{\prime \prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow A_{2} \vee B_{2}$, which satisfies the condition in (1). Clearly, (2) also holds. Next suppose that $V_{1}, \ldots, V_{m} \rightarrow B_{2}$ is not provable. If $\left(\Gamma\left(A^{\prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow B_{2}$ is provable, then by Lemma 5.2 either $\Gamma\left(A^{\prime}\right) \rightarrow$ is provable or $U_{k} \rightarrow$ is provable for
some k. In either case, by applying ($E-$ weak), ($I-$ weak), and right weakening, we will have $\left(\Gamma\left(A^{\prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow A_{2}$. So, by the above assumption (i), $\left(\Gamma\left(A^{\prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow A_{2}$ is always provable. Similarly, $\left(\Gamma\left(A^{\prime \prime}\right) ; V_{1}\right), \ldots$, $\left(U_{m} ; V_{m}\right) \rightarrow A_{2}$ is provable. So, applying $(\vee \rightarrow)$ to them, we have $\left(\Gamma\left(A^{\prime} \vee\right.\right.$ $\left.\left.A^{\prime \prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow A_{2}$. Now by applying $(\rightarrow \vee 2)$ we get a proof of $\left(\Gamma\left(A^{\prime} \vee\right.\right.$ $\left.\left.A^{\prime \prime}\right) ; V_{1}\right), \ldots,\left(U_{m} ; V_{m}\right) \rightarrow A_{2} \vee B_{2}$ which satisfies the condition in (1). Clearly, (2) holds.

Using these lemmas, we have the following theorem.
Theorem 5.4 Suppose that $A_{1} \supset A_{2}$ and $B_{1} \supset B_{2}$ have no propositional variables in common. Then the following holds for LDBCC and LDBCK.

1. If a sequent $A_{1} * B_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow$ B_{2} is provable.
2. If a sequent $A_{1} * B_{1} \rightarrow A_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow$ is provable.
3. If a sequent $A_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $\rightarrow B_{2}$ is provable.

Proof: We will give a proof of (1). By using the admissibility of cut rule, it is clear that $A_{1} * B_{1} \rightarrow A_{2} \vee B_{2}$ is provable if and only if $A_{1} ; B_{1} \rightarrow A_{2} \vee B_{2}$ is provable. Then by taking $m=1$ and taking A_{1} for U_{1} and B_{1} for V_{1} in Lemma 5.3. we have that either $A_{1} ; B_{1} \rightarrow A_{2}$ or $A_{1} ; B_{1} \rightarrow B_{2}$ is provable. Hence, by Lemma 5.2. either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow B_{2}$ is provable. Similarly, we can also prove our theorem for Cases 2 and 3.

Corollary 5.5 Maksimova's principle holds for LDBCC and LDBCK. More precisely, suppose that $A_{1} \supset A_{2}$ and $B_{1} \supset B_{2}$ have no propositional variables in common. Then the following holds for LDBCC and LDBCK.

1. If a sequent $A_{1} \wedge B_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow$ B_{2} is provable.
2. If a sequent $A_{1} \wedge B_{1} \rightarrow A_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $B_{1} \rightarrow$ is provable.
3. If a sequent $A_{1} \rightarrow A_{2} \vee B_{2}$ is provable, then either $A_{1} \rightarrow A_{2}$ or $\rightarrow B_{2}$ is provable.

Proof: It is easy to show that $A_{1} * B_{1} \rightarrow A_{1} \wedge B_{1}$ is provable. So our corollary follows immediately from Theorem 5.4.

Acknowledgments The results in $\S \S 2$ and 3 have been announced in the Master's thesis of the first author in 1996. The second author gave a main contribution to the results in §§4 and 5. The authors would like to express their gratitude to Martin Bunder, Ryo Kashima, and Robert K. Meyer for their helpful comments on the earlier version of the present paper.

REFERENCES

[1] Anderson, A. R., and N. D. Belnap, Jr., Entailment: The Logic of Relevance and Necessity, vol. 1, Princeton University Press, Princeton, 1975. Zbl 0323.02030||MR 53:10542 4
[2] Bayu Surarso, "Interpolation theorem for some distributive logics," forthcoming in Mathematica Japonica. Zbl 0957.03032MR 2001d:03057 5.5
[3] Bayu Surarso, and H. Ono, "Cut elimination in noncommutative substructural logics," Reports on Mathematical Logic, vol. 30 (1996), pp. 13-29. Zbl 0896.03048 MR 2000a:03096 1
[4] Chagrov, A., and M. Zakharyaschev, "The undecidability of the disjunction property of propositional logics and other related problems," The Journal of Symbolic Logic, vol. 58 (1993), pp. 967-1002.Zbl 0799.03009|MR 94i:03048 D.
[5] Dunn, J. M., "Consecution formulation of positive R with co-tenability and t," pp. 38191 in Entailment: The Logic of Relevance and Necessity, vol. 1, edited by A. R. Anderson and N. D. Belnap, Princeton University Press, Princeton, 1975. 4. 4
[6] Dunn, J. M., "Relevance logic and entailment," pp. 117-224 in Handbook of Philosophical Logic, vol. 3, edited by D. Gabbay and F. Guenthner, D. Reidel, Dordrecht, 1986. Zbl 0875.03051 4
[7] Giambrone, S., "TW W_{+}and $R W_{+}$are decidable," The Journal of Philosophical Logic, vol. 14 (1985), pp. 235-54. Zbl 0587.03014MR 87i:03021a 4.4.4
[8] Maksimova, L., "The principle of separation of variables in propositional logics," $A l$ gebra i Logika, vol. 15 (1976), pp. 168-84. Zbl 0363.02024|MR 58:21417 1,1,4
[9] Maksimova, L., "Interpolation properties of superintuitionistic logics," Studia Logica, vol. 38 (1979), pp. 419-28. Zbl 0435.03021 MR 81f:03035
[10] Maksimova, L., "Relevance principles and formal deducibility," pp. 95-97 in Directions in Relevant Logic, edited by J. Norman and R. Sylvan, Kluwer Academic Publishers, Boston, 1989. 1.4
[11] Maksimova, L., "On variable separation in modal and superintuitionistic logics," Studia Logica, vol. 55 (1995), pp. 99-112. Zbl 0840.03017MR 96j:03034 1
[12] Mints, G. E., "Cut elimination theorem for relevant logics," Journal of Soviet Mathematics, vol. 6 (1976), pp. 422-28.Zbl 0379.02011|MR 49:8823 4
[13] Ono, H., "Structural rules and a logical hierarchy," pp. 95-104 in Mathematical Logic, edited by P. P. Petkov, Plenum Press, New York, 1990. Zbl 0790.03007MR 91j:03073 1,1
[14] Ono, H., "Semantics for substructural logics," pp. 259-91 in Substructural Logics, edited by K. Došen and P. Schröeder-Heister, Oxford University Press, Oxford, 1993. Zbl 0941.03522||MR 95f:03013 1.1.1.
[15] Ono, H., and Y. Komori, "Logics without the contraction rule," The Journal of Symbolic Logic, vol. 50 (1985), pp. 169-201. Zbl 0583.03018||MR 87a:03053 1.3.4
[16] Slaney, J., "Solution to a problem of Ono and Komori," The Journal of Philosophical Logic, vol. 18 (1989), pp. 103-11. Zbl 0671.03036MR 90c:03050 4. 4

Japanese Patent Office
Kasumigaseki, Chiyodaku
Tokyo, 100
JAPAN
email: NHPA9192@jpo-miti.go.jp

Department of Mathematics
Faculty of Mathematics and Natural Sciences
Diponegoro University
Semarang
INDONESIA

School of Information Science, JAIST
Tatsunokuchi
Ishikawa 923-12
JAPAN
email: ono@jaist.ac.jp

