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MARIO GÓMEZ-TORRENTE

Abstract This paper examines from a historical perspective Tarski’s 1936 es-
say, “On the concept of logical consequence.” I focus on two main aims. The
primary aim is to show how Tarski’s definition of logical consequence satis-
fies two desiderata he himself sets forth for it: (1) it must declare logically cor-
rect certain formalizations of theω-rule and (2) it must allow for variation of
the individual domain in the test for logical consequence. My arguments pro-
vide a refutation of some interpreters of Tarski, and notably John Etchemendy,
who have claimed that his definition does not satisfy those desiderata. A sec-
ondary aim of the paper is to offer some basic elements for an understanding of
Tarski’s definition in the historical logico-philosophical context in which it was
proposed. Such historical understanding provides useful insights on Tarski’s
informal ideas on logical consequence and their internal cohesion.

1 Introduction Alfred Tarski was one of the founders of modern logic. His excep-
tionally deep, rich, far-reaching contributions to all areas of research in the field have
been and will be an eminent source of inspiration for all those working in mathemat-
ical logic. But Tarski’s work has been also very influential in philosophy. In particu-
lar, his definition of truth for formalized languages was taken as a paradigm of exact
philosophical explication of a common concept and later used as an instrument for
diverse philosophical enterprises. The philosophical literature on Tarski’s definition
of truth and on its applications is now very extensive, and as a result our appreciation
of its philosophical virtues and limitations has steadily grown.

The situation is different in the case of another example of exact philosophical
explication due to Tarski, and closely related to his definition of truth: his definition of
logical consequence. According to this definition, a sentence follows logically from
aset of sentences if there is no model of the latter which is not a model of the former.
Despite the obvious philosophical importance of the notion of logical consequence,
philosophical discussions of Tarski’s definition are scarce in the literature. This is
not, against what one might at first think, a sign that Tarski’s definition is philosophi-
cally sterile or uninteresting. Philosophical discussions are for the most part critical,
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or attempts at refutation, and it is critical discussions of Tarski’s definition that are
scarce. This scarcity is a sign of the philosophical success of the definition, and an
even more important but less obvious sign of this success is the uncritical, tacit use
of the definition in many of the most important contemporary pieces of philosophical
argumentation.

Among the few critical discussions of Tarski’s definition of logical consequence
in the philosophical literature, some of the most challenging are contained in sev-
eral recent publications by Etchemendy ([10], [7], [9]). It is to be hoped that
Etchemendy’s critical discussion, and the responses that it has provoked, may be
the basis for a sustained philosophical exploration of the virtues and limitations of
Tarski’s definition of logical consequence. But a necessary point of departure for such
an exploration must be, undoubtedly, a close interpretative reading of Tarski’s writ-
ings relevant to the topic. Such a close reading can be reasonably expected to yield
not only historically interesting data, but also illumination at the conceptual level,
for example, by clarifying how Tarski’s definition was thought by him to satisfy the
pretheoretic intuitions that motivated it.

In this paper I will discuss and analyze from a historical perspective some of the
aspects of Tarski’s work that are of direct relevance for a philosophical understanding
of his definition of logical consequence. There is virtually no literature examining
historically this part of Tarski’s work. If we exclude some isolated references in works
of a more general nature, the only close examination of Tarski’s writings in this area
is again a paper by Etchemendy ([8]). In the course of my discussion of Tarski I will
have repeated occasion to refer to Etchemendy’s historical treatment, and I will argue
that it contains some errors of interpretation and misapprehensions.

In Section 2 below I summarize some of the central points of the paper in which
Tarski proposed his definition of logical consequence (Tarski [30]). I pay special at-
tention to Tarski’s description of his reasons for proposing such a definition; of par-
ticular importance here is Tarski’s remark that, in view of Gödel’s results, all formal-
ized theories of arithmetic of a certain sort areω-incomplete, and yet theω-rule is
intuitively logically valid. I also pay close attention to the fragments more directly
related to the statement of the definition of logical consequence itself. The rest of the
paper consists of a series of arguments that show how Tarski’s definition fulfilled the
pretheoretic requirements he had in mind when he gave it.

Section 3 considers the case of theω-rule. Etchemendy has pointed out, first,
that theω-rule is not logically valid (according to the Tarskian definition) in first-
order arithmetic with the usual choice of logical constants; and, second, that if this
is so, either the definition does not meet Tarski’s pretheoretic requirements or it must
resort to an unusual choice of logical constants (a choice that has counterintuitive con-
sequences). I show that Tarski thought that theω-rule was logically valid only under
certain formalizations of arithmetic (roughly, those in which arithmetical notions can
be defined in the logicist fashion), but not in first-order arithmetic; hence the dilemma
set forth by Etchemendy disappears. A crucial aim of Tarski (that emerges in both
Sections 3 and 4) was to give a definition that was applicable to the wide variety of
formalized languages considered by mathematical logicians, and that gave natural re-
sults for each of those languages. The characteristic differences between so-called
“logical languages,” on the one hand, and languages with mathematical primitives
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and intended models with a domain of “nonlogical individuals,” on the other, are ex-
plained and called upon at several points.

In Section 4 I consider the objection, raised by some commentators, that Tarski’s
definition does not require variation in the individual domain of interpretations when
testing for logical consequence; if this is so, the definition would have several un-
desirable consequences. The objection is to some extent natural, since the definition,
read word for word, says that a sentenceX follows logically from a set of sentencesK
just in case all the interpretations of the extra-logical constants ofK andX that make
all sentences inK true also makeX true (with no mention of changing the domain
of individuals). However, I note, first, that Tarski clearly required domain variation
in the test for logical consequence within languages containing extra-logical mathe-
matical primitives; and second, I offer textual evidence to show that in these cases he
assumed that the domain of the standard model or models was denoted by an extra-
logical predicate, hence subject to reinterpretation in the test for logical consequence.

Section 5 recapitulates some of the motivations behind Tarski’s proposal of his
definition, with the purpose of showing their consistency and unity of purpose. To this
effect, Tarski’s motivations and their justification are set against the general logico-
philosophical context in which the definition appeared. My final conclusion is that the
definition successfully accommodated the main motivations that led Tarski to offer it.

2 Tarski’s definition of logical consequence Tarski put forward his definition of
logical consequence in a paper published in 1936 entitled “On the concept of log-
ical consequence.” The paper is a summary of an address given at the Interna-
tional Congress of Scientific Philosophy, held in Paris in 1935, a congress to which
Tarski had been invited by Carnap (the paper appeared both in the proceedings of the
congress and in a philosophical journal in Polish). It begins with some general re-
marks on the possibility of a precise definition of the concept of consequence. The
essence of these remarks is that since the common concept is vague, it seems certainly
difficult, and perhaps impossible, to reconcile all features of its use in the definition
of a corresponding precise concept. Nevertheless, Tarski says, logicians had thought
until recently that they had managed to define a precise concept that coincided exactly
in extension with the intuitive concept of consequence. Tarski mentions the extraordi-
nary development of mathematical logic in recent decades, which had shown “how to
present mathematical disciplines in the shape of formalized deductive theories” ([30],
p. 409). In these theories, consequences are extracted from axioms and theorems by
rules of inference, “such as the rules of substitution and detachment” ([30], p. 410), of
apurely syntactical (or “structural,” in Tarski’s word1) nature. “Whenever a sentence
follows from others, it can be obtained from them—so it was thought—by means of
the transformations prescribed by the rules” ([30], p. 410). According to Tarski, this
belief of the logicians was justified by “the fact that they had actually succeeded in
reproducing in the shape of formalized proofs all the exact reasonings which had ever
been carried out in mathematics” ([30], p. 410).

But Tarski goes on to note that that belief of the logicians was wrong. There are
some nonvague cases in which a certain sentence follows in the intuitive sense from a
set of other sentences but cannot be derived from them using the accepted axioms and
rules. These cases are provided by someω-incomplete theories, theories in which for
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some predicateP all the sentences

A0. 0 possesses the given propertyP,

A1. 1 possesses the given propertyP,

and, in general, all sentences of the formAn can be proved, but the universal sentence

A. Every natural number possesses the given propertyP,

cannot be proved on the basis of the accepted axioms and rules of inference. “Yet in-
tuitively it seems certain that the universal sentenceA follows in the usual sense from
the totality of particular sentencesA0, A1, . . . , An, . . .. Provided all these sentences
are true, the sentenceA must also be true” (Tarski [30], p. 411).

Tarski considers the possibility of adding anω-rule to the accepted rules of in-
ference, that is, a rule which allows us to deduce a universal sentence of the form
of A from the set of sentencesA0, A1, etc. However, he says that such a rule would
differ in very essential respects from the old rules: it is not a finitary rule, whereas
all the accepted rules in common deductive systems are finitary. Tarski then remarks
that a certain finitary version of the rule could be stated for theories in which suffi-
cient arithmetic can be constructed; letB(P) be an arithmetical sentence of the theory
coding (by means of a G̈odel numbering) the statement that all the numeral instances
of a predicateP can be proved in the theory by means of a certain antecedent set of
rules; and letC(P) be the universal generalization of that predicate (relativized to the
natural numbers). Then the rule thatC(P) is deducible fromB(P) is a quite compli-
cated to state, but finitary rule for the language of the theory in which arithmetic can
be constructed, and we can add it to the antecedent set of rules of the theory. (Notice
that the fact that all numeral instances of a predicateP are deducible by means of the
antecedent rules does not imply by itself that a sentenceB(P) is deducible by the an-
tecedent rules.) But Tarski immediately takes importance away from the suggestion
of supplementing the old system of rules by means of a formalized finitaryω-rule.
He points out that in view of G̈odel’s incompleteness theorem, no matter how many
new finitary rules or axioms we add to the theory, and to successive finitarily sup-
plemented extensions of the theory, it will still remain an incomplete theory, in fact
anω-incomplete theory. This discussion is enough to show that “in order to obtain
the proper concept of consequence, which is close in essentials to the common con-
cept, we must resort to quite different methods and apply quite different conceptual
apparatus in defining it” (Tarski [30], p. 413).

The different methods and the different conceptual apparatus that Tarski has in
mind are going to be “the methods which have been developed in recent years for the
establishment of scientific semantics, and the concepts defined with their aid” ([30],
p. 414; a footnote refers us to Tarski’s monograph on truth). Tarski begins his prelim-
inary analysis with two “considerations of an intuitive nature,” which are: (a) when
asentenceX follows from a classK of sentences, “it can never happen that both the
classK consists only of true sentences and the sentenceX is false” ([30], p. 414), and
(b) this “consequence relation cannot be affected by replacing the designations of the
objects referred to in these sentences by the designations of any other objects” ([30],
p. 415). The justification for (b), according to Tarski, is that logical consequence is
the same asformal consequence, “a relation which is to be uniquely determined by
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the form of the sentences between which it holds” ([30], p. 414). Tarski then says
that (a) and (b) “may be jointly expressed” in a necessary condition for the relation
of consequence to hold betweenK andX, which we quote in full:

(F) If, in the sentences of the classK and in the sentenceX, the constants—
apart from purely logical constants—are replaced by any other constants (like
signs being everywhere replaced by like signs), and if we denote the class of
sentences thus obtained fromK by ‘K ′’, and the sentence obtained fromX by
‘ X ′’, then the sentenceX ′ must be true provided only that all sentences of the
classK ′ are true ([30], p. 415).

(The ‘F’ of “condition (F)” most probably stands for ‘form(ality)’.) After the state-
ment of condition (F) Tarski adds, in parentheses:

For the sake of simplifying the discussion certain incidental complications are
disregarded, both here and in what follows. They are connected partly with the
theory of logical types, and partly with the necessity of eliminating any defined
signs which may possibly occur in the sentences concerned, i.e., of replacing
them by primitive signs ([30], p. 415).

According to Tarski, if condition (F) were not only necessary for the relation
of consequence to hold, but also sufficient, the problem of giving a satisfactory def-
inition of consequence would have been solved, since “the only difficulty would be
connected with the term ‘true’ which occurs in the condition (F). But this term can
be exactly and adequately defined in semantics” ([30], p. 415). However, reflection
shows that condition (F) is not in general a sufficient condition.

This condition may in fact be satisfied only because the language we are dealing
with does not possess a sufficient stock of extra-logical constants. The condi-
tion (F) could be regarded as sufficient for the sentenceX to follow from the
classK only if the designations of all possible objects occurred in the language
in question. This assumption, however, is fictitious and can never be realized
([30], pp. 415-416).

(Tarski does not explain in the paper why the assumption “is fictitious and can never
be realized.” As we will see, other passages of the paper and of Tarski’s contemporary
work suggest that he has in mind certain denumerable languages in which arithmetic
can be developed. None of these languages can contain “designations,” primitive or
defined, of all properties of natural numbers.)

It is also through semantics that, according to Tarski, we can overcome this diffi-
culty. As he has said earlier, the main idea of the definition of logical consequence is
not going to be original, and is implicit in the work of many contemporary and earlier
logicians; but, as Tarski also has said, only using the recent precise definitions of the
semantic concepts can that idea be developed in an exact manner (see [30], p. 414).
To suggest how this can be done is the main purpose of Tarski’s paper. The key idea
is that instead of considering all replacements of extra-logical constants by other con-
stants, we should consider all possible reinterpretations of the extra-logical constants.
This can be done in a way satisfactory to Tarski with the help of the semantic notion
of satisfaction, which he had just shown how to define in his monograph on truth.
Using the notion of satisfaction, we can define the notion of model or realization of
a class of sentencesL in the following way. First we replace in a uniform way all the
extra-logical constants inL by variables (of a corresponding grammatical category).



130 MARIO GÓMEZ-TORRENTE

In this way we obtain a corresponding class of sentential functionsL′. Then “an ar-
bitrary sequence of objects which satisfies every sentential function of the classL′

will be called amodel or realization of the class L of sentences (in just this sense one
usually speaks of models of an axiom system of a deductive theory)” ([30] p. 417).
Using in turn the notion of model, Tarski defines the concept of logical consequence:
“The sentenceX follows logically from the sentences of the classK if and only if
every model of the classK is also a model of the sentenceX” ([ 30], p. 417).

Tarski immediately adds that the two characteristics of the notion of conse-
quence incorporated in condition (F) can be shown to belong to the defined notion:

... it can beproved, on the basis of this definition, that every consequence of
true sentences must be true, and also that the consequence relation which holds
between given sentences is completely independent of the sense of the extra-
logical constants which occur in these sentences. In brief, it can be shown that
the condition (F) formulated above is necessary if the sentenceX is to follow
from the sentences of the classK ([29], p. 417).2

Hence, as was to be desired, if the defined relation of logical consequence holds for
a given pair〈K, X〉, then also condition (F), the condition of formality, holds for it.
(The proof is simple: suppose thatX follows logically from K according to the defi-
nition; then there is no model ofK which is not a model ofX; so there is no substitu-
tion instance〈K ′, X ′〉 of 〈K, X〉 such thatK ′ is true andX ′ is false; for if there were
one such, it would readily provide a model ofK that would not be a model ofX.)
Therefore, Tarski shows explicitly that his definition verifies at least this pretheoretic
desideratum. (Although this can be shown, the converse cannot; that is, it cannot be
shown that ifX andK satisfy (F) thenX follows from K according to Tarski’s def-
inition. But this is acceptable, since, as Tarski has already pointed out, (F) is not a
sufficient condition for the ordinary notion of consequence.)

3 Theories of arithmetic and logical theories

3.1 The initial perplexity The example ofω-incomplete theories is the only exam-
ple considered by Tarski in order to motivate his definition of logical consequence.
According to Tarski, it seems intuitively certain that the universal sentenceA follows
“in the usual sense” from the set of sentencesA0, A1, etc., and yet it is not derivable
from them “by means of the normal rules of inference.” This example is likely to
cause some initial perplexity, for, under the usual first-order formalizations of arith-
metic (where numerals are terms in which only extra-logical constants occur), a sen-
tence of the form ofA is not a model-theoretic consequence of a set of sentences of
the formsA0, A1, etc. More perplexity can be added if we reflect on the fact that for
first-order languages G̈odel’s completeness theorem assures us that the relations of
model-theoretic consequence and of derivability by means of a few normal rules of
inference coincide in extension. Etchemendy expresses this perplexity in passages
like this: “...Tarski’s examples involve the consequence relation for first-order lan-
guages, where the model-theoretically defined relation coincides with the syntacti-
cally defined relation. How can a semantic account be judged extensionally superior
to the usual syntactic characterization if the two are, in fact, extensionally equiva-
lent?” (Etchemendy [10], p. 85).3
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Etchemendy’s solution to this perplexity is “the flexibility Tarski allows in our
choice of ‘logical’ constants. Clearly, if we choose to treat the numerals ‘0’, ‘1’,
‘2’, ..., as logical constants, as well as the quantifier ‘every natural number’, then
sentenceA will come out a consequence of the infinite sentencesA0, A1, A2, . . .;
after all, any set that contains each natural number contains every natural number”
(Etchemendy [8], p. 73; see also [10], p. 85). But immediately Etchemendy goes on
to argue that Tarski’s flexibility in the choice of logical constants results in some se-
rious problems for his definition:

Gödel sentences are a bit trickier,4 due to their potential variety: all we can re-
ally say is that they will indeed come out as consequences of their corresponding
theories if we treat all expressions of the language as logical constants. Unfor-
tunately, this involves a certain trivialization of Tarski’s analysis. For with this
choice of logical constants, a true sentence is a logical consequence ofany set
of sentences whatsoever. This in fact points up a serious weakness in Tarski’s
account. It is clear that any given instance of the intuitive consequence relation
can be made out to be a “Tarskian” consequence, at least on some selection of
logical constants. But as soon as we extend this selection beyond the standard
constants we also introduce many Tarskian consequences that arenot instances
of the intuitive relation ([8], p. 73).

Here Etchemendy adds a footnote: “This problem actually comes up even with the
standard selection of logical constants. Note, for instance, that on Tarski’s account
[‘ ∃x∃y(¬x = y)’] is a logical consequence of any set of sentences, as long as ‘∃’,
‘¬’ and ‘=’ are treated as logical constants” ([8], p. 73).

The correct solution to our perplexity is, however, more complicated. It does
not consist in attributing to Tarski a nonstandard selection of logical constants in first-
order arithmetic, but in observing that, when he gave his motivating example, he was
not claiming that a version of theω-rule in first-order arithmetic is valid. In the re-
mainder of this section we will take a closer look at the sort ofω-incomplete theories
that Tarski has in mind. A proper understanding of this matter will allow us to assess
Etchemendy’s claim that, if we are to make sense of Tarski’s examples of intuitive
cases of logical consequence, then his definition becomes trivial and even extension-
ally incorrect; to provide this assessment is one of the objectives of Section 4.

3.2 Logical languages and the formalization of arithmetic As a point of depar-
ture, it is necessary to call attention to the fact that Tarski intends his definition to be
applicable to a wide variety of formal languages. As he says, he introduces his pro-
posal as “a general method which, it seems to me, enables us to construct an adequate
definition of the concept of consequence for a comprehensive class of formalized lan-
guages” ([30], p. 414). He of course thinks that his definition must be applicable to
first-order languages, as well as to second- and higher-order languages of mathemat-
ical theories which contain primitives denoting mathematical notions, but he is also
thinking of what we might call purely “logical” theories.

In a footnote, Tarski refers the reader “for a detailed description of a theory
with this peculiarity [ω-incompleteness]” ([30], p. 410, note) to a paper of his en-
titled “Some observations on the concepts ofω-consistency andω-completeness,”
published in 1933 (in the same journal where Gödel had published his papers on the
completeness and the incompleteness theorems). We will not go over this paper in
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great detail, but we will describe briefly the theory for which the observations of the
paper are made and to which Tarski refers in the paper on logical consequence. The
theory is basically a simple theory of types. The symbols of its language are nega-
tion, the conditional, and the universal quantifier as logical primitives or constants,
and infinitely many variables in each type. From these symbols formulas are con-
structed under certain appropriate type restrictions. In the theory there is a typical set
of axioms for the propositional connectives and the quantifier, axioms of comprehen-
sion for each type, axioms of extensionality for each type, and an axiom of infinity.
This axiom guarantees the existence of an infinity of objects of the lowest type, or
individuals, but without specifying anything about their nature; this is spoken of in
some works of the time as the “logical” sense of ‘individual’. The rules of inference
for the theory are substitution, detachment, universal instantiation, and universal gen-
eralization.

If we exclude the axiom of infinity, this theory is essentially the one that Gödel
uses as a basis to formalize arithmetic in his incompleteness paper of 1931, and also
essentially what Hilbert and Ackermann call the “calculus of levels” in the second
edition of their logic manual; they use the theory also in a formalization of rational
number theory in which real number theory can be developed (see Hilbert and Ack-
ermann [16], pp. 121ff.; what they call the calculus of levels in the first edition of
that book is what we would now see as a ramified theory of types with axioms of
reducibility). But both G̈odel and Hilbert and Ackermann use this simple theory of
types as a basis for the formalization of these mathematical theories, not as a theory
on its own. Thus, G̈odel takes as the domain of individuals (the range of the vari-
ables of the lowest type) of his theory the natural numbers (hence, not individuals
in a “logical” sense); Hilbert and Ackermann take the rational numbers. Gödel adds
to the merely logical primitives of the calculus of levels some primitives of natural
number arithmetic; Hilbert and Ackermann add some primitives of rational number
arithmetic. And finally, G̈odel takes the Peano axioms, including a second-order ren-
dering of the axiom of induction, as primitive axioms of his theory; Hilbert and Ack-
ermann take some suitable axioms for rational number arithmetic as primitive axioms
of theirs.

In several works of this period Tarski too uses a simple type theory as what he
calls a “logical basis” for the formalization of several different mathematical disci-
plines. In the resulting theories, mathematical primitives are superimposed on a more
“logical looking” basis in which only the traditional logical primitives appear. How-
ever, in [24], to which he refers in the paper on logical consequence, Tarski takes the
simple theory of types as a theory of its own, without arithmetical or any other math-
ematical primitives. In this theory, assuming that the axiom of infinity is of a logi-
cal nature, arithmetic can be developed within or reduced to “logic” in a well known
fashion. For our purposes, it is enough to stress that in this theory only primitives of
a distinctly logical nature appear (negation, the conditional, and the universal quan-
tifier). Thus, the axioms, and in particular the axiom of infinity, are formulated with
the help of only logical constants (and variables of all the types; in the case of the ax-
iom of infinity only variables of the lowest types are needed). Arithmetical notions,
including each numeral and the predicate ‘to be a natural number’, are defined with
the help of only logical primitives, and so sentences which contain only arithmetical
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primitives come to contain, under the reduction, only logical primitives. Finally, the
arithmetical axioms are derived as truths expressed in terms of the logically defined
notions. A theory of this sort isω-incomplete, and G̈odel’s incompleteness results ap-
ply to every consistent extension of it,5 as Tarski points out at the end of [24]. Here
he also advances in a sketchy form the idea that Gödel’s investigations show that “the
formalized concept of consequence will, in extension, never coincide with the ordi-
nary one” ([24], p. 295).

In the footnote of [30] where he refers us to Tarski [24], Tarski also mentions
a discussion of the topic in his 1933 paper on the concept of truth. The reference is
to Section 5 of this paper, where Tarski presents what he calls the “general theory of
classes” (a theory like the one of [24], i.e., a simple type theory with axioms of com-
prehension, extensionality, and infinity). It is precisely after noting that arithmetic can
be developed within this theory (see [27], pp. 249ff.) that Tarski makes a shy remark
in a footnote, submitting the idea that Gödel’s results may show that the formalized
concept of consequence does not coincide with the proper concept (see [27], p. 252).

The references to the theory of Tarski [24] and to the “general theory of classes”
of [27] are not the only ones which reveal that Tarski, against what Etchemendy says,
does not have in mind first-order formalizations of arithmetic in his paper on logical
consequence. This point is confirmed by an accurate reading of other passages of the
paper. Thus, in a footnote, Tarski notes that whereas already in [24] he had pointed
out that the concept of consequence formalized by logicians did not coincide with the
“proper concept” (precisely because of the phenomenon ofω-incompleteness), in that
paper he “had expressed [himself] in a decidedly negative manner about the possibil-
ity of setting up an exact formal definition for the proper concept of consequence”
([30], p. 413, note 2). The reason for this was that, at that point, Tarski accepted only
limited mathematical resources for use in metamathematical investigations. Namely,
he accepted mathematical resources which enabled him to define the semantic con-
cepts (truth, satisfaction, etc.) only for languages of finite order (first-order, second-
order, etc.), but not for the language of the (simple) theory of types (which is, in fact,
a language of infinite order; sometimes, as in the English translation of Hilbert and
Ackermann [16] (Hilbert and Ackermann [17]), it is called the “calculus of orderω”).
Tarski implies that now he accepts in metamathematics enough mathematics (in fact,
enough set theory) to enable him to define truth, satisfaction, and therefore logical
consequence for the full language of the theory of types. He explains in detail the
changes in his point of view about this matter in the Postscript to the German trans-
lation of his monograph on truth (published in 1935); in this work, it is emphasized
throughout that, in the metatheory adopted, the concept of truth can be defined only
for languages of finite order, and the example for which the definition is given and
most results are proved is a fragment of the simple theory of types in which the only
quantifiers range over classes of individuals (cf. note 10 of the present paper).

Another indication that Tarski has in mind the “general theory of classes” when
he writes the paper on logical consequence is provided by his parenthetical remarks
after his statement of condition (F) (see Section 2 above); it seems that he intends
the first remark to rule out the possibility that we replace a predicate by a predicate
of a different type. The remark concerning the necessity of eliminating defined signs
could be seen as a natural worry if Tarski were thinking of the arithmetical constants
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of his motivating example as being defined by means of logical constants; if they ap-
pear as abbreviations they should not be mistaken for mathematical primitives. No
such worry would exist if Tarski were thinking of the numerals and the predicate ‘to
be a natural number’ as primitives and logical constants.

It can be amply documented that in the works of this period Tarski reserves his
most inclusive use of the word ‘logic’ for a system of logic based on the theory of
types like the ones described above of [24] or [27]; such a “logic” is a system, there-
fore, in which arithmetical constants can be defined in terms of logical constants, and
arithmetic developed as logic. Thus, in Tarski’s elementary logic manual, published
in German in 1937 (revised, enlarged, and translated into English in 1941), we find
remarks like the following:

‘ ... it turns out that the notion of number itself and likewise all other arithmetical
concepts are definable within the field of logic. It is, indeed, easy to establish
the meaning of symbols designating individual natural numbers, such as ‘0’,
‘1’, ‘2’ and so on. The number 1, for instance, can be defined as the number of
elements of a class which consists of exactly one element....Nor is it hard to
define the general concept of a natural number: a natural number is the cardinal
number of a finite class. We are, further, in a position to define all operations
on natural numbers, and to extend the concept of number by the introduction
of fractions, negative and irrational numbers, without, at any place, having to
go beyond the limits of logic. Furthermore, it is possible to prove all the theo-
rems of arithmetic on the basis of laws of logic alone (with the qualification that
the system of logical laws must first be enriched by the inclusion of a statement
which is intuitively less evident than the others, namely, the so-calledaxiom of
infinity, which states that there are infinitely many different things). This en-
tire construction is very abstract, it cannot easily be popularized and does not
fit into the framework of an elementary presentation of arithmetic; in this book
we also do not attempt to adapt ourselves to this conception and treat numbers
as individuals and not as properties or classes of classes. But the mere fact that
it has been possible to develop the whole of arithmetic, including the disciplines
erected upon it—algebra, analysis and so on—, as a part of pure logic, consti-
tutes one of the grandest achievements of recent logical investigations” ([32],
p. 81; the English text is an almost literal translation of the German text, for
which see [31], pp. 50–51).

In this passage it is very clear what is Tarski’s most comprehensive use of the term
‘logic’, at least in this period. His emphasis on the definability in logical terms of the
numerals and of the concept of natural number is important for us to note. It is also
interesting to note Tarski’s remark that in his book he does not present mathematical
theories in the logical fashion for reasons of simplicity and pedagogy.

3.3 Logical constants and arithmetical constants Also in Tarski’s manual, we
find very significant remarks about the distinction between logical and arithmetical
constants (the distinction, that is, when the arithmetical constants are taken as primi-
tives, for reasons of simplicity or other reasons, as in Tarski’s elementary manual or in
Gödel [12]). In a section entitled “The specifically mathematical expressions and the
logical expressions; mathematical logic” in the German edition, and “Logical con-
stants; the old and the new logic” in the English edition, Tarski says:

The constants with which we have to deal in each mathematical discipline may
be divided in two big groups. The first group consists of the expressions of a
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specifically mathematical character. In the case of arithmetic, for example, they
are terms denoting either individual numbers or whole classes of numbers, re-
lations between numbers, operations on numbers, etc....In mathematical state-
ments, however, there are also expressions of a much more general character,
expressions which are met constantly both in considerations of everyday life
and in every possible field of science, and which represent an indispensable
means for conveying human thoughts and for carrying out inferences in any
field whatsoever; such expressions as ‘not’, ‘and’, ‘or’, ‘is’, ‘every’, ‘some’
and many others belong here. There is a special discipline, namelylogic, con-
sidered the basis for all other sciences, whose concern it is to make precise the
content of such concepts and to lay down the most general laws in which these
concepts are involved ([31], p. 12, my translation; for the text of the English
edition, which I have followed as closely as possible, see [32], p. 18).

This text adds support to the view that Tarski would not be naturally thinking
of including arithmetical expressions as logical constants when they appear as prim-
itives of a formalization of arithmetic. This is, in fact, the standard terminological
usage. The same distinction appears implicitly in a note in Tarski’s paper on the con-
cept of truth. Here, after presenting the “general theory of classes” (see above), he
compares it with G̈odel’s system “P” of [12] (see above), and says: “Apart from cer-
tain differences of a ‘calligraphical’ nature, the only distinction [between the system
P and the general theory of classes] lies in the fact that in the system P, in addition
to three logical constants, certain constants belonging to the arithmetic of the natural
numbers also occur” (Tarski [27], p. 248).

In [30], Tarski leaves as an open problem the question of characterizing the sets
of logical constants of those languages to which his definition of logical consequence
is applicable (see [30], pp. 418–419). The problem is a problem because the applica-
bility of Tarski’s definition to a particular language presupposes a previous division
of the terms of the language into logical and extra-logical. However, this situation is
tolerable, and the need for such a definition is not urgent, because, as Tarski says in a
letter of 1944, “it is clear that for all languages which are familiar to us such defini-
tions [of ‘logical term’ and ‘logical truth’] can be given (or rather: have been given);
moreover, they prove fruitful, and this is really the most important. We can define
‘logical terms’, e.g., by enumeration” ([33], p. 29).

In 1966, in a lecture that would not be published until after his death, Tarski
returned to this problem, advancing a tentative definition of the concept of logical
constant. I will not discuss Tarski’s proposal of 1966 in detail here, but I will make
some remarks relevant to our current discussion. As one might expect, this defini-
tion has three important properties: (1) it is generally applicable to the wide range
of languages to which Tarski’s definition of logical consequence is applicable, (2) it
generates the usual extension of logical constants for a language like that ofPrin-
cipia; and (3) it generates the usual extension of logical constants in languages with
mathematical primitives and intended models whose universes of discourse contain
“nonlogical” individuals. Tarski suggests that we call logical notions of an interpreted
language those notions invariant under all one-one transformations of the universe of
individuals onto itself (see [34], p. 149). The first language used by Tarski to test
the appropriateness of the definition is, not surprisingly, the language of the theory of
types ofPrincipia Mathematica (see [34], pp. 150–151). In [26], originally published
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in 1935, Tarski and Lindenbaum had proved that all the notions which can be defined
in Principia are invariant under all permutations of the universe of individuals.6 That
is, the classes of individuals, relations of individuals, classes of classes of individuals,
etc., which can be defined in the theory of types stay the same after any permutation
of the universe of individuals. In general, Tarski and Lindenbaum’s theorem guar-
antees that all mathematical notions definable in the logicist fashion in the theory of
types are logical notions.

However, when the proposed definition is applied to formalizations of mathe-
matical theories with undefined mathematical primitives and intended models whose
universes of discourse contain “non-logical” individuals, it declares extra-logical the
notions denoted by these primitives. Tarski’s example is set theory formalized in first-
order with a single primitive predicate for membership and a universe of discourse
to which all sets belong (together with other individuals, orUrelemente; see [34],
p. 153). Obviously membership is not invariant under all permutations of a universe
of individuals which contains all sets, so it is not declared a logical notion by Tarski’s
proposed definition. (A unary primitive predicate whose intended extension was the
class of all sets would not be logical either, provided that the domain of individuals
contained at least some thing which is not a set.) If we apply Tarski’s definition to a
typical first-order formalization of arithmetic, we obtain the result that individual no-
tions, like the number 0, and unary functions other than the identity function, like the
successor function, are not declared logical. Hence none of the numerals in a standard
first-order formalization of arithmetic are logical constants under Tarski’s proposal.
(A unary primitive predicate whose intended extension is the set of natural numbers
would not be logical either, provided that the domain of individuals contained some
objects other than natural numbers.)

3.4 Conclusion If the arithmetical expressions are not logical constants when they
are primitives of our formalization of arithmetic,A will not be declared a logical con-
sequence of the set of sentencesA0, A1, etc. by Tarski’s definition (many interpreta-
tions of ‘to be a natural number’ and of ‘0’, ‘1’, ‘2’, etc. will make all the sentences
of the infinite set true butA false). The solution suggested by the textual evidence is
that when he gives his motivating example Tarski is not thinking of the arithmetical
expressions as primitives, but as defined terms; defined, that is, with the help of log-
ical constants, within the framework of a sufficiently powerful logical theory. If the
predicate ‘to be a natural number’ and the numerals ‘0’, ‘1’, ‘2’, etc. are defined in the
logicist fashion within the framework of an appropriate logical theory,A will follow
from the set of sentencesA0, A1, etc. according to Tarski’s definition, since the only
extra-logical constants subject to reinterpretation in the test for logical consequence
will appear, if there are any, in the predicateP. And any class that contains all the
logically defined “numbers” will include the class denoted by the logically defined
predicate ‘to be a natural number’, since this will be no other than the class of all the
logically defined “numbers.”7

Let us conclude this section by considering a seeming objection that might be
posed to Tarski’s informal conception of the logical correctness of theω-rule. This
objection might be put as follows: if the inferences licensed by a version of theω-rule
are correct, then they should be declared logically correct under any formalization of
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arithmetic, whether it is a formalization in the logicist fashion or a first-order formal-
ization with the numerals and the predicate ‘to be a natural number’ as extra-logical
primitives; hence, the objection would conclude, either Tarski’s definition is wrong
or it must resort to nonstandardness in the choice of logical constants, since it does
not declare logically correct those inferences in a first-order formalization.

This objection is no better grounded than the false thesis that a correct argu-
ment should be logically correct under any of its formalizations. It is a familiar point
from introductory logic courses that some correct arguments are logically correct un-
der some formal renderings but not under some other, less discriminatory ones. ‘All
Greeks are human and all humans are mortal, so all Greeks are mortal’ is a correct
argument, but only some of its formal renderings are logically correct; e.g., the ar-
gument with premise ‘p & q’ and conclusion ‘r’ in a propositional language is not
logically correct, but the argument with premise ‘∀x(Gx → Hx) & ∀x(Hx → Mx)’
and conclusion ‘∀x(Gx → Mx)’ i n afirst-order language is logically correct. This
is a good way to see that neither we nor Tarski are under any constraint to accept the
thesis that if one version of theω-rule is logically valid then all its versions, and in
particular first-order versions, are logically valid as well. And there is no indication
at all that Tarski ever considered such a thesis. We have seen that, as a matter of fact,
the logical validity of theω-rule is asserted by Tarski only when he discusses versions
of it in the simple theory of types. Tarski did not think that first-order versions of the
ω-rule were logically valid. He thought only that some of its versions in the simple
theory of types were.

4 Truth in all domains and the domain of logic

4.1 The problem of domain variation We have seen that one of the perplexities
likely to appear when reading [30] is created by Tarski’s insistence on the idea that
the proper concept of consequence cannot coincide with a syntactically defined con-
cept of consequence, whereas Tarski should have known perfectly well that Gödel’s
completeness theorem guarantees the coincidence of the model-theoretic and the syn-
tactic concepts for first-order languages. We have also seen how this perplexity dis-
appears if we note that Tarski is not trying merely to define the notion of consequence
for sentences of first-order languages, but also for other languages, and in particular,
in his motivating example, for a quite powerful logical theory in which a great deal of
mathematics can be developed; here, it is also a result of Gödel, namely, the first in-
completeness theorem, that guarantees that the syntactically defined concept cannot
exhaust the model-theoretic concept.

Therefore Tarski does not reserve his most inclusive use of the term ‘logic’ sim-
ply for higher-order logic, as we understand this concept today, but for a theory with
more powerful assumptions, especially an axiom guaranteeing the infinity of the do-
main of “logical” individuals (of which he speaks as less evident than the others).
As we have seen and we will still have occasion to see, the acceptance of this strong
“existence assumption” as a truth of logic in a certain use of the term ‘logic’ does not
seem to trouble Tarski excessively. But all this leaves us wondering what Tarski’s
position was at the time regarding the properties of logical consequence and logical
truth for mathematical theories couched in first-order, second-order, and in general
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finite order languages, in which the notion of individual is not logical and undefined
mathematical primitives appear; for the standard model-theoretic definitions of these
properties are such that no sentence is declared a logical truth which asserts the exis-
tence of a number of individuals greater than one.

Etchemendy repeatedly insists on a point that we should consider here. Tarski’s
definition of logical consequence in [30] declares logically true (or, logical conse-
quences of any set of sentences) those sentences which are true for all interpretations
of their extra-logical constants. No mention is made of changing the domain of indi-
viduals when testing for logical truth or logical consequence.8 Leaving the domain
invariant in the test would have the effect that many assertions about the cardinality
of the domain of the intended interpretation of the language, which can be expressed
with the help of just logical constants, would be declared logically true by Tarski’s
definition (read word for word). We saw already that Etchemendy gives the example
of the first-order sentence ‘∃x∃y(¬x = y)’, which, if Etchemendy’s point is right, will
be declared logically true as long as our point of departure in the test for its logical
truth is a language whose intended interpretation includes a domain of two or more
individuals.

This, according to Etchemendy, is a “flaw” of Tarski’s definition of which Tarski
was “surely aware” (see Etchemendy [8], p. 73). Also according to Etchemendy, this
supposed flaw was “no doubt partly responsible” for Tarski later “giving up” his defi-
nition of logical consequence of 1936. Etchemendy infers that Tarski gave up this def-
inition from the fact that in later work (viz. [35]) he gives the standard model-theoretic
definition of logical consequence for first-order languages, including an explicit men-
tion of changing the domain of the interpretations. But it is extremely doubtful that
Tarski saw himself as proposing different definitions in [30] and [35], for here he
refers the reader again to [30] and [27] “for formal definitions and a detailed dis-
cussion of semantical notions (satisfaction, truth, logical consequence, logical truth)”
([35], p. 8, note 7). Despite this, Etchemendy pictures Tarski as choosing to define
logical consequence in 1936 without requiring domain variation. And this even in
view of the fact that, as Etchemendy himself says, Tarski could not have failed to no-
tice that in this way his definition would differ essentially from that “presupposed” by
Gödel’s proof of the completeness theorem for first-order logic (and also by Hilbert
and Ackermann, who described the problem of finding such a proof and proposed it
as an open problem in Hilbert and Ackermann [15] (see p. 68)).

4.2 Truth in all domains and logical truth A more balanced appreciation of the
real situation concerning this set of issues is again more complicated than the one
Etchemendy’s reading provides. We may start by repeating the simple point that first-
order logic is only a very limited part of what Tarski is thinking of as logic when he
writes the paper on logical consequence. The same is true for Hilbert and Ackermann,
who are among the first to single out first-order logic, but only as a simple and useful
fragment of logic; logic is also taken by them to include the calculus of levels.9 Prob-
ably the same could be said of Gödel; in any case, his proof for first-order languages
that the notion of a sentence true in every individual domain coincides extensionally
with that of a sentence derivable in a certain calculus, cannot have been seen at the
time as a proof that the notion of provable sentence coincides with that of logically
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true sentence; for this latter concept was taken to be more inclusive than the concept of
sentence of first-order logic true in every individual domain. Furthermore, although
many of the sentences that Tarski and Hilbert and Ackermann are willing to accept as
logically true in higher-order languages are true in every individual domain, they are
ready (with caution) to accept as a logical truth within the framework of the “general
theory of classes” a higher-order sentence containing only logical constants which ef-
fectively states that the cardinality of the domain of “logical” individuals is infinite
(as we saw and we will again see in Tarski, and can be seen in Hilbert and Acker-
mann [15], p. 88). From this axiom of infinity, any first-order sentence asserting that
the domain of logical individuals contains at least a certain finite number of elements
would follow logically, and therefore would be generously considered logically true
by Tarski within the context of a logical theory like the general theory of classes.

However, it is extremely important to note that Tarski was also perfectly aware
of the idea that the term ‘logic’ might be understood so that there would not be among
logical truths any assertions about the cardinality of the universe of individuals (even
of “logical” individuals). We find some illuminating remarks of Tarski about this
point in his article on truth, at the end of Section 4, in which he has discussed in a
general setting “the concept of true sentence in languages of finite order.” Here he
speaks sympathetically of understanding logic in this more restricted fashion, in the
context of a discussion of deductive theories which are “parts of logic,” or fragments
of logic (see [27], p. 239). He first points out that

[in sciences that are part of logic] the concept of correct sentence in every indi-
vidual domain...deserves special consideration. In its extension it stands mid-
way between the concept of provable sentence and that of true sentence; the
class of correct sentences in every domain contains all theorems and consists
exclusively of true sentences.... This class is therefore in general narrower than
the class of all true sentences; it contains, for example, no sentences whose
validity depends on the magnitude of the number of all individuals.... If it
is desired to transform the system of the provable sentences of every science
[which is a part of logic] into a complete one, it is necessary at the outset to add
sentences to the system which decide the question how many individuals exist
([27], p. 240).

Tarski is observing here that when we take a theory which is a part of logic, the class
of its sentences true in every individual domain will in general (but not always, as
Tarski will soon point out) be more inclusive than the class of provable sentences,
and less inclusive than the class of true sentences. Although it is far in some respects
from the example Tarski has in mind, we can give as an example of one such theory
the pure second-order language of identity without extra-logical primitives;10 it is rel-
evant to remark that this theory, like the one Tarski has in mind, would be taken by
Tarski to be a purely logical theory, a part of logic. In this language many sentences
which are true in every individual domain are not provable on the basis of aprima fa-
cie fairly comprehensive set of axioms and rules of inference for second-order logic
(for example, it is well known that there is a sentence of this language which is true in
every individual domain if and only if the continuum hypothesis is true, and another
which is true in every individual domain if and only if the continuum hypothesis is
false; neither sentence is provable in a standard calculus for second-order logic, but
one of them must be true in every individual domain). A sentence of this language
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like ‘∃x∃y(¬x = y)’ i s atrue sentence about “logical” individuals that is not true in
every individual domain. In the last sentence of the text just quoted, Tarski is saying
that in order to make complete a theory (or “science”) which is part of logic, it is nec-
essary to add to it sentences of its language which decide the cardinality of the domain
of individuals; otherwise, sentences that can be formulated only with the help of log-
ical constants, like ‘∃x∃y(¬x = y)’, may be undecidable in the theory investigated
(neither it nor its negation will be provable). And he continues:

But for various reasons another point of view seems to be better established,
namely the view that the decision regarding such problems should be left to the
specific deductive sciences, whilst in logic and its parts we should try to ensure
only that the extension of the concept of provable sentence coincides with that
of correct sentence in every individual domain. For a supporter of this stand-
point the question whether the extension of these two concepts is actually identi-
cal is of great importance. In the case of a negative answer the problem arises of
completing the axiom system of the science studied in such a way that the class
of provable sentences thus extended now coincides with the class of sentences
which are correct in every domain. This problem, which properly is equivalent
to the question of structurally characterizing the latter concept, can be positively
decided only in a few cases...[footnote:] In the case of the lower functional cal-
culus this problem, which is raised in Hilbert and Ackermann [15], p. 68, has
recently been decided by Gödel, see [11] ([27], p. 240).

Tarski is here speaking pretty sympathetically of the view that logic (“and its
parts”) should care only to prove sentences which are true in every individual do-
main (but not endorsing the view completely, as we are about to see; notice also the
“seems” in the first sentence, and the noncommittal reference to “a supporter of this
standpoint”). According to this view, sentences with implications about the cardinal-
ity of the domain of individuals (even if they contain only logical vocabulary) are to
be postulated or provedonly within the special sciences formalized with the help of
logic. Tarski also notes that in only a few cases the problem of the coincidence of the
notion of sentence true in every individual domain and that of provable sentence can
be solved in the affirmative. We know, for example, that the answer is negative for
the pure second-order language of identity. And significantly, Tarski notes that one
case in which the answer is affirmative is the calculus of first-order logic, inserting a
reference to G̈odel’s 1930 article.

Despite these sympathetic remarks, we have only to turn one page in Tarski’s pa-
per on the concept of truth to find him introducing the same system of logic of [24],
already described above; that is, a simple theory of types with axioms of comprehen-
sion, extensionality, and infinity. Here this theory is called, as we have seen, “gen-
eral theory of classes,” and is characterized as “noteworthy because, in spite of its
elementary structure and its poverty in grammatical forms, it suffices for the formu-
lation of every idea which can be expressed in the whole language of mathematical
logic” ([27], pp. 241–242). That is, the general theory of classes, or the theory of [24],
comprehends all the parts of logic; it can, in fact, be identified with logic. About the
axiom of infinity, we find the following remark, in a footnote: “In adopting the axiom
of infinity we admittedly give up the postulate according to which only the sentences
which are correct in every individual domain are to be provable sentences of logic
[here Tarski asks the reader to see the text quoted above (i.e., [27], p. 240)]” ([27],



TARSKI ON LOGICAL CONSEQUENCE 141

p. 243).11

On the logical status of the axiom of infinity there were many discussions at the
time. Probably the most extended view was that it was not a truth of logic, properly
speaking; this was Russell’s view, which had led him to state in conditional form the
theorems ofPrincipia that depend on a postulate of infinity, with such a postulate as
antecedent. But as we have seen, many mathematical logicians of the time did not
have much trouble accepting the postulate properly as an axiom of logic. Moreover,
philosophers of a logicist persuasion exhibited a natural self-serving tendency to li-
cense its inclusion among logical principles. Thus Hempel, in his 1945 paper: “the
axiom of infinity does not belong to the generally recognized laws of logic; but it
is capable of expression in purely logical terms and may be treated as an additional
postulate of logic” (Hempel [14], p. 389); or Carnap, who in [1] puts forward an in-
terpretation of his “language II” according to which existential assumptions like the
axiom of infinity assert not the existence of a certain quantity of objects, but of “po-
sitions,” the existence of a certain quantity of positions being a logical question (see
Carnap [2], pp. 140ff.); or Ramsey, who in his 1925 paper interpreted Wittgenstein as
having shown that assertions about the cardinality of the universe of individuals are
either tautological or contradictory (although for most of them, including the axiom
of infinity, we do not know what their status is), which gives us all reason to believe
that the axiom of infinity is a tautology (see Ramsey [21], pp. 59ff.).

All these considerations suggest that Tarski’s viewpoint was more sophisticated
than Etchemendy concedes. In particular, it does not seem charitable enough to pic-
ture Tarski as believing that sentences expressing facts about the cardinality of the do-
main of individuals are not logical truths, realizing that his definition of logical conse-
quence declares some such sentences logical truths (hence that it was “flawed”), and
despite all this still going ahead and proposing the definition. It is more accurate to
see Tarski as proposing a definition sufficiently general to be able to include as a spe-
cial case a notion of logical consequence and logical truth established by the normal
usage of mathematical logicians. This was a usage with which he had no excessive
problems in agreeing, according to which the theorems of a powerful logical theory
like the general theory of classes come to be considered truths of logic. However,
as we have seen, Tarski was also perfectly aware that logic, and its fragments, could
be understood as theories without cardinality assumptions. The theory of classes, in
particular, could be stripped of the axiom of infinity. The resulting theory would be
such that all its theorems would be true in all individual domains.

4.3 Mathematical theories and domain variation Tarski naturally intended his
definition to be applicable not only to purely logical theories, but also to mathematical
theories with special mathematical primitives and postulates. In the works of this pe-
riod Tarski considers several mathematical theories formalized using a logical appara-
tus, or ‘logical basis’, to use Tarskian terminology, without any cardinality assump-
tions. Generally, this logical basis for formalization is again the calculus of levels,
but without the axiom of infinity (this is also, as we saw, the “logic” of Gödel [12]);
sometimes it is the calculus of first-order. In these formalizations: (1) the domain of
objects of the mathematical theory is either identified with the domain of individuals
or taken to be defined by a primitive extra-logical predicate (which does not apply to



142 MARIO GÓMEZ-TORRENTE

other members of the individual domain); and (2) besides purely logical constants,
there are some mathematical primitives denoting objects in the intended domain of
mathematical objects or relations on the intended domain of mathematical objects (for
examples in which the logical basis is the calculus of levels see Tarski [23], originally
published in 1931, and [26]; for examples of theories formalized in first-order, see
Tarski [25] and [29], the latter originally published in 1936). These languages are
not purely logical, for they contain undefined extra-logical primitives; and they do
not assume a purely “logical” notion of individual, since the objects of the intended
domain of mathematical objects are taken to be objects of a certain nature. In these
cases Tarski does not take any assumptions about the cardinality of the domain of in-
dividuals to form part of the underlying logic of the theory alone, although of course
the properly mathematical axioms of the theory may constrain the cardinality of its
possible interpretations. This is only natural, because it is intuitively not the business
of the underlying logic to decide how many individuals of a certain nature (natural
numbers, real numbers, points) there are.

If we follow Etchemendy, we are led to conclude that Tarski’s definition declares
logically true sentences like ‘∃x∃y(¬x = y)’ or aformulation of the axiom of infinity
in the theory of types, which contain only logical constants, provided that theintended
interpretation of the language involves a domain with a sufficient number of individu-
als. This is so, according to Etchemendy, because Tarski’s definition does not contem-
plate reinterpretations of the language in which the domain of individuals varieswith
respect to the domain of the intended interpretation. Etchemendy criticizes this con-
sequence of the definition on the basis of a tacitly subscribed view of logic, accord-
ing to which assertions expressing facts about domain cardinality cannot be logical
truths. But if Etchemendy’s were a correct reading, the definition would have an even
more serious defect. The definition would lead to contradiction. Suppose that one day
we are engaged in studying, with our logic without prior cardinality assumptions, a
certain interpretation of a set of axioms that admits of intended interpretations of dif-
ferent cardinalities, and also that this fact can be “expressed” in the language of the
theory. To be more definite, suppose that we have a first-order formalization of the ax-
ioms for Boolean algebra, and that we are studying a Boolean algebra of two elements
which we take to be an intended interpretation for the axioms. Applying Tarski’s def-
inition we would conclude that the sentence ‘∃x∃y∃z(¬x = y & ¬x = z & ¬y = z)’
does not follow from the set of axioms for Boolean algebra. Suppose that the day af-
ter we are studying an infinite Boolean algebra. Then applying Tarski’s definition we
would conclude that ‘∃x∃y∃z(¬x = y & ¬x = z & ¬y = z)’ follows from the set of
axioms for Boolean algebra. Tarski’s definition would not be merely flawed; it would
be useless, under any conception of logical truth.

The crucial point that we must acknowledge here is, of course, that sentences
like ‘∃x∃y(¬x = y)’ and ‘∃x∃y∃z(¬x = y & ¬x = z & ¬y = z)’, or an axiom of in-
finity expressed with purely logical constants, mean different things in interpretations
with different individual domains. In one interpretation ‘∃x∃y(¬x = y)’ will mean
that there are two natural numbers, in another that there are two real numbers, and
so on. Only if the intended interpretation of the theory has as its domain the collec-
tion of all “logical” individuals (of the world) will ‘∃x∃y(¬x = y)’ mean “there are
two things,” and in this case we have seen that Tarski and others would be happy to
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call it a logical truth. But clearly sentences meaning “there are two natural numbers,”
“there are two real numbers,” and so on, should not be logical truths of the underlying
logic for axiomatic first-order theories of the natural numbers, the real numbers, and
so on. Etchemendy’s argument, however, can be used to establish that Tarski’s def-
inition declares the corresponding sentences logically true, since Tarski’s definition,
Etchemendy argues, does not allow for variation of the individual domain in the test
for logical consequence.

But this objection to Tarski’s definition would be out of place if Tarski had in
mind mathematical theories in whose canonical formulation the domain of objects of
the intended interpretation or interpretations is the extension of a primitive predicate
of the language of the theory. Assuming that to specify a domain for an interpretation
is nothing but to give an interpretation for such a predicate, Tarski’s definition would
allow for domain variation in the test for logical consequence. Under this assump-
tion, sentences like ‘∃x∃y(¬x = y)’ would not be declared logical truths, because
they would be mere unofficial abbreviations for other sentences with relativized quan-
tifiers (‘∃x∃y(Nx & Ny & ¬x = y)’, for example). It is natural to picture Tarski as
having in mind the idea that the domain of the intended model or models is denoted
by an extra-logical predicate, but without even thinking of formulating or caring to
formulate this as an explicit requirement for the applicability of his definition.

A look at Tarski’s logic manual [31], where the importance of making clear
all unofficial assumptions (to the beginner) is especially obvious, shows that indeed
Tarski had in mind such a canonical formulation of mathematical theories and, fur-
thermore, that he saw domain variation in the test for logical consequence as change
in interpretation of a primitive predicate. Thus, he sets up a very simple first-order
theory for pedagogical purposes of illustration (Tarski calls it a “miniature theory”),
whose language has the symbols ‘S’ and ‘∼=’ as primitives. “The former is an abbre-
viation of the term ‘the set of all segments’; the latter designates the relation of con-
gruence” ([32], pp. 120–121; see also [31], pp. 84–85). The axioms of the theory are:
“Axiom 1. For any elementx of the setS, x ∼= x.... Axiom 2. For any elementsx, y
andz of the setS, if x ∼= z andy ∼= z, thenx ∼= y” ([ 32], p. 121; see also [31], p. 85).
Tarski then describes, with words reminiscent of [30], the first step on the way to the
notion of a model of such a theory: turning its axioms and theorems into sentential
functions.

Let us replace the primitive terms in all axioms and theorems of our theory by
suitable variables, for instance, the symbol ‘S’ by the variable ‘K’ denoting
classes, and the symbol ‘∼=’ by the variable ‘R’ denoting relations.... Thestate-
ments of our theory will then be no longer sentences, but will become sentential
functions which contain two free variables, ‘K’ and ‘R’, and which express, in
general, the fact that the relationR has this or that property in the classK ([32],
p. 122).

Tarski goes on to introduce the notion of a model of a theory, not as a general notion,
but using his “miniature” theory as an example:

If a relationR is reflexive and has the propertyP in a classK [i.e., that for any
elementsx, y andz of the classK, if xRz and yRz, thenxRy], we say thatK
andR together form amodel or arealization of the axiom system of our theory,
or, simply, that they satisfy the axioms ([32], p. 123; see p. 122 for “property
P”).
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In the next pages, Tarski shows that Axioms 1 and 2 have different models and how
using some of these one can show that a certain sentence does not follow from the
axioms.

Weshould remember at this point that just after defining the notion of a model of
a set of sentences in his paper on logical consequence, Tarski says, using almost the
same words he uses in his manual, that “in just this sense one usually speaks of mod-
els of an axiom system of a deductive theory” ([30], p. 417). This “usual sense” of
‘model’, which can be abundantly illustrated with many examples taken from Tarski’s
contemporary work, is the usual sense of ‘model’ according to which one specifies a
model for a theory when one specifies both adomain and certain objects and relations
in the domain as the meanings of the primitive symbols of the theory, and it is also,
as we have just seen, the notion of model introduced in Tarski’s manual.

It can be amply documented that many of the theories containing mathemati-
cal primitives that Tarski formalizes (with the help of a logical basis without cardi-
nality assumptions) explicitly contain extra-logical predicates which are true of all
the objects in the domain of the intended interpretation (or interpretations, in alge-
braic theories) of the theory. All the first-order theories Tarski gives in the examples
of [31] contain a primitive symbol for the universe of discourse (see [31], pp. 84ff.,
and [32], pp. 120ff.), whose interpretation varies each time that a new model of the
theory is given. The (second-order) theory of real arithmetic he describes in [31] con-
tains the primitive predicate ‘Zl’ (for the German ‘Zahl’), meaning intuitively “to be
a real number” (see [31], pp. 98ff.). In [28], a 1935 paper on Boolean algebra, the
language of the theory contains a primitive predicate ‘B’ which Tarski reads as “the
universe of discourse.” Similar predicates appear in other papers on algebraic theo-
ries, where the multiplicity of intended models of the theory (with different domains
of different cardinalities) is the natural theoretical situation.

We also must not forget other examples of contemporary investigations con-
ducted by Tarski in which results about the class of all interpretations of a theory
are proved. Of special significance is, I believe, the brief note of 1934 in which an
anonymous editor ofFundamenta Mathematicæ announces on behalf of Tarski, with-
out proof, what is now known as the upward Löwenheim-Skolem-Tarski theorem for
first-order languages, and other results obtained by Tarski and presented in a semi-
nar taught by him in 1927–1929.12 In this note the author mentions two examples of
theories formulated in first-order languages whose intended interpretations have de-
numerable domains, but that also possess other nonisomorphic, denumerable models
in which the domain is different from that of the intended interpretation.13 The third
result stated in the note is the “upward” theorem, which guarantees the existence of
models of all infinite cardinalities for first-order theories with countably infinite mod-
els; therefore, and hence its special significance for us, a theorem asserting the exis-
tence of models of different cardinalities for one and the same first-order mathemat-
ical theory. If Tarski is working with the “usual sense” of model when he proves the
results of [25] and when he writes [30], it is not natural to think that in one case he al-
lows models of different cardinalities for a theory and in the other case he does not.14

These are very strong considerations in favor of a reading “between the lines” of
the definitions of model and logical consequence in Tarski [30]. It should not be for-
gotten that the paper is a summary of an address to a philosophical audience, and that
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Tarski may not have made the effort to be precise in a point that he probably took for
granted.15 The supposition that Tarski did not contemplate domain variation is nearly
impossible to reconcile with his contemporary work. A more explanatory supposition
is that hedid contemplate domain variation, but was not sufficiently explicit about it,
for reasons which can be understood in view of the preceding explanations.

5 Tarski’s definition in context The considerations of the preceding two sections
help us understand some of the main motivations behind Tarski’s proposal of his def-
inition of logical consequence. One of these motivations was the need to offer a def-
inition generally applicable to the formalized languages familiar to mathematical lo-
gicians, that agreed as much as possible with the “ordinary usage” among them of
the notion of logical consequence. This involved giving a definition that could be
applied to mathematical theories formalized in first-order languages, in second- and
higher-order languages, and in a language with infinitely many types of variables, like
the language of the general theory of classes. His definition accomplished this, since
the notions involved in its application to these languages (satisfaction, model, logical
constant) could be precisely defined (or, in the case of the notion of a logical con-
stant, characterized by enumeration of the logical constants, following established
usage). And it accommodated fairly well ordinary mathematical use of informal no-
tions; in particular, it did not require any nonstandard treatment of domain variation
in its application to, e.g., mathematical theories formalized in first-order languages
with mathematical primitives.

Another important motivation for Tarski derived from the fact that some of the
languages to which the definition should be applicable, like the language of the gen-
eral theory of classes, were thought to be sufficiently powerful to codify and develop
all of classical mathematics. A test for the adequacy of a definition of logical conse-
quence would be whether, for the language of the general theory of classes, it declared
consequences of all sets of sentences all the true sentences of classical mathematics
(or, to be more exact, the sentences which, under the appropriate “translation,” ex-
press truths of classical mathematics). This test could not be passed by any “syntac-
tic” definition of logical consequence, in view of Gödel’s incompleteness theorem,
applicable to the general theory of classes. That is why Tarski stresses that for all
appropriate languages, the notion of a sentence true in all interpretations (or, equiva-
lently, of a sentence that follows from every set of sentences) coincides in extension
with the notion of an analytical sentence, as this term had been defined in “general
syntax” by Carnap (see [1], pp. 135ff., or [2], pp. 182ff.; for Tarski’s statements about
the equivalence of truth in all interpretations and “analyticity,” see [30], p. 418). Car-
nap’s definition guaranteed that for all appropriate languages, like his “language II,”
all the truths of classical mathematics are analytical, and the proof of the equivalence
of the notion of analyticity thus precisely defined with the notion of truth in every
interpretation must probably have been seen by Tarski as bearing philosophical sig-
nificance.

That this was one of Tarski’s motivations may come as a surprise, since the gen-
eral view nowadays is that any theory powerful enough to develop some substan-
tive mathematics (not to say all of classical mathematics) does not deserve the title
“logic,” and its truths do not deserve the title of “logical truths” (or of “logical con-
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sequences” of any set of sentences). In some cases, this general view may even have
been fostered by G̈odel’s incompleteness theorem, since it is perhaps a reasonable
stipulation on the meaning of the expression ‘logical truth’ that the set of logical truths
of a language like the language of the general theory of classes must be recursively
enumerable; and it is one of the consequences of Gödel’s theorems that the set of sen-
tences of this language true in an interpretation with an infinite basis of individuals is
not recursively enumerable.

But we know that Carnap reacted to Gödel’s discoveries by concluding not that
they meant an objection to the logicist program broadly conceived, but that they made
untenable the identification of the concept of logical truth with an effective concept
of deducibility or derivability within some fixed formal system. That is why, in part
under the influence of Tarski, Carnap developed in his [1] definitions of noneffec-
tive concepts which, in the appropriate languages, included in their extension all the
(translations of the) truths of classical mathematics. Instead of thinking that Gödel’s
results showed that not all mathematical truths are (under some appropriate transla-
tion) logical truths, Carnap and Tarski thought that they showed that the notion of
logical truth is not an effective notion.16 The opening pages of Tarski [30] should be
read in this light.

Carnap’s definition of analyticity in [1] was not intended to capture the general
notion of “truth by virtue of meaning” in natural language; this concern will appear in
Carnap only in subsequent years. It was not a concern of Tarski either. Etchemendy’s
misinterpretation of the example of sentenceA as a consequence of the set of sen-
tencesA0, A1, etc. is in part dictated by the assumption that Tarski’s definition intends
to capture the notion of “implication by virtue of meaning” of the expressions selected
as logical constants (in the example, the numerals and the predicate ‘to be a natural
number’). Our interpretation showed that Tarski did not think of this as an example
of consequence in virtue of the meaning of the expressions involved (an example of
analytical entailment, among many others of ordinary language), but as an example
of logical consequence in a certain strict sense (namely, in the sense of consequence
in which only the logical constants ofPrincipia Mathematica appear essentially). It
is important to stress the fact that Tarski was not trying to capture with his definition
the notion of implication by virtue of meaning, since it might perhaps be easy to crit-
icize the adequacy of Tarski’s definition relying on an identification of the “proper
concept” of logical consequence with the concept of analytical implication.

However, Carnap’s justification for using the loaded term ‘analytical’ for his de-
fined notion in [1] was obviously that all the sentences falling under its extension
were supposed to possess certain epistemic or modal properties (to bea priori, to say
nothing about the world, etc.). It is unlikely that Tarski ever thought that a justifi-
cation for his definition might lie in the fact that it delimited some epistemically or
modally privileged set of sentences.17 Wehave the testimony of Carnap according to
which already in 1930, when Tarski and Carnap met for the first time, “in contrast to
our [the Vienna Circle’s] view that there is a fundamental difference between logical
and factual statements, since logical statements do not say anything about the world,
Tarski maintained that the distinction was only a matter of degree” (Carnap [3], p. 30).
Tarski’s skepticism towards epistemically or modally loaded notions was therefore
much earlier than the writing of his papers on semantics (where it can also be sensed,
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for example in [30], p. 420). And it is not likely that he changed his mind in the thirties
(or at any other time), for in 1940–1941 we find him siding with Quine against Car-
nap on a famous polemic concerning the analytic-synthetic distinction. One of the
things that Tarski and Quine argued against Carnap was that the notions of logical
truth and of truth of classical mathematics, even if philosophically problematic, were
indispensable notions that could be precisely characterized, but that the notion of ana-
lytical implication was “an unexplained notion that we were not committed hitherto,”
as Quine says in a letter of 1943 to Carnap that discusses the meetings of 1940–1941
(Quine [20], p. 296).

These considerations suggest that criticisms of Tarski’s definition based on its
inadequacy to capture (either intensionally or extensionally) some epistemically or
modally loaded notion, cannot be seen as arguments for the inadequacy of Tarski’s
definition to accommodate Tarski’s motivations. Of course, our considerations do
not suggest that these criticisms, in themselves and not as criticisms of Tarski, cannot
be correct. However, it is equally important to point out that Tarski’s definition ac-
commodated his main motivations, and that the concept defined precisely for a wide
variety of formal languages by Tarski mirrored in very significant ways the informal
logical usage of the notion of consequence concerning those same languages. It is in
this way that the remarks made in this paper point to a positive justification of the ad-
equacy of Tarski’s definition. Its adequacy, that is, for the task of characterizing a cer-
tain pretheoretically important notion, with marked and distinctive features grounded
in ordinary logical usage.
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NOTES

1. A structural rule is informally characterized by Tarski as one “in which only the exter-
nal structure of sentences is involved” ([30], p. 410). Pending further clarification of the
notion of a structural rule (which Tarski acknowledges to be necessary; see [30], p. 413,
note 1), theω-rule that Tarski immediately is going to consider would appear to satisfy
the informal characterization. But probably Tarski is including other typical character-
istics of the ordinary rules, such as their finitary nature, as part of the intended meaning
of ‘structural’.

2. For a more elaborate discussion of this passage than the one provided here, see my [13].

3. The perplexity caused by Tarski’s remark about the intuitive logical validity of theω-
rule (together with the fact that its formalization in first-order arithmetic is not model-
theoretically valid) appears also in Sher [22], in the context of a more sympathetic read-
ing of Tarski than Etchemendy’s. According to Sher, “the sentence ‘For every natural
numbern, Pn’ seems to follow, in some important sense, from the set of sentences ‘Pn’,
wheren is a natural number, but there is no way to express this fact by the proof method
for standard first-order logic. This situation, Tarski says, shows that proof theory by it-
self cannot fully accomplish the task of logic” (Sher [22], p. 38). However, all the sense
she seems to make of Tarski’s remark is that “although the relation between the set of
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sentences ‘Pn’ and the universal quantification ‘(∀x)Px’, wherex ranges over the nat-
ural numbers and ‘n’ stands for a name of a natural number, is not logical consequence,
we will be able to characterize it accurately within the framework of Tarskian semantics,
e.g., in terms ofω-completeness” (Sher [22], p. 39).

4. It is not clear what they are trickier than, sinceA might itself be a “G̈odel sentence”; in
fact, Gödel proved in [12] theω-incompleteness of a certain formalization of arithmetic,
for the “Gödel sentence” is a sentence of the form ofA all of whose numeral instances
are provable in G̈odel’s formalization of Peano arithmetic. Etchemendy is perhaps mak-
ing a distinction between undecidable sentences of the form ofA and other undecidable
sentences.

5. It seems clear that G̈odel proved his results for a system with the arithmetical symbols
as primitives for reasons of simplicity (among perhaps others), but a great part of their
significance at the time (especially for philosophers sympathizing with logicism) was
based on the fact that they could be easily seen to apply to the theory of types ofPrincipia
Mathematica, which was the logical framework of reference at the time (as well as to
other theories, more powerful mathematically, in which arithmetic could be developed,
like Zermelo’s set theory).

6. The converse is false, for there are nondenumerably many such invariant notions, but
only denumerably many are definable in the theory of types. This is surely the expla-
nation for Tarski’s use of ‘logical notion’ instead of ‘logical term’ or ‘logical constant’.
But of course, a logical term can be readily defined as a term (or, perhaps, a primitive
term) which defines a logical notion.

7. This will be so regardless of the cardinality of the universe of individuals, even though
only if this universe is infinite will the class of logically defined “numbers” be infinite
(hence the need for the axiom of infinity in the logicist formalization of arithmetic). If the
universe of individuals is finite, the class of logically defined “numbers” will be finite,
but it will still be the class denoted by the logically defined predicate ‘to be a natural
number’.

8. That no apparent mention of domain variation is made in Tarski’s definition was also
emphasized in some papers by Corcoran (see [5], p. 43 and [6], p. 70).

9. The history of how first-order logic became isolated as a useful and interesting fragment
of more comprehensive and powerful logical languages is documented in Moore [19].

10. The example Tarski has in mind involves quite a few complications, and we can de-
scribe it only superficially. The example is the “calculus of classes,” for which most of
the results of Tarski [27] are proved. This is syntactically a first-order language without
identity and with a binary predicate interpreted intuitively as the predicate of inclusion
between classes. The theory includes a standard calculus for first-order logic and a set
of postulates for inclusion given for the first time by Huntington. According to Tarski,
“the calculus of classes is a fragment of mathematical logic” ([27], p. 168). The predi-
cate of inclusion is taken as a logical constant very much like identity; its extension in a
particular interpretation of the language is determined simply by the domain of individ-
uals of the interpretation, which determines in turn its domain of classes. However, the
variables of the language range over the domain of classes of the interpretation, so the
semantics of the language is not a standard first-order semantics; this is possible only be-
cause the concept of class is “logical,” in the sense that any domain is taken to determine
univocally a set of classes (of individuals in that domain).

There is a sentence of the language of the calculus of classes thus formalized which is not
provable in the calculus, and which intuitively says that every nonempty class includes
a class of one element. But this sentence is true in every individual domain. It turns out
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that, when it is added as an axiom, the set of provable sentences becomes the same as
that of the sentences true in every individual domain. In the language of the calculus of
classes there are sentences which express facts about the cardinality of the domain of
individuals (and which are not provable in the theory); thus, the sentence ‘∃x∃y∃z(x ⊆
y & ¬y ⊆ x & y ⊆ z & ¬z ⊆ y)’ i s true in a domaind if and only if d contains at least
two elements, and simply true if the number of (“logical”) individuals is at least two.

11. In fact, a more accurate translation of the German text of this footnote probably would
be: “Since we accept the axiom of infinity, we of course give up the postulate accord-
ing to which only the sentences which are correct in every individual domain must be
provable sentences of logic.”

12. In two historical surveys of early model theory and Tarski’s work in model theory,
Vaught, who was a close associate of Tarski, points out that the series of works by
Tarski on semantical concepts (definability, truth, logical consequence), which culmi-
nates in [27] and [30], sprang from Tarski’s unhappiness about the imprecise available
ways for stating the results proved in the 1927–1929 seminar (see Vaught [36], pp. 160ff.
and [37], pp. 870ff.).

13. The first theory is the first-order theory of the ordinal typeω with a sign for the natural
relation of order among ordinals; the second, “Presburger arithmetic,” the first-order the-
ory of the whole numbers with a sign for the number one as distinguished object, and a
sign for the relation of addition. On these examples, and for other references to Tarski’s
early work on the model theory of some first-order theories, see Tarski [29], §5 and ap-
pendix.

14. The point that the L̈owenheim-Skolem-Tarski theorem presents problems for Etche-
mendy’s view on domain variation is also stressed in Sher [22], p. 41.

15. A similar conjecture is made, without historical support, in Hodges [18], p. 138.

16. The development of Carnap’s ideas on the matter in reaction to Gödel’s results is docu-
mented in Coffa [4], especially pp. 285ff.

17. Etchemendy, however, has made the claim that Tarski tried to argue that thedefined con-
cept of logical consequence had certain modal (or epistemic) properties, and that, in the
course of this argument, he committed a simple modal fallacy (see Etchemendy [10],
pp. 85ff.). This claim of Etchemendy is based again on an incorrect reading of Tarski’s
relevant texts; I have pointed this out elsewhere (cf. [13]).
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