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Classical and Intuitionistic
Models of Arithmetic
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Abstract Givenaclassica theory T, aKripkestructureK = (K, <, (Ag)aek)
iscaled T-normal (or localy T) if for each @ € K, A, isaclassical model of
T. It has been known for some time now, thanks to van Dalen, Mulder, Krabbe,
and Visser, that Kripke models of HA over finite frames (K, <) arelocaly PA.
They also proved that models of HA over the frame (w, <) contain infinitely
many Peano nodes. We will show that such models are in fact PA-normal, that
is, they consist entirely of Peano nodes. These results are then applied to a
somewhat larger class of frames. We close with some general considerations
on properties of non-Peano nodes in arbitrary models of HA.

1 Preiminaries A Kripkestructurefor alanguagel isatripleK = (K, <, (Ay)aek)
such that (K, <) is a (nonempty) partial order (called the frame of K) and for each
a € K, Ay isaclassical L-structure Ay = (Ag, =, (Ry)ReL, (o) feL) (NOt Neces-
sarily normal, that is, =, need not be true equality on A,), with the proviso that the
following monotonicity conditions be fulfilled. Whenever o < 8, then

1. A,isasubsetof Ag;
2. for every relation symbol Rof L (including equality =), R, € Rg;
3. for every n-ary function symbol f of L, f, is fg restricted to A,".

Throughout this paper, L will be some suitable version of the arithmetical language
with or without symbolsfor al primitiverecursivefunctions. Forcing, Ii-, isdefined as
usual. Wearetreating | asabasic connective (sothat L countsasan atomicformula);
negation isdefined as —y .= ¢y — L.

Sincein HA atomic formulas are decidable, we assume without |oss of general-
ity for K= HA that every A, isanormal structure(i.e., =, istrueequality on A,) and
that for o, B € K, if o < B, then A, € Ag (A, isasubstructure of Ag) (cf. Markovic
[2], Smorynski [[4]). Ly isL(Ay), that is, L plus constant symbolsa for each element
ac A,. We often write ‘o = ¢’ instead of ' A, = ¢’, meaning that A, classicaly
satisfies ¢, whereas ‘o I- ¢’ meansthat ¢ isforced at o in K.
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Decidability of atomic formulasin HA also entails (cf. [3]) that for any K =
HA, every o € K and every Ap-sentence ¢ € L,

alFg &= oal=e.

A node « in some Kripke structureK iscalled classical if « forcesevery L,-sentence
of theform Vx; ... Xn(¢ VvV —¢). Note that in any Kripke structure, terminal nodes
are classical. The following lemma gives some other characterizations of classical
nodes.

Lemmall Let K beany Kripke structure with the property that « < g implies
that A, isa substructure of Ag, and suppose o € K. The following are equivalent.

1. aisaclassical node.

2. « forcesevery L-sentence of theformVvx, ... Xp(@ vV —@).
3. For every L,-sentence ¢, a IF ¢ <— o = ¢.

4. Whenever o < B <y, Ag < A,.

Proof: The equivalence of thefirst three conditionsis well known and was already
mentioned in [5]. It remains to show that condition 4 is equivalent to the others. First
suppose that 1-3 hold. By 2 and the persistence of forcing, every 8 > « isaso clas-
sical. Leta < B < y and let ¢ be an L g-sentence. First assumethat Ag = ¢. Since
Bisclassical, B ¢ and hence y I- . But y isaso classical and thus A, = ¢. Now
assume that A, = ¢. Since y isclassical, y I- ¢. Now g isclassical and g ¥ —¢
(sincep<yandyl-g),s0BI-pand Ag = ¢.

Now supposethat 4 obtains. Wewill prove by induction on ¢ that for each 8 > «
and each Lg-sentence ¢, B IF ¢ <= B = ¢. If g isatomic, our claim follows by
definition. The cases of conjunction, disunction and existential quantification fol-
low easily from the induction hypothesis. Let us consider the case of implication,
say ¢ isof theform ¢ — x. First suppose 8 I+ ¥ — x and 8 = v. By the induction
hypothesis, 8 IF ¢ and hence 8 I x. By the induction hypothesisagain, g = .

Now supposethat g ¥ ¢ — x. Then, forsomey > B, v I- v and y ¥ x. Then
clearly g ¥ x and thus, by theinduction hypothesis, 8 b= x. Now since y IF ¢, by the
i.h. y = ¢ and, since Ag < A, B = v. The case of universal quantification can be
treated analogously. O

Given L-formulas ¢ and p, the Friedman translation of ¢ by o, denoted ¢”, isobtained
from ¢ by replacing each atomic subformulaPin ¢ by PV p (whereit is understood
that no variable occurring freein p is bound in ¢). Some properties of the Friedman
trandation are the following.

1. p— @”isprovableinintuitionistic logic.
2. Classicaly, ¢” < ¢V p.
3. HAF ¢ = HAF ¢”.

A formula g is semipositive (cf. Buss|[]) if, whenever v — x isasubformulaof ¢,
Y isatomic. In particular, only atomic formulas can occur negated (since negation is
defined in terms of implication and falsum). Note that classically, every formulais
equivalent to a semipositive one (ssmply eliminate subformulas ¢» — y in favor of
= v x and put the resulting formula in negation normal form). Semipositive sen-
tences have the following property.
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Lemmalz2 LetK beanyKripkestructure, « € K and ¢ € L, a semipositive sen-
tence. If o I- ¢, then also a = ¢.

Proof: By induction on ¢, simultaneously for all « € K. The atomic caseistrivia;
so are (using the induction hypothesis) the cases of conjunction, disjunction and both
quantifiers. It remainsto check the case of implication. Suppose « I+ ¥ — x, where
Y — x issemipositive. Then i is atomic. Suppose further that o |= . Since ¢ is
atomic, o IF ¢ and hence, since o I- ¥ — x, a IF x. x is semipositive, so by the
induction hypothesis, @ = x. O

Note that LemmalL2remainstrueif we relax the condition in the definition of semi-
positivity by alowing Ag-antecedents, provided that in K, Ag-formulas are decid-
able.

2 Introduction  Given any Kripke structure K and « € K, it is tempting to ask
which sentences are classically valid in the structure A, as opposed to those sen-
tences intuitionistically true (forced) at .

In the case of Kripke models of Heyting Arithmetic, it appears to be a natural
conjecture that every node should be a classical model of Peano Arithmetic. Pressed
to substantiate this conjecture, however, onefindslittle obvious evidence. Moreover,
another conjecturethat may seem equally plausible onfirst sight, viz. that PA-normal
Kripke structures should always be models of HA, turns out to be false (cf. [[1]).

The results recapitulated and presented in this paper, however, may be counted
asmore or less convincing evidence that our conjecture (of HA-models being locally
PA) is, at the very least, auseful working hypothesis. We will proceed by presenting
these resultsin, aswe feel, an order of increasing convincing power.

3 Known Resultson Arbitrary Models of HA
Theorem 3.1 IfKEHA anda € K, then A, = 1Ag + Thrp, (PA).

Proof: A, = [ Ag: Let ¢(X) bea Ag-formula of L, and suppose that o = ¢(0) A
VX(p(X) = @(SX)). Assume by way of contradiction that « b= Vxe(X), say a = ¢(b)
withb e A,. Then a ¥ ¢(b) and thus « I+ —¢(b) which entails « I 3x—¢(X). Now
theleast number principleisprovablein HA for Ag-formulasand so « I- IX(—@(X) A
Yy < Xp(y), i.e, for somea e Ay, o IF —¢(@) AVYy < ap(y). Now a # 0 since
a = ¢(0) and thus o I+ ¢(0). So aisasuccessor, say a = Sc. Then a IF ¢(c), SO
a = e(c) whichinturnimplies o = ¢(Sc) (by validity of theinduction stepin A,)
and thus « IF ¢(Sc), acontradiction. (This result was first published in [[3].)

A, = Thr,(PA): Note that PA is ITp-conservetive over HA. So if PA
Vx3yp(X, y) with ¢ € Ag, then HA = Vx3ye(X, y) and « IF VXx3ye(X, y). In par-
ticular, for all ae A, o IF 3yp(a, y), i.e, for eacha € A, thereisb € A, such that
alke(a b)), ie, o=@ b). O

Remark 3.2 By results of Kaye[2], the theorem does not even imply A, = BX1,
much less A, = 1Z4.
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4 A Result on End-Extension Models

Theorem 4.1 Let K be a Kripke model of HA such that, whenever o < 8 in K,
Ag isan end extension of A, (A, Ce Ag; such K are called end-extension models).
Then, for each « in K , we have A, = BX;.

Proof: We have to show that for each « € K, every Z,-formula ¢(X, y, v) and all
a,ac Ay, ¢ E VX < adyp(x,y,a) - Juvx < ady < up(x,y,a). We may as-
sume without loss of generality that ¢ isin fact Ag. Note that HA proves each in-
stance of the X1-collection scheme (thisis easily seen by inspecting the usual proof
that PAF- BX;). Hence o IF VX < adyp(X, y,a) — JuVx < ady < ugp(X,Y, a).
Now assume that o = VX < adye(X, y,a). We are finished if we can show that
a lF VX < adyp(X, Y, a), since then, our instance of collection being forced at «,
a lF Juvx < ady < up(X, Y, a); the latter sentence being X4, it immediately follows
that o = JuvX < ady < up(X, Yy, a).

Now « IF VX < adyp(X, y,a) iff (V8 > a)B = Vx < adyp(X, Y, d), asiseas
ily seen by trivial manipulations of the definition of forcing. By assumption o =
VX < adyp(x,y,a); let B > o and b € Ag, B = b < a. We need to show that
B = 3yp(b, y,a). Butsince A, Ce Ag, b € A, aready, so a = 3yp(b,y,a) and
thus 8 = 3y (b, y, @) (since X;-sentences are preserved under end extensions). [

Remark 4.2 Itisunclear how rich the class of end-extension models of HA is, for
example, whether HA is complete with respect to this class.

5 Finite Models and Models of Finite Depth  In [[5], van Dalen et al. developed
their method of pruning.

Definition 5.1  Let K = (K, <, (A)),eck) be any Kripke structure. Suppose that
a € Kandthat p € L, isasentencesuchthat o i p. Let K :={e K:B>a & B
p}, let <” be < restricted to K” and put K” = (K”, <# , (A;)nekr). Forcingin K”
is denoted I-7°.

The following lemmas then easily follow.
Lemmab.2 (First Pruning Lemma) Let K beany Kripke structure, « € K, p € L,
a sentence, o ¥ p. Then for any L,-sentence ¢,

alk ¢f iffalt? ¢.

Lemma 5.3 (Second Pruning Lemma) Let K beaKripkestructure, o« € K, p € Ly
a sentence, o ¥ p and « IF HA. Then « IF? HA. In particular, if K = HA, then
K* = HA.

Van Dalen et a. then conclude

Theorem 5.4 Let K be a Kripke model of HA such that K isfinite. Then K islo-
cally PA.

We will prove thisin aslightly more general form.

Theorem 5.5 LetK = HA besuchthat for somen < w, nopathin (K, <) islonger
than n. Then K islocally PA.
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Proof: Let« € K and suppose that « = PA. Then for some semipositive sentence
0, PAF ¢, a b= ¢. PruneK ntimeshby ¢, obtaining asequenceK = Kg, K4, ..., K.
a € K for al i < n, since ¢ is semipositive, o = ¢, and thus o ¥; ¢. By the Sec-
ond Pruning Lemma, « IF, HA. But « isaterminal node in K,,: every instance of
pruning reduces the lengths of paths through « at least by one, since terminal nodes
which force HA model PA and hence satisfy and force ¢. But every path through o
has alength < n. Now « Ik, HA and « isterminal in K, whichimpliesa = PA, a
contradiction. O

Van Dalen et a. remark that there seemsto be no straighforward way to extend their
methods to infinite models of HA. As Theorem[5.5]shows, this has to be taken with
agrain of salt, since TheoremE.Sldoes apply to certain infinite models (viz. those of
finite depth). Together with some new ideas, the methods of [[5] can also be used to
treat certain Kripke modelsof infinite depth, in particular those over theframe(w, <).

6 Modelsover theframe (w, <) VanDalenetal. in [[5] already investigated mod-
es K = HA for which (K, <) = (w, <) and showed that in such models, for in-
finitely many n < w, n = PA. Using their methods and Theorem [5.4] we will show
that such models arein fact always PA-normal. First we need alemma.

Lemma6.l LetK = (o, <, (Ann<w) E HA.
1. For any m < w and ¢(X) in Ly not containing 3,

M- YX(@(X) vV =¢(X)).

2. If mi- 4 v = for each Ly-sentence v, then for each a € A and (%) € L
not containing 3,
miF ¥ (@) <= mE ¥ ().

Proof: The first claim is proved by induction on ¢(X). The interesting cases are
those of implication and universal quantification. So suppose first that ¢ = ¢ — x.
We haveto show that mi- VX[ (¢ (X) = x(X)) VvV =(¥(X) = x(X))]. Soletk > mand
Ce A IfKIF ¥ (C) — x(€), we have nothing to show. Suppose k ¥ 4 (€) — x(C).
Clearly then k ¥ x(C), and thus by the induction hypothesis k I —x(C). Also k I+
¥ (€) (otherwise by theinductive hypothesisk I —(€) and thusk I- 4(C) — x(C)).
Hencek I =((C) — x(C)).

Now supposethat ¢ (X) = Vyy(y, X). Wehaveto show that mI- VX(Vyyr(y, X) v
=Vyy(y, X)). Letk > mand C € Ac. Again, if kKIF Yy (y, C), there is nothing to
show. Otherwise, for somel > kand a € A, | ¥ ¥ (a, C). By the induction hypoth-
esis, | IF =y (a, €) and hencedso | IF =Vyy(y, C). But then k- =Vyy(y, C).

The second claim is proved by induction on the complexity of ¢. Again, im-
plication and universal quantification are the important cases. Supposefirst that ¢ =
Y — x. f mlky — x, inparticular mIF  impliesmI- x. By induction hypothe-
sis, thisentails that m =y implies m = x, which iswhat we need. If ml¥ v — y,
then clearly m ¥ x and by the induction hypothesis m |~ x. Also mW¥ — because
otherwise mI- v — x. But since by assumption for claim 2, m I+ ¢ v =y, mik
and by the induction hypothesisagain m = . Thusm & ¢ — .
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Now let ¢ = Vxy(X). The=> directionisagain easy. Suppose that ml¥ Vxy(x).
Then for some k > mand c € A, k¥ (c). By claim 1 (note that  is 3-free),
k- =y(c) and thusk IF Ix—y/(x). By assumption m - Ix—/(X) v =3Ix—y(X), and
hence mIF Ix—y(x). So for somea € Ay, mikF =y (a), so mi yr(a) and by induc-
tion hypothesis, m (= r(a). Hence m = VX (X). O

Theorem 6.2 LetK = (w, <, (An)n<e) = HA. Thenfor eachn < w, n = PA.

Proof:  First suppose that for some sentence p € Ly, n ¥ p and for some m > n,
mlk p. Then, by definition of K”, n € K”. By the Second PruningLemma, K” = HA.
Moreover, if mi- p, then for every r > m, r I p, and so K” isfinite. By Theorem
B4l n = PA.

So suppose that for every sentence p € Ly, if N p, thenfor al m> n, mlF p
and thus, by definition of forcing, n I —p. It follows that for every sentence p € L,
ni- pv —p. By LemmalG.1] part 2, forcing and classical validity at n coincide
for 3-free Ly-sentences, and in particular, for all 3-free L-sentences. Now we must
check that every instance of the induction schemais classically valid at n. Take any
formula ¢(x, ¥). Without loss of generality, we may suppose that ¢(x, y) is com-
posed of A, —, L and V only, since we are dealing with classical truth here. Clearly
nI-Vy(p0, ¥) A VX(p(X, ) — @(SX, ¥)) — YXe(X, ¥)) since n - HA. This last
sentence is clearly 3-free, and so, as pointed out, by Lemmam part 2, itistruein
the structure A, which had to be shown. O

Although dlightly off the topic, we note in passing the following characterization of
Markov's principle Mpg for models over w.

Theorem 6.3 LetK = (w, <, (An)n<w) E HA. Thefollowing are equivalent.

1. K = Mpg.
2. Foreachne w, every p(X) e IT; and all a € Ay,

nike@ < nkEe(@).
3. Foralln,me w, if n < m, then Ay <5, An.

Proof: (2) = (3) and (3) = (1) were shown in [3]. It remains to prove (1) =
(2). The left-to-right direction is clear, so assume that n ¥ VXy (X, @) with ¢ € Ag
and a € A,. Suppose first that n IF =—=3IX—y (X, Q). BY Mpg, nIF IX—9(X, @) and
thus n = IX—y (X, @), i.e, n &= VXy (X, a). Now suppose that n ¥ =—3IX—y (X, a).
Then, for some m > n, m I =3X—y (X, @). Using intuitionistic logic, this entails
m I- VX—— (X, @), which by decidability of Ag-formulasimplies m I+ VXy (X, @).
Ontheother hand, sincen ¥ VX (X, @), for somek > nand sometc € Ay, k¥ ¥ (T, @),
s0 k I =y(T, @) and thus k I 3X—y(X, @). But then max(k, m) IF (Ix—y(X,Q)) A
(VX (X, @)), acontradiction. O

7 Models over frames of other order types Theorems[54]land [62ktogether give
rise to anumber of other order types of frames Kripke models of HA over which are
PA-normal. We mention afew examples.
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Example 7.1 (The Comb) SupposeK = HA and (K, <) hasthe following form.

(+1,1)
@1 (+1.0)
(i,0)

(2.0)

(01

(0.0)
Figure 1. The Comb

Clearly every terminal node (i, 1) is Peano. Suppose (0, 0) = PA. Again, for some

semipositive theorem p of PA, (0, 0) = p and hence (0, 0) ¥ p. Now consider K”.

Since al terminal nodes are pruned away, it is either finite or of order type w, and

(0, 0) € K”. So either by TheoremB.4lor by TheoremBEZ] (0, 0) |= PA, acontradic-
tion.

Example 7.2 (TheTick) LetK =HA and (K, <) :=

(n,0) \ / (0,i+1)
(n-1,0) )

(2,0 0,2)

(1,0 (0,2)

0.0

Figure 2: The Tick

Again, if (0, 0) - PA, by at most n pruningswe can obtain amodel of HA containing
(0, 0) which is either finite or has order type w. Hence (0, 0) = PA, acontradiction.

Example7.3 (V) LetK =HA and (K, <) asinfigure3.

Suppose (0, 0) = PA. Let p be any sentence with (0, 0) ¥ p and 8 I+ p for some
B > (0,0). K” isthen finite or of the typein Example[Z.2lor has order type w, and in
any case contains (0, 0), acontradiction. So if (0, 0) ¥ p, (0, 0) IF —p. By adapting
Lemmal6.1ko the present situation, we obtain (0, 0) = PA asin the proof of Theorem
[62] a contradiction.
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(+1,0) \ /’ ©ji+1)
(.0 (0,i)

(30) (0,3)

0.2)

(0.0)

Figure 3: V.

8 A Completeness Theorem  The following result, implicit in [[]}, isin away the
most convincing evidence for our initial conjecture (that Kripke models of HA are
PA-normal).

Theorem 81 HA iscompletewithrespecttotheclass{K &= HA : Kislocally PA}.

Proof: In [[1J, Buss defined a subtheory # PA of HA for which he showed the fol-
lowing saturation lemma:

Let Cg be acountable set of new constants and I' a set of L(Cy)-sentences such
that # PA C I. Further suppose I" ¥ ¢, where ¢ is some L (Cp)-sentence. Then for
any countable set C; of new constantsthereisaset I'* of L(Cy U Cy)-sentences such
that

1. rcr

2. I'* is saturated,

3. T*F g,

4. the term model determined by I'* classically satisfies PA.

Since # PA isasubtheory of HA, we may substitute HA for # PA in the lemmaand
obtain in the standard way a canonical PA-norma model of HA. O

This Completeness Theorem implies that in constructing Kripke models of HA, we
never need to use classical structures which do not satisfy PA. In the next section
we will show directly that in HA-models over converse wellfounded frames, we may
simply omit all (if any) non-Peano nodes and obtain a Kripke model of HA in which
precisely the same sentences are forced asin the original model.

9 Some General Considerations Let K= HA bearbitrary and ag € K, ag & PA.
Itisobviousthat «g cannot become aterminal node by an application of pruning (and
infact, by Theorem[5.4] whenever ag ¥ p, there areinfinitely many 8 > «q such that
B ¥ p). We thus obtain for any sentence p € Lq,

(*) aglFp & VB>ag: Bl p.

This situation may be described by saying that o isaredundant nodein K, for it en-
codes no information not already present above it. The following proposition makes
this more precise.
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Proposition 9.1 Let K and «g be as above. Let K7 = (K™, <7, (Ag)wek-),
where K~ = K — {ag}, < is < restricted to K—. Forcing in K~ isI-—. Then for
all B € K~ and every L g-sentence p,

BlFp < BIF" p.
In particular, for every L-sentence ¢,

KlFgp < K™ IF ¢.

Proof: By induction on p, simultaneoudy for all 8 € K~. The atomic caseistriv-
ia, as are (using the induction hypothesis) the cases of conjunction, disjunction and
existential quantification. Let us check the case of implication.

First suppose B IF v — y,i.e., foral y > B,if y I ¢, then y I x. In particular,
foral y >~ 8, y IF ¥ = y I x. By theinduction hypothesis, for all y >~ 8, y IF—
Y=yl x, e, BIF ¥ — x.

Now suppose that B W  — x, i.e, forsomey > B, yIF Y and y ¥ x.If y is
not «g, we are finished by the induction hypothesis. If y is«g, by () there is some
8 > ag, § ¥ x (and of course § IF v); thisé isin K~, so again we are finished by the
induction hypothesis. The case of universal quantification istreated analogously. [J

In the case in which (K, <) is conversely well founded we may in fact remove all
non-Peano nodes at once without changing the theory of the model.

Proposition 9.2 LetK = HA besuchthat (K, <) isconversely well founded (that
is, there are no infinite strictly ascending chains). Put K= = {a € K : « = PA} and
let <~ be <restrictedto K=. ThenK™ = (K™, <7, (Ay)eek-) = HA andin fact,
for « € K~ and p an L,-sentence,

alFp << al-" p.

Proof: First note that K= # @ since K contains terminal nodes. We proceed by
induction on p. The atomic caseis clear by definition, and the cases of conjunction,
disjunction and existential quantification are easy, using the induction hypothesis.
Consider the case where p is ¢ — x. The left-to-right direction is again easy,
SO suppose that o ¥  — , i.e., for some By > «, Bo IF ¥ and Bo K x. If thereis
such a g in K~ we are finished by the induction hypothesis. Suppose the only such
Bo arein K — K. Since B I~ PA, Bg isredundant in the sense of (x) and thus there
issome B1 > Bp such that 81 I+ i, B1 ¥ x. By assumption, 81 = PA, sothereisa
B2 > B1 with B, IF 4, B2 ¥ x. Continuing in this way, we can construct an infinite
strictly ascending chain 8o < 81 < B2 < ..., contradicting the fact that (K, <) is
conversely well founded. The case of universal quantification is entirely analogous.
O

Remark 9.3 Notethat in Propositions9.1hnd[9.2] even if K isrooted, K ~ need not
be, since the bottom node of K may have been deleted (for not being Peano). We may
however tag the standard mode! N below all the nodesof K~ (cf. [[4]) to obtain anew,
rooted HA-model (K ~)' for which we havefor all L-sentences ¢, by Proposition[0.1]

KH‘¢:>(K7)/H‘(p.
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Remark 9.4  Proposition[0.2is of course in accord with Theorem [5.4] complete-
ness of HA with respect to PA-normal models. One might expect that the set of non-
Peano nodes could be safely omitted from arbitrary models of HA without altering
the theory of the model, that is, that Proposition[9.2]remains true even when the hy-
pothesis of converse wellfoundednessisremoved. Thiswould follow immediately if
it could be shown that every Kripke model of HA contains at least one Peano node
(sketch of proof: proceed asin the proof of Proposition 2.2 we need only to modify
the proofs of the right-to-l€eft direction of the implication and universal quantification
cases. Consider for example, implication. Supposea I~ v — x, i.e,fordl y > «,
if y=EPAandyl-y,theny - x. Let B> aand B I . If BI¥ X,considerKg.
By the Second Pruning Lemma, K g = HA. But al Peano nodes have been pruned
away. So, K% would be an HA-model containing no Peano node, a contradiction.).
By Theoremhht is certainly true that there are Peano nodes arbitrarily high up the
strong canonical model for HA.
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