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A Conjecture on Numeral Systems

KARIM NOUR

Abstract A numeral system is an infinite sequence of different closed normal
λ-terms intended to code the integers in λ-calculus. Barendregt has shown that
if we can represent, for a numeral system, the functions Successor, Predecessor,
and Zero Test, then all total recursive functions can be represented. In this paper
we prove the independancy of these three particular functions. We give at the
end a conjecture on the number of unary functions necessary to represent all
total recursive functions.

1 Introduction A numeral system is an infinite sequence of different closed βη-
normal λ-terms d = d0, d1, . . . , dn, . . . intended to code the integers in λ-calculus.
For each numeral system d, we can represent total numeric functions as follows. A
total numeric function ϕ : N

p −→ N is λ-definable with respect to d if and only if

∃Fϕ∀n1, . . . , np ∈ N(Fϕ dn1 , . . . , dnp ) �β dϕ(n1,...,np)

One of the differences between our numeral system definition and the Barendregt’s
definition given in [1] is the fact that the λ-terms di are normal and different. The last
conditions allow with some fixed reduction strategies (for example, the left reduction
strategy) to find the exact value of a function computed on arguments. Barendregt
has shown that if we can represent, for a numeral system, the functions successor,
predecessor, and zero test, then all total recursive functions can be represented. We
prove in this paper that these three particular functions are independent. We think
it is, at least, necessary to have three unary functions to represent all total recursive
functions.

This paper is organized in the following way. Section 2 is devoted to preliminar-
ies. In Section 3, we define the numeral systems and we present the result of Baren-
dregt. In Section 4, we prove the independency of the functions successor, predeces-
sor, and zero test. We give at the end a conjecture on the number of unary functions
necessary to represent all total recursive functions.
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2 Notations and definitions The notations are standard (see [1] and [2]).

1. We denote by I (for identity) the λ-term λxx, T (for true) the λ-term λxλyx,
and by F (for false) the λ-term λxλyy.

2. The pair 〈M, N〉 denotes the λ-term λx(x M N).
3. The β-equivalence relation is denoted by M �β N.
4. The notation σ(M) represents the result of the simultaneous substitution σ to

the free variables of M after a suitable renaming of the bound variables of M.
5. A βη-normal λ-term is a λ-term which does not contain either a β-redex (i.e., a

λ-term of the form (λx M N)) or an η-redex (i.e., a λ-term of the form λx(M x)

where x does not appear in M).

The following result is the well-known Böhm Theorem.

Theorem 2.1 If U, V are two distinct closed βη-normal λ-terms then there is a
closed λ-term W such that (W U) �β T and (W V ) �β F.

1. A λ-term M either has a head redex (i.e., M = λx1, . . . , λxn((λxU V ) V1, . . . ,

Vm), the head redex being (λxU V )), or is in head normal form (i.e., M =
λx1, . . . , λxn (x V1, . . . , Vm)).

2. The notation U � V means that V is obtained from U by some head reductions
and we denote by h(U, V ) the length of the head reduction between U and V .

3. A λ-term is said to be solvable if and only if its head reduction terminates.

The following results are well known.

1. If M is β-equivalent to a head normal form then M is solvable.
2. If U � V , then for any substitution σ, σ(U) � σ(V ), and h(σ(U), σ(V )) =

h(U, V ).

In particular, if for some substitution σ, σ(M) is solvable, then M is solvable.

3 Numeral systems

1. A numeral system is an infinite sequence of different closed βη-normal λ-terms
d = d0, d1, . . . , dn, . . ..

2. Let d be a numeral system.

(a) A closed λ-term Sd is called successor for d if and only if

(Sd dn) �β dn+1 for all n ∈ N.

(b) A closed λ-term Pd is called predecessor for d if and only if

(Pd dn+1) �β dn for all n ∈ N.

(c) A closed λ-term Zd is called zero test for d if and only if

(Zd d0) �β T and (Zd dn+1) �β F for all n ∈ N.

3. A numeral system is called adequate if and only if it possesses closed λ-terms
for successor, predecessor, and zero test.
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Example 3.1 (The Barendregt numeral system) For each n ∈ N, we define the
Barendregt integer n by : 0 = I and n + 1 = 〈F, n〉. It is easy to check that

S = λx〈F, x〉,
P = λx(x F),
Z = λx(x T ).

are respectively λ-terms for successor, predecessor, and zero test.

Example 3.2 (The Church numeral system) For each n ∈ N, we define the Church
integer n = λ f λx( f ( f, . . . , ( f x), . . .)) ( f occurs n times). It is easy to check that

S = λnλ f λx( f (n f x)),
P = λn(n U 〈0, 0〉 T ) where U = λa〈(s (a T )), (a F)〉,
Z = λn(n λxF T ).

are respectively λ-terms for successor, predecessor, and zero test.

Each numeral system can be naturally considered as a coding of integers into λ-
calculus and then we can represent total numeric functions as follows.

A total numeric function ϕ : N
p −→ N is λ-definable with respect to a numeral

system d if and only if

∃ Fϕ ∀ n1, . . . , np ∈ N (Fϕ dn1 , . . . , dnp ) �β dϕ(n1,...,np).

The zero test can be considered as a function on integers.

Lemma 3.3 A numeral system d has a λ-term for zero test if and only if the function
ϕ defined by : ϕ(0) = 0 and ϕ(n) = 1 for every n ≥ 1 is λ-definable with respect to
d.

Proof: It suffices to see that d0 and d1 are distinct βη-normal λ-terms. �
Barendregt has shown in [1] that

Theorem 3.4 A numeral system d is adequate if and only if all total recursive func-
tions are λ-definable with respect to d.

4 Some results on numeral systems

Theorem 4.1 There is a numeral system with successor and predecessor but with-
out zero test.1

Proof: For every n ∈ N, let an = λx1, . . . , λxn I. It is easy to check that the λ-terms
Sa = λnλxn and Pa = λn(n I) are λ-terms for successor and predecessor for a. Let
ν, x, y be different variables. If a possesses a closed λ-term Za for zero test, then

(Za an x y) �β

{
x if n = 0
y if n ≥ 1

and

(Za an x y) �
{

x if n = 0
y if n ≥ 1
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Therefore (Za ν x y) is solvable and its head normal form does not begin with λ. We
must look at three cases.

1. (Za ν x y) � (x u1, . . . , uk), then (Za a1 x y) 
� y.
2. (Za ν x y) � (y u1, . . . , uk), then (Za a0 x y) 
� x.
3. (Za ν x y) � (ν u1, . . . , uk), then (Za ak+2 x y) 
� y.

Each case is impossible. �

Theorem 4.2 There is a numeral system with successor and zero test but without
predecessor.

Proof: Let b0 = 〈T, I〉 and for every n ≥ 1, bn = 〈F, an−1〉. It is easy to check
that the λ-terms Sb = λn〈F, ((n T ) a0 λx(n F))〉 and Zb = λn(n T ) are λ-terms for
successor and zero test for b. If b possesses a closed λ-term Pb for predecessor, then
the λ-term P′

b = λn(Pb 〈F, n〉 T ) is a λ-term for zero test for a. This is a contradiction.
�

4.1 Remarks

Remark 4.3 Let b′
0 = b1, b′

1 = b0, and for every n ≥ 2, b′
n = bn. It is easy to check

that the numeral system b′ does not have λ-terms for successor, predecessor, and zero
test.

Remark 4.4 The proofs of Theorems 4.1 and 4.2 rest on the fact that we are consid-
ering sequences of λ-terms with a strictly increasing order (number of abstractions).
Considering sequences of λ-terms with a strictly increasing degree (number of argu-
ments) does not work as well.

See the following example. We define 0̃ = I and for each n ≥ 1, ñ = λx(x x, . . . , x)

(x occurs n + 1 times). Let

S̃ = λnλx(n x x),
Z̃ = λn(n A I I T ) where A = λxλy(y x),
P̃ = λnλx(n U F) where U = λy(y V I) and V = λaλbλcλd(d a (c x))

It is easy to check that S̃, Z̃, and P̃ are, respectively, λ-terms for successor, zero test,
and predecessor.

4.2 Definitions

1. We denote by �0 the set of closed λ-terms and by �1 the set of the infinite
sequences of closed normal λ-terms. It is easy to see that �0 is countable but
�1 is not countable.

2. For every finite sequence of λ-terms U1,U2, . . . ,Un we denote by
〈U1,U2, . . . ,Un〉 the λ-term 〈. . . , 〈〈I,U1〉,U2〉, . . . ,Un〉.

3. Let U = U1,U2, . . . be a sequence of normal closed λ-terms. A closed λ-term
A is called generator for U if and only if :

(A I) �β U1
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and
(A 〈U1,U2, . . . ,Un〉) �β Un+1 for every n ≥ 1

Lemma 4.5 There is a sequence of normal closed λ-terms without generator.

Proof: If not, let ϕ be a bijection between �0 and N and � the function from �1 into
�0 defined by the following: �(U) is the generator GU such that ϕ(GU) is minimum.
It is easy to check that � is a one to one mapping. This is a contradiction. �

Theorem 4.6 There is a numeral system with predecessor and zero test but without
successor.

Proof: Let e be a sequence of normal closed λ-terms without generator. Let c0 = I
and for every n ≥ 1, cn = 〈cn−1, en〉. It is easy to check that the λ-terms Pc = λn(n T )

and Zc = λn(n λxλyI T F T ) are λ-terms for predecessor and zero test for c. If c pos-
sesses a closed λ-term Sc for successor, then the λ-term S′

c = λn(Sc n F) is a gener-
ator for e. This is a contradiction. �
The result of Barendregt (Theorem 3.4) means that, for a numeral system, it suffices to
represent three particular functions in order to represent all total recursive functions.
We have proved that these three particular functions are independent. We think it is,
at least, necessary to have three functions as is mentioned below.

Conjecture 4.7 There are no total recursive functions f, g : N −→ N such that for
all numeral systems d, f, g are λ-definable if and only if all total recursive functions
are λ-definable with respect to d.

If we authorize the binary functions we obtain the following result.

Theorem 4.8 There is a binary total function k such that for all numeral systems d,
k is λ-definable if and only if all total recursive functions are λ-definable with respect
to d.

Proof: Let k be the total binary function defined by

k(n, m) =
{

n + 1 if m = 0
|n − m| if m 
= 0

It suffices to see that

k(n, n) =
{

1 if n = 0
0 if n 
= 0,

k(n, 0) = n + 1,

k(n, 1) = n − 1 if n 
= 0.

�
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1. This theorem is the exercise 6.8.21 of Barendregt’s book (see [1]). We give here a proof
based on the techniques developed by J.-L. Krivine in [3].
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