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A Basic System of Congruential-to-Monotone
Bimodal Logic and Two of its Extensions

I. L. HUMBERSTONE

Abstract If what is known need not be closed under logical consequence,
then a distinction arises between something’s being known to be the case (by a
specific agent) and its following from something known (to that subject). When
each of these notions is represented by a sentence operator, we get a bimodal
logic in which to explore the relations between the two notions.

1 Introduction Let us begin with the threefold distinction among what is known,
what is epistemically necessary(= follows from what is known), and what is epis-
temically possible(= is compatible with what is known). Representing these as sin-
gulary operators K,�K, and�K respectively, one way for the first two to be distinct
is to take K as monotone but not regular, in the sense of Chellas’s extension ([1], [2])
of Segerberg’s classification [14], with roughly and informally speaking the follow-
ing interpretation:�Kα is true whenα follows from someβ1, . . . , βn taken together,
where each Kβi is true. (We use ‘monotone’ rather than ‘monotonic’ to avoid confu-
sions with monotonic vs. non-monotonic logic; and below we follow Segerberg [15]
and say ‘congruential’ where the references cited above say ‘classical’.) A second is
that we assume only that K is congruential, and again understand�K in accordance
with the preceding explanation. On both these options,�K is regular (indeed nor-
mal, if we allown = 0).1 Thirdly, we could take K as merely congruential again, but
count�Kα as true ifα follows from some (one)β for which Kβ is true, making�K

monotone—but not guaranteeing regularity. We shall explore this third option here.
(Actually, we consider a “propositional” rather than a “sentential” version of the pos-
sibility. This distinction is explained in the following section.)

After the present section, there will be no further need to pay attention separately
to �K, since we may take�Kα as abbreviating¬�K¬α. But we remark here that
corresponding to the distinction between what is known and what is epistemically
necessary is the dual distinction between�Kα and¬K¬α (or Pα, in the notation of
Hintikka [6]), each of which has some claim to be regarded as embodying a notion of
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epistemic possibility, the opening sentence above notwithstanding. We may illustrate
the distinction between them as it arises on what we have called the third option, by
considering the treatment of an example (originally due to E. Wolgast) presented by
thenon-monotone epistemologist Oswald Hanfling ([4], pp. 442–4). You remember
where you parked your car this morning and on that basis claim to know that your
car is in the car park; the latter proposition entails that the car has not been removed
from the car park by car thieves since you left it there this morning—for brevity, that
it has not been stolen—yet you do not know, illustrating the failure of the monotony
condition, that the car has not been stolen (having done nothing expressly to rule out
this possibility). Hanfling holds that although you don’t know that the car has not
been stolen, you may legitimately take this for granted in claiming to know that your
car is in the car park. Controversial though it may be, suppose we accept the above
commentary on the example.2 Is it or is it not epistemically possible (for you) that
your car has been stolen? On the one hand, you know something, namely, that your
car is in the car park, from which it follows that the car has not been stolen. On the
other hand, ex hypothesi, you do not know that it hasn’t been stolen. Whatever answer
is given to the question about how to use the label ‘epistemically possible’ (or for that
matter, about how to answer the question of whether for all you know the car hasn’t
been stolen), the need to distinguish between�Kα and¬K¬α on the third (or indeed
the first or second) option is clear enough.3

A fourth option—and there are obviously further variations on this theme
possible—is to make no assumptions about K, and take�Kα to be true ifα is log-
ically equivalent to someβ for which Kβ is true. We will write ‘O’ rather than ‘K’
from now on, since our starting point may as well be an arbitrary congruential oper-
ator, and we do not wish to invite distraction from specifically epistemic concerns.4

The way we pass from O to�O on the first option above may be called ‘mono-
tone-to-regular’; on the second option, ‘congruential-to-regular’; on the third and
fourth, respectively, ‘congruential-to-monotone’ and ‘unrestricted-to-congruential’.
Our interest here, then, is in a bimodal congruential-to-monotone logic, and in partic-
ular, in the basic such logic given by the semantics introduced in the following section
to make precise the above ideas.

2 Semantics and axioms Since we assume only that O is congruential, it may ap-
propriately be given a semantic treatment in the Scott-Montague style, using models
〈W, N, V〉 on neighborhood frames〈W, N〉; hereW is a nonempty set andN assigns
to eachx ∈ W a collection, denotedNx, of subsets ofW; V assigns subsets ofW
to the propositional variables (sentence letters), of which we shall assume there are
countably many(p1, . . . , pn, . . .), and we put

〈W, N, V〉|=x pi if and only if x ∈ V (pi)

and

〈W, N, V〉|=x α ∧ β if and only if 〈W, N, V〉|=x α and〈W, N, V〉|=x β

(and similary for other Boolean connectives, of which we assume we have a func-
tionally complete set, also including at least¬ and⊥). For O we say

〈W, N, V〉|=x Oα if and only if ‖α‖ ∈ Nx,
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where

‖α‖ = {y ∈ W : 〈W, N, V〉|=y α}.
In the case in which O is thought of as representing a propositional attitude, the setNx

accordingly represents the set of propositions (= collections of worlds) to which some
fixed individual has the attitude in question. Accordingly, we want�Oα to mean that
α follows from some such proposition, and lay down the clause

〈W, N, V〉|=x �Oα if and only if for someY ∈ Nx, Y ⊆ ‖α‖.

Here is where the parenthetical remark from Section 1 comes in, about opting for a
propositional rather than a sentential interpretation of the idea that�Oα means that
α follows from something to which the agent has the propositional attitude registered
by O. In the case discussed in the introduction, we want�Kα to mean that the truth of
α follows something our agent knows. There, for expository convenience, we glossed
this as meaning that for some sentence (or formula)β for which Kβ is true,α follows
from β: aspecifically sentential construal. Here, in accordance with the remarks pre-
ceding the above clause for�O, we are adopting a propositional construal in not in-
sisting that the proposition schematically indicated by the ‘Y ’ i n that clause should
be linguistically expressible. (The sentential version of that clause would have on its
right-hand side:for some β such that ‖β‖ ∈ Nx,‖β‖ ⊆ ‖α‖.)

As usual, a formula is valid on a frame if it is true at every point in every model
on that frame (with the above clauses constituting the inductive definition of truth
at a point in a model). We call a schema valid on〈W, N〉 when every instance of
the schema is valid on〈W, N〉. The problem we consider is: How do we axiomatize
the class of formulas valid on every frame? Since this class includes all the truth-
functional tautologies and their substitution instances in the present language, and
is closed under tautological consequence, we list explicitly only those modal prin-
ciples required in addition to any complete truth-functional basis. Two such princi-
ples were already covered in our informal introduction—congruentiality for O and
monoton(icit)y for�O, namely, the following rules.

(Cong. O) From� α ←→ β to � Oα ←→ Oβ.
(Mon.�O) From� α → β to � �Oα → �Oβ.

These rules preserve truth in every model, and therefore preserve the property of be-
ing valid on every frame, which property is only slightly less obviously possessed by
all instances of the following schemata.

(A1) Oα → �Oα.
(A2) �O ⊥→ O ⊥.

We make two observations concerning this axiom system. First, although we have
not used Uniform Substitution as a rule of proof, the role played by schematic letters
shows that the set of provable formulas is closed under this rule (a fact to be exploited
below). Secondly, we should notice that because of (A2) it would be inaccurate to
say that what we have here is the smallest bimodal supersystem of a congruential
monomodal system in which the new operator ‘�O’ i s amonotone extension—using
‘extension’ in the sense of Note 4—of the given operator ‘O’.
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3 Completeness of the axiomatization The axiomatization given for the logic of
O and�O in the preceding section is clearly sound (with respect to the class of all
frames): the provable formulas are all valid on every frame, and we address ourselves
to the question of its completeness. We wish (as usual) to find an invalidating frame
for every nontheorem, and do so by constructing a canonical model,〈W, N, V〉, the
frame of which behaves as desired. As in [14] W is to be the set of all sets of for-
mulas which are maximally consistent (with respect to the logic axiomatized in the
preceding section), andV(pi) = | pi |, where we have used (as in [1], [14]) the ab-
breviative notation| α |for {x ∈ W : α ∈ x}. We defineN using a selection function
f , with f (Y ) ∈ Y for all nonempty subsetsY of W( f is a total function, and so is de-
fined also for∅ as argument, but no constraint is imposed on its value for this case).
Then we stipulate that forx ∈ W, Y ⊆ W, wehaveY ∈ Nx if and only if either

(i) for someα such that Oα ∈ x, Y = | α |, or

(ii) for someα such that�Oα ∈ x and| α | �= ∅, Y = | α | �{ f (| α |)}.
We call the setsY which satisfy the condition in (i) ‘type (i) neighborhoods’ ofx,
and those satisfying that in (ii), ‘type (ii) neighborhoods’ ofx. (It will turn out—cf.
the remark following Lemma3.2below—that noY ⊆ W is of both types.) Type (i)
neighborhoods areformula-definable subsets ofW in the sense of being sets of the
form | α | for someα .5 (Formula-definable sets are calledproof sets in [1].) In the
proofs below,� indicates provability in whatever logic is under discussion—here, the
basic system axiomatized in Section 2—though Lemma3.1 and Lemma3.2 do not
depend on the specifically modal aspects of that system.

Lemma 3.1 If w ∈ W then {w} is not formula-definable.

Proof: Suppose{w} = | α |. Let pi be a propositional variable not occurring inα.
Since� α ←→ ((α ∧ pi) ∨ (α ∧ ¬pi)), | α | =| α ∧ pi | ∪ | α ∧ ¬pi |, so since the
two terms of this union are disjoint, the only way for| α | to be a unit set is for one or
the other of them to be empty. Suppose it is| α ∧¬pi | that is empty. Then� α → pi,
and so, since our logic is closed under Uniform Substitution andpi does not occur in
α,� α −→⊥, and therefore� α ←→⊥, so| α | = |⊥| = ∅ �= {w} after all. We get
asimilar contradiction from supposing| α ∧ pi | = ∅. �

In fact, by a slight variant on the above argument, one can show that no nonempty
finite subset ofW is formula-definable. This is not something we need for the fol-
lowing developments, however.

Lemma 3.2 If w ∈ | α |, then | α | � {w} is not formula-definable.

Proof: Supposew ∈ | α | and| β | = | α | � {w}. Then{w} = | α ∧ ¬β |, contra-
dicting Lemma3.1. �

The point of Lemma3.2will emerge in the proof of our main result (Theorem3.4),
in which the type (ii) neighborhoodsY of x we obtain when�Oα ∈ x (for | α | �= ∅)
by settingY = | α | � { f (| α |)} are thereby guaranteed not to be formula-definable.
We need this because otherwiseY could be| β | for some formulaβ which would
require that we had Oβ ∈ x: but whenα is consistent there is no need for any such
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Oβ (where� β → α, since | β | would then be included in| α |) to belong tox. To
reduce congestion, we writef (γ) from now on, instead off (| γ |).
Lemma 3.3 For all formulas β, γ, if | γ | �{ f (γ)} ⊆| β |, then | γ |⊆| β |.

Proof: Since the conclusion is automatic for| γ | = ∅, wemay assume that| γ |�= ∅.
In this casef (γ) ∈| γ |, and| γ | �{ f (γ)} is a proper subset of| γ |; if this set is
included in| β | while | γ | is not, we must have| γ ∧ ¬β | = { f (γ)}, contradicting
Lemma3.1. �
We are now in a position to prove the Fundamental Theorem identifying truth and
membership for the present version of canonical models. The part of the proof dealing
with O-formulas is standard (cf. [1], [14]).

Theorem 3.4 For all formulas α and all x ∈ W, where 〈W, N, V〉 is the canonical
model, α ∈ x if and only if 〈W, N, V〉|=x α.

Proof: By induction on the complexity ofα, we show that the result holds for all
x ∈ W. We deal only with the inductive cases in whichα is of the form Oβ, and in
which α is of the form�Oβ. Sinceβ is of lower complexity thanα, the inductive
hypothesis allows us to assume that| β | = ‖β‖.

First, supposeα = Oβ. We must show that Oβ ∈ x ⇐⇒ |=x Oβ (suppressing
the reference to the model here), i.e., using the inductive hypothesis, that Oβ ∈ x ⇐⇒
| β |∈ Nx. The⇒ direction follows from part (i) of the definition ofN. For the⇐
direction, suppose that| β |∈ Nx. Since only type (i) neighborhoods ofx are formula-
definable (Lemma3.2), this means that| β | = | γ | for someγ with Oγ ∈ x. Since
| β | = | γ |,� β ←→ γ, whence by (Cong. O),� Oβ ←→ Oγ, which implies that
Oβ ∈ x.

Next, suppose thatα = �Oβ. Again, what we have to show is that�Oβ ∈
x ⇐⇒ Y ⊆| β |, for someY ∈ Nx. First, for the⇒ direction, suppose�Oβ ∈ x.

Case 1: | β | �= ∅. Then f (β) ∈ | β | and so since�Oβ ∈ x, | β | �{ f (β)} ∈ Nx,
by part (ii) of the definition ofN. Since this is a subset of| β |, it serves as the
desiredY .

Case 2: | β | = ∅. Then � β →⊥, and thus� �Oβ → �O ⊥ , by (Mon.�O).
Therefore, since�Oβ ∈ x, we have�O ⊥∈ x, in which case, by (A2) O⊥∈ x. So
by part (i) of the definition ofN, ∅ ∈ Nx and we may take∅ as the desiredY .

Turning to the⇐ direction, suppose that for someY ∈ Nx, Y ⊆| β |. We must show
�Oβ ∈ x.

Case 3: Y is a type (i) neighborhood ofx. Thus,Y = | γ | for someγ with Oγ ∈ x.
Since| γ |⊆| β |,� γ → β, so by (Mon.�O), � �Oγ → �Oβ. But �Oγ ∈ x, since
Oγ ∈ x (by A1); therefore�Oβ ∈ x.

Case 4: Y is a type (ii) neighborhood ofx, in which caseY = | γ | �{ f (γ)} for
some formulaγ for which | γ |�= ∅ and for which�Oγ ∈ x. Thus the supposition
thatY ⊆| β | is the supposition that| γ | �{ f (γ)} ⊆| β |, and we appeal to Lemma
3.3to conclude that| γ |⊆| β |; so� γ → β, whence by (Mon.�O), � �Oγ → �Oβ,
so since�Oγ ∈ x, wehave�Oβ ∈ x as desired. �
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In the manner familiar from the references already cited (coupled with the earlier ob-
servations of soundness), Theorem3.4gives us:

Corollary 3.5 For any formula α, � α if and only if α is valid on every frame
〈W, N〉.

4 Two extensions of the basic system Given our original starting point, with O as
the epistemic K, it is of some interest to consider such additional axioms as (A3) and
(A4), versions of the familiar T-schema for each of our primitive operators.

(A3) Oα → α.

(A4) �Oα → α.

The two systems we consider here are the results of appending in the first place (A3)
to the axiomatization of the basic system whose completeness was proved above—
call this the first extended system—and, secondly, just (A4) to that axiomatization,
‘the second extended system’. In view of (A1) [= Oα → �Oα], (A3) can be derived,
given the basic system, from (A4); so the first extended system is a subsystem of the
second (a proper subsystem, as will emerge in the following section). We begin by
considering this second system. We shall show that it is sound and complete with
respect to the class of frames〈W, N〉 satisfying, predictably enough (cf. [1], pp. 224
and 262), the condition

(t) For all x ∈ W, if Y ∈ Nx thenx ∈ Y .

For soundness, it suffices to check that every instance of the schema (A4) is valid on
any frame satisfying (t).

The completeness proof cannot proceed exactly as in the preceding section, how-
ever, because we shall need to make sure that when we remove an element from
nonempty| α | for which�Oα ∈ x to obtain a type (ii) neighborhood ofx, the point re-
moved is notx itself: this would stop us from verifying that (t) is satisfied by the frame
of the resulting model. Accordingly, we need a variant of the functionf employed
above: our choice function (we shall writeg(x, α) again, rather thang(x, | α |)) will
need to be sensitive not only toα but also tox. This new function,g, is defined
for all pairs x, α, and we stipulate (as our “selection” requirement) that whenever
| α | �= ∅, g(x, α) is some element, other thanx, of | α |. If x does not belong to
| α |in the first place, there is no problem findingg(x, α) satisfying this requirement
thatg(x, α) �= x, since| α | �= ∅. On the other hand ifx ∈ | α |, weknow by Lemma
3.2 that | α | � {x} is nonempty (since otherwise it would be formula-definable, as
|⊥|), so g(x, α) can select some element of| α | � {x}, and again our requirement
thatg(x, α) �= x is satisfied. We repeat Lemma3.3for the new selection function, as
Lemma4.1; its proof is exactly as for Lemma3.3, substitutingg(x, γ) for f (γ).

Lemma 4.1 For all x ∈ W and all formulas β, γ, if | γ | �{g(x, γ)} ⊆| β |, then
| γ |⊆| β |.
Wenow define the canonical model for what we are calling the second extended sys-
tem (the basic system + A4). We continue to write〈W, N, V〉, with W andV defined
as before, though now understanding maximal consistency relative to the new system.
Nx, for x ∈ W, again comprises sets of two types: type (i) neighborhoods, of the form
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| α | for α such that Oα ∈ x, and type (ii) neighborhoods, of the form| α | � {g(x, α)}
for α such that�Oα ∈ x and| α | �= ∅. Theorem3.4continues to hold, reinterpreted
for the present canonical model; a proof mimics the original proof, using Lemma4.1
in place of Lemma3.3. As acorollary, we have (soundness and) completeness with
respect to the class of frames satisfying (t); the proof is relatively straightforward (us-
ing the newg function for theif direction).

Corollary 4.2 For any formula α, α is provable in the second extended system if
and only if α is valid on every frame 〈W, N〉 satisfying (t).

5 Incompleteness of the first extension The second of the two extensions of the
basic system introduced in the preceding section is determined, as we saw there
(Corollary4.2), by the class of all frames〈W, N〉 satisfying the condition (t), where
determined by has the same meaning assound and complete with respect to. In this
section, we shall show, by contrast, that the first extension is incomplete on the present
semantics, in the sense of being determined by no class of frames (Theorem5.4be-
low). This is established by showing that although every frame validating (A3) val-
idates (A4), (A4) is not derivable with the aid of truth-functional logic alone, (A1),
(A2), (Cong. O), and (Mon.�O) from (A3)—which is to say that (A4) is not provable
in the first extended system. In fact, (A3) and (A4), though not interdeducible in the
field of the basic system, are valid on precisely the same frames, namely those sat-
isfying (t); we need only part of this (Lemma5.2 below) for present purposes. The
proof of Lemma5.1 is straightforward; for Lemma5.2, use Lemma5.1.

Lemma 5.1 Every frame validating (A3) satisfies (t).

Lemma 5.2 Every frame validating (A3) validates (A4).

To show that (A4) is not provable in the first extension of the basic system, we intro-
duce another extension—we shall call itS—of the basic system and show very simply
that (A4) is not provable inS. S is to be the smallest normal bimodal logic in each of
O and�O, containing all instances of (A1), (A2), and (A3). Working with birelational
Kripke frames〈W, RO, R�〉 in which RO andR� are binary relations onW interpret-
ing O and�O respectively in the usual manner (i.e., by universal quantification over
appropriately related points), one obtains by standard methods the result thatS is de-
termined by the class of all such frames in which the following three conditions are
satisfied.

(a1) R� ⊆ RO.
(a2) R�(x) = ∅ ⇒ RO(x) = ∅ (for all x ∈ W).
(a3) RO is reflexive.

In (a2) the ‘R(x)’ notation denotes the set of ally ∈ W such thatRxy, for R = R�,
RO; the conditions (a1), (a2), and (a3) correspond respectively to (A1), (A2), and
(A3).

Lemma 5.3 (A4) is not provable in S.

Proof: Consider the frame〈W, RO, R�〉 in which W is the set of integers andRO

and R� are respectively the relations≤ and<. The conditions (a1), (a2), and (a3)
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are satisfied—in the case of (a2), because the antecedentR�(x) = ∅ never holds—so
every theorem ofS is valid on this frame. Clearly, however, sinceR� is not reflexive,
not every instance of (A4) is valid on the frame (e.g., takeα in �Oα → α asp1.) �

As a corollary, we have

Theorem 5.4 There is no class of frames 〈W, N〉 with respect to which the first ex-
tended system is sound and complete.

6 Some reflections on the incompleteness example The example of incomplete-
ness presented by Theorem5.4 is of some theoretical interest because of a contrast
with a general result of Lewis [9] formulated here with the notion of a noniterative
schema, by which is meant a schema in which no modal operator occurs within the
scope of a modal operator: the smallest congruential multimodal logic containing all
instances of some set of noniterative schemata is determined by the class of all neigh-
borhood frames validating all those schemata. The neighborhood frames spoken of
here have one neighborhood-assigning function for each of the primitive modal oper-
ators, truth in a model on such a frame being defined with the aid of a clause for each
operator, treating it via the neighborhood-assigning function as O is treated viaN in
the semantics of Section 2.6 Now the point of interest here is that (A1), (A2), and
(A3) are noniterative schemata, so at first sight Lewis’s result would seem to contra-
dict Theorem5.4once we observe that (Mon.�O) can be replaced, without alteration
to the logic axiomatized, by a congruentiality rule for�O together with the schema
�O(α ∧ β) → �Oα—another noniterative schema. But the contradiction is only ap-
parent, since our semantics has not been a multiple neighborhood semantics of the
kind addressed by that result.

To convert the semantic apparatus of Section 2 above to that which Lewis had
in mind, we must use frames with two neighborhood-assigning functions, one for O
(which we continue to denote byN) and one for�O (which we shall denote byM),
defining truth at a point in a model〈W, N, M, V〉 on such a frame with the aid of the
clause given in that section for O, but replacing the treatment there offered for�O

with the following (analogous) clause.

〈W, N, M, V〉|=x �Oα if and only if ‖α‖ ∈ Mx.

Frames〈W, N, M〉 for the basic system must now satisfy the following conditions.

(i) X ⊆ Y andX ∈ Mx imply Y ∈ Mx, for all x ∈ W, all X, Y ⊆ W.
(ii) Nx ⊆ Mx , for all x ∈ W.
(iii) ∅ ∈ Mx implies∅ ∈ Nx.

A routine argument shows that the basic system is determined by the class of all
frames〈W, N, M〉 satisfying (i), (ii), and (iii). Our present interest, however, is in
the first extension of the basic system, so we need to observe that (A3) is valid on
〈W, N, M〉 just in case this frame satisfies the condition (t) from Section 4, and that a
similar relation holds with regard to (A4) and the condition—call it (t′)—that results
from (t) by replacingN by M:

(t′) Forall x ∈ W, if Y ∈ Mx thenx ∈ Y .
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It is not hard to see that (t′) would follow from (t) with the aid of the⇒ direction of the
following condition, which in effect reinstates in the present multiple neighborhood
semantics the clause for�O from Section 2:

(*) Y ∈ Mx ⇐⇒ ∃X ∈ Nx. X ⊆ Y.

The trouble is, however, that it is only the⇐ direction of (*) that is secured by the
conditions our current frames must satisfy for them to validate the axioms of the first
extended system. (In fact, this direction of (*) follows from two of those conditions,
namely (i) and (ii).) To check that the remaining conditions do not help in obtaining
(*), it suffices to show, in view of what has just been seen with (t) and (t′), that there
are frames〈W, N, M〉 satisfying (i), (ii), (iii), and (t) which do not satisfy (t′). But we
can simply rework the example of the birelational Kripke frame〈W, RO, R�〉 from
the proof of Lemma5.3to this end, puttingNx = {RO(x)} andMx = {R�(x)} for all
x ∈ W.

7 Closing comments The preceding section serves as a reminder that whether a
modal logic is incomplete in the apparently absolute sense of not being determined
by any class of frames is itself relative (perhaps better: sensitive) to the semantic ap-
paratus in play—to the conception of frame and the definition of truth at a point in a
model on such a frame, that is. Relative to the semantic apparatus of Section 2, our
first extension of the basic system is incomplete, while relative to the multiple neigh-
borhood semantics, that extension is complete.

Returning to the basic system and to the motivation for considering it (and its
extensions) offered in Section 1, one natural next step would be to consider the ques-
tion of an analogous basic system for a congruential-to-normal bimodal logic. The
justification in Section 2 for the semantic treatment of�O there proposed (that for O
remaining intact) adapts to a justification for the clause

〈W, N, V〉|=x �Oα if and only if ∩ Nx ⊆ ‖α ‖.

The obvious question then arises: How do we axiomatize the class of formulas valid
on every frame when this clause is employed in the truth-definition? (Conspicuously,
instances of (A2) are, in general, no longer among such formulas.) Somewhat further
afield, one might consider a trimodal logic which was, as we might say, (minimally)
congruential-to-monotone-to-normal. Here we should need two additional primitive
operators alongside O, one for the monotone extension,�Om say, and one for the nor-
mal extension,�On. The rough and ready glosses would be, with the epistemic read-
ing of O: �Omα means that it follows from some proposition known by the subject
thatα, while �On means that it follows from some set of propositions known by the
subject thatα. Clearly, the latter operator can be regarded as representing the normal
extension not only of O, but, equally well, of�Om. Weshall not, however, investigate
these matters further here.
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Crooke and Richard Holton (see Note 3).
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NOTES

1. On p. 38 of [6], Hintikka mentions the possibility (though in the end he is not very enthu-
siastic about it) of reading his ‘Ka p’ as‘It follows from whata knows thatp’. Similarly,
with a view to sidestepping monotony objections in boulomaic logic on p. 409 of [7] we
find, as a suggested alternative to reading ‘Wa p’ as ‘a wants thatp’: a has desires whose
satisfaction entails thatp. (Epistemic applications are also considered in [7].) Similarly,
with a rather syntactical conception of propositions in mind, Williamson ([17], p. 85)
suggests that the epistemic operator K be supplemented with another, which he writes
as K̄, the intended reading of K̄p being ‘For someq of which p is a conjunct, Kq’.

2. Lewis [11] gives a somewhat different treatment—foreshadowed in Lewis [10]—
according to which the possibility here legitimately ignored (when the proposition that
it does not obtain is, as Hanfling says, “taken for granted”) in normal contexts, may no
longer be properly ignored with the change of context brought about by explicitly rais-
ing that very possibility. This allows him to retain monotony (indeed normality) for any
given context. References to further non-monotone treatments (Dretske, Nozick, etc.)
may be found in Note 8 of [4]; often the formulations of epistemologists (in terms of
closure) do not distinguish the conditions of monotony and regularity. A noteworthy
exploration of (specifically) epistemic logic without the problematic conditions may be
found in [13].

3. The multiplicity of distinct notions going by the name of epistemic possibility current in
philosophical discussion was drawn to my attention by my colleague Alan Crooke, con-
versation with whom influenced several aspects of this paper, beginning with its opening
sentence. Crooke has noted that doxastic possibility is sometimes confusedly referred to
as epistemic possibility; on p. 55 of [12], the epistemically possible seems to be identified
not with what is not known to be false, but with what is not knowna priori to be false. I
thank Richard Holton for this reference. Putnam purports to be summarizing Kripke, and
puts scare-quotes around the phrase ‘epistemically possible’. Still keeping to one side
the issues of regularity and monotony, there is the matter of whether more is required
than is given by “not known not to be the case” formulations: this was argued by Hack-
ing [3], who thinks of himself as picking up where the originator of talk of epistemic
possibility—G. E. Moore—left off, but is contested in Teller [16] and Williamson[17].

4. The fourth option is mentioned in Note 2 of Kaplan [8], where E-whispering is intro-
duced as the congruential extension of whispering; in this formulation, one operator is
an extension of another (relative to a given logic) if the result of prefixing the latter to
any formula follows (according to the logic) from the result of prefixing the former to
that formula. Kaplan’s own formulation reads: “To notions for which substitution un-
der logical equivalence is not correct, such as ‘she whispered that,’ we may associate an
E-analog, ‘she whispered that,’ obtained by closing the notion in question under logical
equivalence” ([8], p. 49).

5. This notion of definability by a formula is of course to be distinguished from the defin-
ability of a class of frames by a formula which obtains when the frames validating the
formula are precisely those in the class.

6. In fact Lewis works with a different formulation of the semantics which is, however,
equivalent to the many-neighborhoods version envisaged here. See [1], p. 211, Ex.7.10,
or—where the equivalence was perhaps first noted—§3 of [5].
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