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A Counterexample in Tense Logic
FRANK WOLTER

Abstract  We construct anormal extension of K4 with the finite model prop-
erty whose minimal tense extension is not complete with respect to Kripke se-
mantics.

Call anormal bimodal logic in the propositional language with (Ot and [0~ atense
logic if it contains the tense axioms

tense={p— 070 p, p— O 0" p}.

With each normal modal logic A containing K4 we associate its minimal tense exten-
sion A™.t, which is the smallest tense logic containing A formulated in (J*. Recall
that amodal logic is called complete (has the finite model property) iff the following
is equivalent for all formulas ¢: ¢ € A < (9, R) = ¢, for dl (finite) frames (g, R)
validating A. This paper provides a counterexample to the natural assumption that
completeness s transferable when moving to the minimal tense extension. The prob-
lem whether completeness transfers from A to A™.t can also be described as an ax-
iomatization problem. Indeed, the existence of a complete logic A such that A™.t
isincomplete is equivalent to the existence of amodally definable class of transitive
Kripke-frames M such that the theory of

M'={(g, R, R"})| (g, R € M}

is not axiomatizable by a set of formulas formulated in " and tense. (Here the the-
ory of aclass of frames F isthe set of al formulas which are valid in al framesin
F.)

It iseasy to construct modal logics containing K 4 with the finite model property
(fmp, for short) whose minimal tense extensions do not enjoy fmp. Take for instance
provability logic G = K4 ® O(Op — p) — Op. G isknown as the theory of the
class of inverse well-founded frames and has fmp (cf. Fine [2]). But G*.t does not
have fmp since the tense logic determined by the finite inverse well-founded frames
is

GrteO O p—=p —0Op
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(cf. Wolter [B]). Note however that G*.t is complete, by (3) of Theorem [Llbelow.
Wolter [[3] and [H] deliver general positive results as concerns transfer properties of
themap A — A*.t. Thefollowing theorem summarizes some results of those papers.
First recall the following definitions. All frames are assumed to be transitive. For a
frame (g, R) we write xl?zy iff xRy and x # y and —=(yRXx). Let x € g and suppose
that there is alongest finite chain x = %R. .. RX, in (g, R). Then the depth of x in
(g, R) isdp(x) = nand x is said to be of finite depth. We say that a modal logic A
containing K4 hasfinite depthif thereexistsan n € w such that al pointsin al frames
validating A have depth < n.

Theorem1 Let A bealogic above K4. Then

1. if A hasfinite depth, then A*.t has fmp;

2. if A has finite width (in the sense of Fine [[1]), then A*.t is complete. Espe-
cially, A™.t is complete whenever A D K4.3;

3. if A isa (cofinal) subframe logic (in the sense of Zakharyaschev [[6] and [Z],
respectively), then A™.tiscomplete. A*.t hasthe fmpiff the framesvalidating
A formafirst order definable class.

Given that thisresult coversall natural extensions of K4, it is clear that our example
is (in some sense) similar to the construction of incomplete logics above K4. Let us
start with the definition of the frames involved in the construction. Define (g, R) by
putting:

g=Jlox(i1<i=7iuu
and R asthe transitive closure of R; with

Ri = {(XxyIxewx{i}, yewx{j}, j<i=<5U

Uu{(m,i),(n,i))m<n, i=25U
U{(m,i),(n,i))m>n, i=134}U
U{(X,X)| Xe w x {6, 7}} U {(u,u)} U
U{((m,5), (M, 6))| me w} U {((M 4), (M, 7))|Me w}U
U{((m,6), (m 1)) me o} U {((M7), (M, 2))|Me w}U
U{(x,u)| X € w x {3, 4,5}}.

Seethefigure below. Wedraw framesin such away that e represents areflexive point

and x represents an irreflexive point.
Denote by G, the subframe of (g, R) induced by

Oh={(mi)lm=<n, i=1,356}U{u},
and denote by A the theory of the set of frames { GnIn € w}. We will show the fol-
lowing.
Theorem 2 A hasthefmp and A ™.t isincomplete.
That A has the fmp follows from the definition. To prove that A ™.t is incomplete
we need ageneral tense frame validating A .t and refuting aformula ¢ which holds
in all Kripke frames validating A*.t. (Consult, e.g., [[3] for the definition of general

frames). Wefirst define a general monomodal frame G = (g, R, A) by defining A as
the boolean closure of C € 29, where c e C iff
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Figure: theframe G
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e CCwx{3}or
e CC wx {i, j} and cisfiniteor cofiniterelativeto w x {i, j} and {i, j} = {1, 2},
{4,5}, {6, 7).

It isreadily checked that G isagenera monomodal frame and also that
G'=(gRRLA
isagenera tense frame (i.e., that Aisalso closed under

O a:={xeg: (Vye g)(YRx=yea)}).

Lemma3 GEA.

Proof:  Suppose G refutes aformula —¢. We show that thereis an n € w such that
Gn refutes —¢. Takeavaluation g sothat (G, ) = —¢. Cal apoint X € g p-maximal
iff thereisasubformulayr of ¢ such that x € () but no proper R-successor of X is
in B(vy). Denote by g the set of p-maximal pointswhichareinw x {1, ..., 5}. Now
define an ordering < on w x {6, 7} by putting
(mi) < (n,j) iff i<]

oo i=j=6andm=<n

o i=j=7andm=>n.
Denote by h'" the set of p-maximal pointsin o x {6, 7} relative to <. (We say that
yewx{6,7}ise-maxima inw x {6, 7} relative to < iff there exists a subformula

Y of g suchthat y € B(y) and such that there doesnot existaz € () N (w x {6, 7})
withy #zand y < z) Put

M :=max{new/@i)(1<i<7and(ni)eg uhH}.
Using the definition of Aitisreadily checked that M € w. Put
h={uwu{(mim<M,i=1...,77U{(m3)m=<2M + 1}.

Define # = (h, RN (h x h)) and y(p) = B(p) N h. A straightforward induction
showsfor al x € h and subformulas v of ¢
(H,y.X) EY¥ < (G B X) E .

Hence # refutes —¢ and H =~ Gom, 1. It followsthat G = ATt O
We are now going to write down some important formulas belonging to A. In
what follows we shall assume that A isformulated in the monomodal language with
0. Put Oy = ¢ A Oy, With each finite and rooted frame (h, S) we can associate
the formula
W(h 9) = Alpx— OpylxSy) A
A\ (Px = =0 pylX# Y, =(XSY)) A
A \(Px— =pylx#y)



TENSE LOGIC 171

(Here pyx denotes a propositional variable attached to a point x € h). Put Dy, =
({0,...,m}, <) and

dps = po A OPW(Din.)
Clearly dpp, is satisfiablein apoint x in aframe f iff x has depth > min f. By ex-
tending the formulaW((h, S)) to

A((h, 9) = W((h, 9) A /\ (px = =0 pyl=(xSy)),

we get the well-known subframe formulac((h, ) = DY A((h, S)) — —pr, where
r denotesaroot of (h, S) (cf. [2]). Thefollowing axiomsbelongto A. (In the frames
below O isintended to betherootr.)

o1 = «({{0,1,2},{(0,1),(0,2)}))

g2 = «({{0,1,2}.{(0, 1), (0,2), (0.0)}))
ez = «(({0,1},{0,1} x {0, 1}))

g4 = a({{0,1},{(0,1), (0,0), (1, D})

@1 A @2 says that there are no two incomparable irreflexive points with a common
ancestor. The meaning of ¢3 A ¢4 isthat thereis no infinite strictly ascending chain,
no cluster with more than one element and no reflexive point which sees areflexive
point. We now come to the axioms which force the incompleteness of A™.t. Define,
fori € w,

ap = UlL; ajp1= O+21 A —|Di+lJ_;
Bi = 00ai A—=Qait1;
Yo = —BoAOBo Yier = ~Bit1 A OBit1 A =i A =0

In Gm the formulas «; hold precisely in (i, 1), i < m, the formulas g; hold precisely
in (i, 6), i <m, and the formulas y; hold precisely in (i, 5), i <m. Sowe have, for
al me w,

dm = dpZ.,, A vo— O A > Onaali <m) € A

For amonomodal formula v formulated in the language with [J, let ¢ and v~ de-
note the translation of v into the language with O+ and (I~ respectively. Put

¢ = O —a ((({0,1},{0,1} x {0, 1})) A
AO((poV Pp1) = O yg AOTOTT AONTT))

Lemmad —¢p¢ At L.

Proof: Define avaluation 8 of G' sothat B(po), B(P1) € w x {3} are digoint and
o that both sets are cofinal in w x {3} with respect to R~ (i.e., Vx € B(pi) Jy

B(p)(YRX)). Clearly (G', B. (0, 1)) = ¢. O

Lemma5 —¢ holdsinall Kripke-framesfor A™.t.
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Proof: Suppose there is a Kripke-frame # = (h, S", S) for A*.t such that
M, x = ¢ foramodel M = (H,B). By p3 € A and M, X |= ¢, there is an infi-
nite S™-chain (yj|i € w) with xS~ yp and M, y; = po V p1, fori € w. Furthermore,
M,y =0T (OTT AOTOTT). Wemay assume, by @3, ¢4 € A, that al vy, i € o,
areirreflexive. Therearepoints z, i € w, withzS™y; and M, z = v .

Claim6 Thereisaz,i € w, of infinite S™-depth.

Assumethereisno z of infinite depth. Then yg hasfinite depth, say m € w. Thereis
az,i € w, of depth > 3m+ 2, since the depth of y; isincreasing. Hence there exists
ywithzStyand M,y = af. y hasdepth m, yisirreflexive and y isincomparable
with yp since M, yp = OT(OTT AOTOTT). But thiscontradicts g1 A ¢ € A.
Takeaz,i € w, of infinite depth. Then M, z = (0D () — Oyj1) T, for
al j € w, since Dy, € A. H contains an infinite strictly ascending S™-chain which
contradictsto g3 € A. (]

By Lemmasfnd[&lthe logic A*.t isincomplete and the Theorem is shown.
Onecan provethat A isnot finitely axiomatizable. Hencethefollowing remains
open.

Problem 7  Isthere afinitely axiomatizable complete logic whose minimal tense
extension isincomplete?

Let usfinally note another question about transfer from A to A™.t.
Problem 8 Does decidability transfer from A to A™.t?

Although we believethat thereisacounterexample, the construction of such an exam-
ple seems to be quite difficult. Again for all standard systems, decidability transfers,
as follows from the results of Wolter [E] and [[5]l.
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