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Arithmetically Saturated Models of Arithmetic

ROMAN KOSSAK and JAMES H. SCHMERL

Abstract The paper presents an outline of the general theory of countable
arithmetically saturated models of PA and some of its applications. We con-
sider questions concerning the automorphism group of a countable recursively
saturated model of PA. We prove new results concerning fixed point sets, open
subgroups, and the cofinality of the automorphism group. We also prove that
the standard system of a countable arithmetically saturated model of PA is de-
termined by the lattice of its elementary substructures.

1 Introduction Recent work on automorphisms of countable recursively saturated
models of PA has revealed the importance of those models in which the standard nat-
ural numbers form a strong cut. In Kossak and Schmerl [9] we called such models
arithmetically saturated, and Proposition 2.4 below explains why.

The aim of this paper is to outline the basic theory of arithmetically saturated
models of PA and to present new results illustrating the special character of these
structures. The special character of arithmetically saturated models was first noted
in Kossak [6]. It was shown there that arithmetic saturation for models of PA can
be characterized in terms of the existence of elementary initial segments with some
special properties. Later in Kaye, Kossak, and Kotlarski [3] it was proved that if M
is a countable recursively saturated model of PA then M is arithmetically saturated
iff there exists an automorphism of M that moves all nondefinable elements. Other
results where the assumption of arithmetic saturation, instead recursive saturation, is
needed can be found in Kossak, Kotlarski, and Schmerl [8].

One of the important, and somewhat surprising, results is the theorem of Las-
car [11], saying that countable arithmetically saturated models PA have the small in-
dex property.

In the next three sections of this paper we consider automorphisms and auto-
morphism groups of recursively saturated models of PA. The last section is devoted
to lattices of elementary substructures of arithmetically saturated models of PA.

In Section 3 we prove that, if M is a countable recursively saturated model of
PA, then M is arithmetically saturated if and only if Aut(M ) is finitely generated
over each of its open subgroups. Then, as a corollary of the results from Hodges et
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al. [1] and [11], we show that the cofinality of the automorphism group of a recur-
sively saturated model of PA is uncountable iff the model is arithmetically saturated.
It is an interesting open problem whether recursively saturated models of PA that are
not arithmetically saturated have the small index property. The above result seems to
suggest that they might not.

In Section 4 we consider automorphisms moving all nondefinable elements. We
show that if M is countable and arithmetically saturated model of PA, then there is
an automorphism f of M such that f (x) > x, for every x greater than all definable
elements of M . This is a strengthening of previously known results, and it leads to
some interesting open questions.

Kotlarski has asked in [10] if either the automorphism group or the elementary
substructure lattice of a countable recursively saturated model of PA determines the
model. We have shown in [9] that this is the case for the automorphism group of arith-
metically saturated models for any fixed complete extension of PA. More precisely,
if M and N are countable arithmetically saturated models of PA, then Aut(M ) ∼=
Aut(N ) implies SSy(M ) = SSy(N ). In the last section we will prove that the same
is true for lattices: the standard system of an arithmetically saturated model of PA (of
arbitrary cardinality) is determined by the lattice of elementary substructures of the
model.

2 Preliminaries Let us fix some notation and terminology. The set of standard nat-
ural numbers will be denoted by ω, N = (ω,+, ·, 0, 1) is the standard model, and TA
is Th(N). The standard system of a model M , SSy(M ), is the family of those X ⊆ M
for which there is an Y definable in M with parameters, such that X = ω ∩ Y . LPA

will denote the language of PA.
We will say that a type p(v̄, ā) in variables v̄ = v1, . . . , vn, and parameters ā =

a1, . . . , am ∈ M is recursive, arithmetic, etc., if the set of Gödel numbers of formulas
ϕ(v̄, w̄) ∈ p(v̄, w̄), where w̄ = w1, . . . , wm, is recursive, arithmetic, etc. In the same
sense we will speak of types as being subsets of ω.

The notion of A -saturation was introduced by Wilmers in [16]. Let A be a family
of subsets of ω. We say that a model M is A -saturated if the following two conditions
are satisfied: (i) for every ā ∈ [M ]<ω, the type of ā, tp(ā), is in A ; (ii) for every
type p(v̄, ā) in A , if p(v̄, ā) is realized in some elementary extension of M , then it
is realized in M .

A Scott set is an ω-model of WKL0. The standard system of a model of PA is
a Scott set; moreover, every countable Scott set is the standard system of a model of
PA. If T is a completion of PA, X is a countable Scott set and T ∈ X , then there is a
recursively saturated countable model M |= T such that SSy(M ) = X . Proofs of the
above statements can be found in Kaye [2].

The next proposition shows that a recursively saturated model of PA is much
more than just recursively saturated.

Proposition 2.1 (Smoryński [15]) A model M |= PA is recursively saturated iff M
is SSy(M )-saturated.

We will use a fixed arithmetical coding of finite sequences. If M is a model of PA
and a, i ∈ M , then (a)i denotes the i-th term of the sequence coded by a, and lena is
the length of the sequence coded by a.
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The standard cut ω is strong in M if for every a in M there is c > ω such that
for every i ∈ ω, (a)i ∈ ω ↔ (a)i < c.

Strong cuts were introduced and studied by Kirby in [4]. In particular Kirby
proved the following (see the the first section of [5] for a discussion and references).

Proposition 2.2 The standard cut is strong in a model M |= PA iff (ω, SSy(M )) |=
ACA0.

Definition 2.3 ([9]) For an arbitrary structure M in a recursive language L , we
say that M is arithmetically saturated if whenever �(v, u0, . . . , un) is a set of L-
formulas which is arithmetic in the type of (a0, . . . an) and a0, . . . , an ∈ M are such
that �(v, ā) is realized in some elementary extension of M , then �(v, ā) is realized
in M .

Our main characterization of arithmetic saturation follows directly from Proposi-
tions 2.1 and 2.2

Proposition 2.4 If M is a model of PA, then the following are equivalent:

1. M is arithmetically saturated;
2. M is recursively saturated and ω is strong in M ;
3. M is recursively saturated and (ω, SSy(M )) |= ACA0.

From the definition of arithmetic saturation it follows easily that for every model M
there is an arithmetically saturated model N such that M ≺ N and cardM = cardN .
Also from remarks preceding Proposition 2.1 and from Proposition 2.4 we have the
following corollary.

Corollary 2.5 If (ω, X ) is a countable model of ACA0, and T ∈ X is a completion
of PA, then there is a countable arithmetically saturated model M |= T such that
SSy(M ) = X .

Corollary 2.5 and well-known facts concerning ω-models of ACA0 imply that every
completion of PA has continuum many nonisomorphic countable arithmetically sat-
urated models.

There are many differences between the class of arithmetically saturated mod-
els and the class of recursively saturated models. Now let us just note the following
two observations. It is easy to see that every countable arithmetically saturated model
of PA has a countable cofinal extension that is not arithmetically saturated; thus, the
Smoryński-Stavi theorem on cofinal extensions does not hold when recursive satu-
ration is replaced by arithmetical saturation. If M is a cofinal extension of an arith-
metically saturated model, then M realizes all arithmetic pure types consistent with
Th(M ) (in fact all consistent with Th(M ) types with parameters in M ). This, to-
gether with the previous remark shows that in Definition 2.3, we need to assume that
�(u, u0, . . . , un) is arithmetic in a type of a tuple of elements of M , rather than just
arithmetic; compare this statement with Proposition 2.1. These deficiencies are com-
pensated for by many structural properties enjoyed only by arithmetically saturated
models. Theorem 2.6 below presents a list of such properties.

If M is a model of PA and ā ∈ [M]<ω, then K(M ; ā) is the Skolem closure of
ā in M . In particular, K(M ;0) is the set of definable elements of M . M (ā) will
denote the smallest initial segment of M containing K(M ; ā).
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Aut(M ) is the automorphism group of M , and for an automorphism f , fix( f )
is the set of fixed points of f .

A submodel K ≺ M |= PA is small (cf. [11]) if, for some a ∈ M , K = {(a)n :
n ∈ ω}. A straightforward argument shows that if M |= PA is recursively saturated
then, for every ā ∈ [M]<ω, K(M ; ā) is a small submodel of M . One can also show
that every such M has small submodels that are not finitely generated.

A subgroup H of the automorphism group of a model M is called basic open if
it is a pointwise stabilizer of a finite subset of M , and H is open if it contains a basic
open subgroup.

For every f ∈ Aut(M ), (fix( f ),+, ·, 0, 1) is an elementary substructure of M .
In the next theorem and in the following discussion we will identify fix( f ), with
(fix( f ),+, ·, 0, 1).

Theorem 2.6 Let M be a countable recursively saturated model of PA, and let G =
Aut(M ). Then the following are equivalent:

1. M is arithmetically saturated;
2. There is f ∈ G such that fix( f ) = K(M ;0);
3. There are f ∈ G and a small K ≺ M such that fix( f ) = K;
4. For every small K ≺ M there is f ∈ G such that fix( f ) = K;
5. There is f ∈ G such that fix( f ) is not isomorphic to M ;
6. There are f, g ∈ G such that fix( f ) is not isomorphic to fix(g);
7. There if f ∈ G such that fix( f ) ⊆ M (0);
8. There exist g ∈ G and an open subgroup H < G such that for every f ∈ G,

f −1g f /∈ H.

Proofs of (1) ↔ (4) and (1) ↔ (8) are given in [3] (see Corollary 5.4. and Theorem
5.7. there). Obviously (2) implies (5). All other implications follow from the next
proposition. The role of equivalence (1) ↔ (8) will be discussed in the next section.

Proposition 2.7 ([3]) If M is countable recursively saturated model of PA and M
is not arithmetically saturated, then, for every f ∈ Aut(M ), fix( f ) is isomorphic to
M .

Proposition 2.7 was not stated explicitly in [3], but from a slight modification of the
proof of Proposition 5.2 (ii) of [3] it follows that, under the assumptions of Propo-
sition 2.7, fix( f ) is recursively saturated and SSy(fix( f )) = SSy(M ), proving that
fix( f ) is isomorphic to M .

In Sections 3 and 4 we will add further properties to the list in Theorem 2.6.
Theorem 2.6 suggests the following question: For M |= PA countable and arith-

metically saturated, what is the set I (M ) of isomorphism types of structures of the
form fix( f ), f ∈ Aut(M )? We know that if M is recursively saturated but not arith-
metically saturated than I (M ) consists of one element: the isomorphism type of M .

Problem 2.8 Let M be a countable arithmetically saturated model of PA. What is
the cardinality of I (M )?

Let us note that, under the assumptions of the problem, not every N ≺ M is of the
form fix( f ). Since every countable model has only countably many small substruc-
tures, the result will follow from the next two propositions.
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Proposition 2.9 If M |= PA is recursively saturated and N ≺ M is small in M ,
then, for every f ∈ Aut(M ), fix( f ) ∩ N is small.

Proof: Let N = {(c)i : i ∈ ω}, for some c ∈ M . Let f ∈ Aut(M ) be given and let
c′ = f (c). Consider the type

{(v)i = (c)i : i ∈ ω and (c)i = (c′)i} ∪ {(v)i = 0 : i ∈ ω and (c)i 	= (c′)i}.

The type is finitely realizable in M , and it is recursive in tp(c, c′). Hence, it is realized
in M . If b realizes the type in M , then fix( f ) ∩ N = {(b)i : i ∈ ω}; hence, fix( f ) ∩
N is small in M . �

Proposition 2.10 If M |= PA is recursively saturated, then there exists a small
N ≺ M such that {K : K ≺ N } is uncountable.

Proof (Sketch): Without loss of generality we can assume that M is countable. Let
S be a partial inductive satisfaction class for M such that (M , S) is recursively satu-
rated. Let N consists of the points definable in (M , S). Then N is small in M , and
N is recursively saturated; hence N has 2ℵ0 elementary submodels. �
A major result concerning arithmetically saturated models of PA is due to Lascar:

Theorem 2.11 ([11]) If M is a countable arithmetically saturated model of PA and
G = Aut(M ), then, for every H < G, the index of H in G is countable iff H is open.

The property stated in Theorem 2.11, known as the small index property, can be used
to reduce problems concerning the automorphism group of a model to a priori easier
problems concerning automorphism groups equipped with the topology whose basic
open subgroups are the stabilizers of finite subsets of the model. Lascar’s theorem
was used in [9] in proving that the isomorphism type of a countable arithmetically
saturated model of PA is determined uniquely by its complete theory and its auto-
morphism group.

The “arithmetical” part Lascar’s proof of Theorem 2.11 is Lemma 2.13 below.
We will give a short proof of the lemma to illustrate the power of the concept of
arithmetic saturation. Our proof, although essentially the same as Lascar’s, is much
shorter, as we are using arithmetic saturation directly rather than various coding tech-
niques based on part (2) of Proposition 2.4. We need one more definition.

Definition 2.12 ([11]) If K ≺ M |= PA and f ∈ Aut(K), then f is existentially
closed if f = g � K for some g ∈ Aut(M ) and for every formula ϕ(x, y) with pa-
rameters in K and for every h ∈ Aut(M ), if h extends f and, for some x ∈ M ,
M |= ϕ(x, h(x)), then, for some x ∈ K, M |= ϕ(x, f (x)).

Lemma 2.13 ([11]) Let M be a countable arithmetically saturated model of PA.
Suppose c, d ∈ M are such that tp(c) = tp(d). Then there is a small K ≺ M and an
f ∈ Aut(K) such that: f (c) = d, c, d ∈ K, and f is an existentially closed automor-
phism of K.

Proof: Our task is to find a, b ∈ M coding sequences of nonstandard length, and
such that the following conditions are satisfied:

1. (a)0 = c, (b)0 = d, and tp(a) = tp(b);
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2. {(a)i : i ∈ ω} = {(b)i : i ∈ ω};
3. K = {(a)i : i ∈ ω} ≺ M , and f , defined by f ((a)i) = (b)i, is an existentially

closed automorphism of K.

Notice that conditions (1) and (2) imply that f , as defined in (3), can be extended to
an automorphism of M .

We will complete our task by first defining a sequence of finite approximations of
f , f0 ⊂ f1 ⊂ f2 . . . such that fn = ((a)0, . . . , (a)n) �→ ((b)0, . . . , (b)n), and then by
observing that the approximations yield the required a and b by arithmetic saturation.
The details will be left to the reader. In the descripition of the fn we have to require
that: tp((a)0, . . . , (a)n) = tp((b)0, . . . , (b)n) and that for some recursive increasing
sequence n �→ kn we have

{(a)i : i < kn} = {(b)i : i < kn}.

This will guarantee (1) and (2). To guarantee (3) we need a sequence of formulas
ϕn(w̄, x, y) in which every formula of LPA occurs infinitely often and such that for
some increasing sequence n �→ ln if there are x, y ∈ M such that

tp((a)0, . . . , (a)ln , x) = tp((b)0, . . . , (b)ln , y)

and M |= ϕn((a)0, . . . , (a)ln , x, y) then

M |= ϕn((a)0, . . . , (a)ln , (a)ln+1, (b)ln+1).

Let us now consider the type �(v,w, c, d) expressing that the map (v)i �→ (w)i :
i ≤ n has the properies of fn described above. The definition of this type depends on
the sequence ln : n ∈ ω. Now to finish the proof we must select a sequence ln that
will guarantee (3) and the consistency of �(v,w, c, d). But since these conditions
are arithmetic in the type of c and d, the sequence ln can be chosen to be arithmetic
in tp(c, d) and the result follows. �

3 Open subgroups of the automorphism group Equivalence (1) ↔ (8) of Theo-
rem 2.6 characterizes arithmetic saturation in terms of open subgroups of the auto-
morphism group of the model, and it was used in [3] to prove that there is no bicon-
tinuous isomorphism between the automorphism groups of two countable recursively
saturated models of PA of which only one is arithmetically saturated. Then, by Las-
car’s theorem, it follows that these groups cannot be isomorphic as abstract groups
(see [11]). In this section we will exhibit another characterization of arithmetic satu-
ration in terms of open subgroups. Roughly speaking it says that M is arithmetically
saturated iff every open subgroup of Aut(M ) is “large” in the sense that it generates
the whole group together with just one additional automorphism.

For the rest of this section let G = Aut(M ). For a ∈ M , G(a) = { f ∈ G : f (a) =
a} is the stabilizer of a.

Definition 3.1 Let a and b be elements of M |= PA. We will say that ∗(a, b) holds
in M if for every formula ϕ(x, y) of LPA if M |= ϕ(a, b) then M |= ϕ(a, c) for some
c ∈ K(M ;0).



ARITHMETICALLY SATURATED MODELS 537

In the standard model theoretic terminology ∗(a, b) means that tp(a, b) is an heir of
tp(a) over K(M ;0).

The next lemma is due to Lascar (personal communication); the proof is ours.

Lemma 3.2 If M |= PA is arithmetically saturated, then for all a, b ∈ M there is
b′ ∈ M such that tp(b′) = tp(b) and ∗(a, b′).

Proof: Let p(v) = tp(b). Consider the type �(a, v):

p(v) ∪ {ϕ(a, v) : ∀k ∈ K(M ;0) M |= ϕ(a, k)}.

Clearly, �(a, v) is arithmetic in p(v) and is consistent. It is easy to verify that if b′

realizes �(a, v) in M then ∗(a, b′). �

Lemma 3.3 If M |= PA is countable and recursively saturated and a, b ∈ M sat-
isfy ∗(a, b), then G(a) ∪ G(b) generates G.

Proof: Consider some f ∈ G and suppose that f (a) = c. Consider the recursive set
of formulas �(a, b, c, y) expressing that the pairs (a, b), (a, y), and (c, y) each real-
ize the same type. To see that �(a, b, c, y) is consistent, consider the sentence ϕ(a, b)

for which M |= ϕ(a, b). Since ∗(a, b) holds, there is a constant term d such that
M |= ϕ(a, d). But since a and c realize the same type, it follows that M |= ϕ(c, d).
This proves consistency of �(a, b, c, y).

Now let d ∈ M realize �(a, b, c, y). Let α ∈ G(a) be such that α(b) = d, and
let h ∈ G(d) be such that h(a) = c. Then α−1hα ∈ G(b), so that h = αβα−1 for some
β ∈ G(b). Then h−1 f ∈ G(a), so that f = hγ = αβα−1γ for some γ ∈ G(a). Therefore,
f is in the group generated by G(a) ∪ G(b). �

Lemma 3.4 Let M be a recursively saturated model of PA. Then for every a ∈ M
and every f ∈ G there is nonstandard d ∈ M such that for all i ∈ ω if (a)i < d, then
f ((a)i) = (a)i.

Proof: Let a′ = f (a). For every n < ω

M |= ∀i < n (a′)i 	= (a)i → (a)i > n.

Hence for some nonstandard d,

M |= ∀i < d (a′)i 	= (a)i → (a)i > d,

and the result follows. �

Theorem 3.5 Let M |= PA be countable and recursively saturated with automor-
phism group G = Aut(M ). Then M is arithmetically saturated iff whenever H < G
is open, then there is g ∈ G such that H ∪ {g} generates G.

Proof: Assume M is arithmetically saturated, and let H < G be open. Without loss
of generality we can assume that H = G(a) for some a ∈ M . Let b ∈ M be such that
tp(a) = tp(b) and ∗(a, b). Let g ∈ G be such that g(b) = a, and therefore g−1 Hg =
G(b), and therefore G is generated by H ∪ {g} by Lemma 3.3.
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Next, suppose that M is not arithmetically saturated. Let a ∈ M be a witness
to the failure of the standard cut being strong; that is there is no d ∈ M such that for
i ∈ ω, (a)i ∈ ω ↔ (a)i < d.

Let 〈b j : j ∈ ω〉 be a recursive list of all constant terms. By recursive saturation
there is b ∈ M such that (b) j = b j whenever j < ω. We now claim that we can impose
an additional requirement upon a: if (a)i = (b) j and i, j < ω, then (b) j < ω. If a does
not already have this property, then replace a with an element satisfying the recursive
and consistent set of formulas, the i-th formula of which asserts the following: (v)i

is the least element not in the set {(b) j : j ≤ (a)i}.
We can set H = G(a) and consider arbitrary g ∈ G, intending to show that H ∪

{g} does not generate G. Let d > ω be such that for all i < ω if (a)i < d then g((a)i) =
(a)i (Lemma 3.4).

Let i < ω be such that ω < (a)i < d, and let c = (a)i. Thus g(c) = c. By the
additional requirement imposed on a, c /∈ {(b) j : j < ω}, so c realizes a nonprincipal
type; therefore G(c) < G. But on the other hand, H = G(a) ≤ G(c) and g ∈ G(c) so
that H ∪ {g} does not generate G. �

Incidentally, Theorem 3.5 implies the following converse to Lemma 3.2: if M |= PA
is recursively saturated and if for all a, b in M such that tp(a) = tp(b) there is b′ such
that tp(b′) = tp(b) and ∗(a, b), then M is arithmetically saturated.

As a corollary of Theorem 3.5 we have a simple proof of the following.

Corollary 3.6 ([11]) If M1 and M2 are countable recursively saturated models of
PA and only one of the models is arithmetically saturated, then G1 = Aut(M1) and
G2 = Aut(M2) are nonisomorphic.

Proof: Suppose F : G1 → G2 is an isomorphism and assume that M1 is arithmeti-
cally saturated. We will show that M2 is arithmetically saturated as well. Let H < G2

be open, and let H1 = F−1[H]. Then [G2 : H] ≤ ℵ0, and therefore [G1 : H1] ≤ ℵ0.
Now since, by Lascar’s theorem, H1 is open in G1, by Theorem 3.5, there is g1 ∈ G1

such that H ∪ {g1} generates G1. Letting g2 = F[g1], we see that H ∪ {g2} generates
G2. Since H was an arbitrarily chosen open subgroup of G2 it follows from Theo-
rem 3.5 that M2 is arithmetically saturated. �

Theorem 3.5 has also the following corollary.

Corollary 3.7 If M |= PA is countable arithmetically saturated and Aut(M ) is the
union of a chain of proper subgroups, then none of the subgroups in the chain is open.

For an arbitrary group H which is not finitely generated, the cofinality of H, written
c(H), is the least cardinal λ such that H can be expressed as the union of a chain of λ

proper subgroups (cf. MacPherson and Neuman [12]). Equipped with Corollary 3.7
and the results of [11], one can repeat the proof of Theorem 6.1 of [1] to show that,
for every countable arithmetically saturated model M of PA, c(Aut(M )) > ℵ0. Here
we will show the converse.

Theorem 3.8 If M |= PA is countable recursively saturated but not arithmetically
saturated, then Aut(M ) is the union of a countable chain of proper basic open sub-
groups.
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Proof: Let a ∈ M be the witness to the failure of the standard cut being strong in
M , such that for every f ∈ Aut(M ) there is i < ω for which (a)i is nondefinable and
f ((a)i) = (a)i. We have defined such an a the proof of Theorem 3.5.

Let us define 〈c j : j < ω〉 as follows:

len(c j) = card{(a)k : (a)k ≤ (a) j},
where cardX, for X coded in M is the cardinality of X in the sense of M , and, for all
l < len(c j)

(c j)l =
{

(a)l if (a)l ≤ (a) j

0 otherwise.

Thus 〈c j : j ∈ ω〉 is a coded sequence, and, for all i < ω, ci < ω ↔ (a)i < ω. Also,
for i, j < ω, if c j > ω and ai < a j then, for all l < card{(a)k : (c j)k ≤ (c j)i} = len(ci),
we have

(ci)l =
{

(c j)l if (c j)l ≤ (c j)i

0 otherwise.

Hence ci is definable from c j.
It follows that, if (a)k0 > (a)k1 > . . . is a decreasing sequence of terms of the

sequence coded by a, where all ki’s are standard, then G(ck0
) < G(ck1

) < . . . .

It is easy to see that 〈c j : j ∈ ω〉 is a witness to the failure of the standard cut
being strong in M , having the property of the sequence coded by a mentioned above.
Hence, if infi<ω(cki ) = ω, then for every f ∈ Aut(M ) there is i < ω such that f ∈
G(cki

), and the result follows. �

Corollary 3.9 If M |= PA is countable and recursively saturated, then M is arith-
metically saturated iff c(Aut(M )) is uncountable.

Let us note that Corollary 3.6 is an immediate consequence of Corollary 3.9.
We finish this section with another characterization of arithemetic saturation that

is an immediate corollary of Theorems 3.5 and 3.8.

Corollary 3.10 If M |= PA is countable and recursively saturated, then M is
arithmetically saturated iff Aut(M ) is finitely generated over each of its open sub-
groups.

4 Moving all nondefinable elements The equivalence (1) ↔ (2) of Theorem 2.6
was proved in [3] by a back-and-forth argument that left open the following question:
if M is a countable arithmetically saturated model of TA, is there an f ∈ Aut(M )

such that, for every nonstandard x ∈ M , f (x) < x? The answer is affirmative, and
this section is devoted to the proof of it. We will formulate our result in a more general
form; a preliminary version of it has been published in Kossak [7], where it was mo-
tivated by an attempt to classify some conjugacy classes in Aut(M ). Here we want
to add another equivalence to the list in Theorem 2.6.

We will need a strengthening of the condition “ω is strong in M .”

Proposition 4.1 Let M be a recursively saturated model of PA, and let I =
sup{(a)n : n ∈ ω} for some a ∈ M be a cut of M . Then M is arithmetically sat-
urated iff for every b ∈ M there is d ∈ M such that for all i ∈ ω (b)i ∈ I ↔ (b)i < d.
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Proof: Assume M is arithmetically saturated. For I = supn∈ω(a)n, and b ∈ M con-
sider the type �(v, a, b)

{(a)n < v; n ∈ ω} ∪ {v < (b)n; ∀i ∈ ωM |= (a)i < (b)n}.

�(v, a, b) is arithmetic in tp(a, b), and it is finitely realizable in M . If d ∈ M realizes
�(v, a, b), then, for all i ∈ ω, (b)i ∈ ω iff (b)i < d.

To prove the converse, observe that without loss of generality we can assume
that, for all n ∈ ω, (a)n < (a)n+1. Then it is easy to see that the condition in the
lemma implies that ω is strong in M . �

The reader might find it helpful to know that the names of elements in the next two
lemmas are chosen with a back-and-forth construction in mind. We will be construct-
ing partial finite automorphisms ā �→ b̄.

If M is a model of PA and ā ∈ [M]<ω, then K∗(M ; ā) = K(M ; ā) \ M (0).
Recall that M (0) = sup K(M ;0).

Lemma 4.2 Let M be a recursively saturated model of PA, ā, b̄ ∈ [M]<ω, tp(ā) =
tp(b̄), and d ∈ M be such that M (0) < d < K∗(M ; ā). Then for every α > M (0)

there is d′ ∈ M such that d′ < α and tp(ā, d) = tp(b̄, d′).

Proof: Consider the type 	(v, ā, b̄, d, α):

{ϕ(ā, d) ↔ ϕ(b̄, v) : ϕ ∈ LPA} ∪ {v < α}.

If 	(v, ā, b̄, d, α) were inconsistent, then for some 
(w̄, v), such that M |= 
(ā, d),
we would have µ(b̄) = min{v : 
(b̄, v)} ≥ α > M (0), hence M (0) < µ(ā) ≤ d, a
contradiction. �

Lemma 4.3 If M is a recursively saturated model of PA ā, b̄ ∈ [M]<ω, tp(ā) =
tp(b̄), and c′, d, d′ are such that

M (0) < d < K∗(M ; ā) and M (0) < d′ < K∗(M ; b̄, c′),

then there is c ∈ M such that tp(ā, c) = tp(b̄, c′) and d < K∗(M ; ā, c).

Proof: By Lemma 4.2 we can assume that tp(ā, d) = tp(b̄, d′). Then notice that any
c ∈ M such that tp(ā, c, d) = tp(b̄, c′, d′) satisfies the requirements of the lemma. �

Now everything is prepared for the main theorem of this section.

Theorem 4.4 A countable recursively saturated model M |= PA is arithmetically
saturated iff there is an automorphism f of M such that, for every x ∈ M \ M (0),
f (x) < x.

Proof: If there is such an f then M must be arithmetically saturated by Theo-
rem 2.6. To prove the converse, let us assume that M is arithmetically saturated
and let us fix an enumeration of M \ M (0). Also, let 〈αn : n ∈ ω〉 be a decreas-
ing sequence of elements of M such that infn∈ω αn = M (0). At the n-th stage of
the construction of f we will have ā = (a0, . . . , a2n+1), b̄ = (b0, . . . , b2n+1), d̄ =
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(d0, . . . , dn), d̄+ = (d1, . . . , dn+1) such that the following inductive assumptions
hold:

tp(ā, d̄) = tp(b̄, d̄+);
M (0) < dn+1 < K∗(M ; ā, d̄);

dn+1 < αn+1.

Assume that we have ā, b̄, d̄, dn+1 as above. Let a = a2n+2 be the first element in the
enumeration of M \ M (0) not in ā, d̄. Using Lemma 4.2 we can find dn+2 such that
M (0) < dn+2 < K∗(M ; ā, a, d̄, dn+1), dn+2 < αn+2 and

tp(ā, d̄, dn+1) = tp(b̄, d̄+, dn+2).

Now, let b = b2n+2 ∈ M be such that

tp(ā, a, d̄, dn+1) = tp(b̄, b, d̄+, dn+2).

This finishes the “forth” step.
To do the “back” step first take b′ = b2n+3 to be the first element in the enumera-

tion of M \ M (0) not among b̄, d̄+, dn+2, and then use Lemma 4.3 to find a′ = a2n+3

such that

tp(ā, a, a′, d̄, dn+1) = tp(b̄, b, b′, d̄+, dn+2),

dn+2 < K∗(M ; ā, a, a′, d̄, dn+1).

To initiate the construction start with an arbitrary nonstandard d0 < α0 and d1 such
that M (0) < d1 < K∗(M ; d0) and d1 < α1. Notice that we are using arithmetic sat-
uration, as we need Lemma 4.1, where I = M (0), and b codes K(M ; ā), to make
sure that the assumptions of Lemmas 4.2 and 4.3 are satisfied at every stage of the
construction.

Now we can define f by letting f (ai) = bi and f (di) = di+1, for i ∈ ω. Then,
f determines an automorphism of M and, for every x ≤ d0, such that M (0) <

x, f (x) < x. To complete the proof notice that we must also have f (x) < x for every
x such that M (0) < x < f −n(d0) : n ∈ ω. But since K(M ; d0) < f −1(d0), the model
K = supn∈ω f −n(d0) is recursively saturated and it is elementary in M . Hence, it is
isomorphic to M and the result follows. �
Regarding Theorem 4.4 let us note the following. If M |= PA is a model with non-
standard definable elements, then for every f ∈ Aut(M ), such that, for some x1 <

a ∈ K(M ;0), f (x1) < x1, we have: for x2 = a − x1, f (x2) = a − f (x1) > x2. But
still a problem remains open. For a model M |= PA define the equivalence relation
R by: R(x, y) iff there are no definable z such that x < z < y or y < z < x. Let �(x)

be the equivalence class of x.

Problem 4.5 Suppose that M |= PA is countable and arithmetically saturated. Is
there an f ∈ Aut(M ) such that for every a ∈ M \K(M ;0) either, for every x ∈
�(a), f (x) < x or for every x ∈ �(a) f (x) > x?

The following generalization of Theorem 4.4 was proved in [7]. If I is an elementary
initial segment of a countable recursively saturated model M |= PA, then there is f ∈
Aut(M ) such that fix( f ) = I, and for all x > I, f (x) < x iff I is strong in M . The
proof is a slightly more elaborate version of the proof of Theorem 4.4 here.
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5 Lattices of elementary submodels For a model M |= PA let Lt(M ) be the lattice
of elementary substructures. Kotlarski [10] asks if Lt(M ) determines M when M is
countable and recursively saturated. The following theorem gives a partial answer to
this in the case of arithmetically saturated models.

Theorem 5.1 If M , N are arithmetically saturated models of PA and Lt(M ) ∼=
Lt(N ), then SSy(M ) = SSy(N ).

The theorem will follow from a series of lemmas. For each X ⊆ ω we are going to
define a countably infinite, distributive lattice D(X) = (D(X),∧,∨). First we will
show in Lemma 5.2 that if an arithmetically saturated model M of PA has an ele-
ment b such that Lt(K(M ; b)) is isomorphic to D(X), then X ∈ SSy(M ). The proof
of this seems to require the full strength of arithmetic saturation and we do not now
whether the result is true for arbitrary recursively saturated models. We will give this
proof in detail. The rest of the paper is devoted to an outline of the proof showing
that if M |= PA is recursively saturated and X ∈ SSy(M ), then there is b ∈ M such
that D(X) ∼=Lt(K(M ; b)). The proof is based on techniques of constructing mod-
els of PA with prescribed elementary substructure lattices, that were developed in
Schmerl [13],[14]. Our task will be to show that for given X ⊆ ω the type of the
element b above can be constructed effectively in X. Our arguments in this part of
the proof will be more sketchy, and the reader is adviced to consult [13] or [14] first.

We will arrange for D(X) = ω∪{∞}. The lattice will have minimum and maxi-
mum elements 0 and 1 respectively. We first define some finite lattices. If Y ⊆ n < ω,
we define a finite distributive lattice D(Y, n) = (D(Y, n),∧,∨) so that D(Y, n) =
2 + m + |Y |, and 0 and 1 are the minimum and maximum element respectively. We
will use � to denote the partial order of a lattice: x � y ↔ x ∨ y = y.

The following is the definition, by recursion, of D(Y, n) for Y ⊆ n < ω.

• If n = 0 and Y = ∅, then D(∅, 0) = {0, 1} and 0 � 1.
• Suppose n /∈ Y ⊆ n + 1. Then let D(Y, n + 1) = (D(Y, n + 1),∧,∨) be such

that D(Y, n) ⊆ D(Y, n + 1), and if m = D(Y, n), then D(Y, n + 1) = m + 1
and x � m � 1 whenever 1 	= x < m.

• Suppose n ∈ Y ⊆ n + 1. Then let D(Y, n + 1) = (D(Y, n + 1),∧,∨) be such
that D(Y ∩ n, n) ⊆ D(Y, n + 1), and if m = D(Y ∩ n, n), then D(Y, n + 1) =
m + 3, and x � m � m + 2 � 1 and x � m + 1 � m + 2 whenever 1 	= x < m, and
m ∨ (m + 1) = m + 2.

For Y ⊆ n < ω, let D ′(Y, n) = (D′(Y, n),∧,∨) be the lattice where D′(Y, n) =
D(Y, n) ∪ {∞}, D(Y, n) ⊆ D ′(Y, n) and x � ∞ � 1 whenever 1 	= x ∈ D(Y, n). For
illustrative purposes lattices D(Y, n) and D ′(Y, n), for Y = {2, 4, 5} and n = 7, are
presented in Figure 1.

Clearly, if X ⊆ ω then D(X ∩ 0, 0) ⊆ D(X ∩ 1, 1) ⊆ D(X ∩ 2, 2) ⊆ . . . and
D ′(X ∩ 0, 0) ⊆ D ′(X ∩ 1, 1) ⊆ D ′(X ∩ 2, 2) ⊆ . . ..

Let D(X) = ⋃
n<ω D ′(X ∩ n, n).

Lemma 5.2 Suppose M |= PA is arithmetically saturated and Lt(M ) has an ideal
isomorphic to D(X). Then X ∈ SSy(M ).

Proof: Notice that, since D(X) is isomorphic to an ideal of Lt(M ), D(X) ∼=Lt(N ),
for some N ≺ M . Now, because D(X) \ {1} has a maximum element ∞, N must
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Figure 1: D and D ′

be finitely generated. Let b ∈ M be such that N =K(M ; b). Since M is recursively
saturated, the type p(x) of b is in SSy(M ). We will show that X is arithmetic in p(x),
thereby showing that X ∈ SSy(M ). The definition of X is inductive. Suppose that we
already know X ∩ n. Then n ∈ X iff the lattice D((X ∩ n)∪ {n}, n + 1) is isomorphic
to the corresponding initial sublattice of Lt(K(M ; b)). Formally: n ∈ X iff there are
terms ti(x), i ∈ m where m = D((X ∩ n) ∪ {n}, n + 1) such that:

1. i � j iff there is a term t(x) such that the formula t(t j(x)) = ti(x) is in p(x);
2. for any term t(x) there is i such that 1 	= i < m and there are terms t′(x) and

t′′(x) such that the formulas t′(t(tm−1(x))) = ti(x) and t′′(ti(x)) = t(tm−1(x))

are in p(x). �

Lemma 5.3 Suppose M |= PA is recursively saturated and X ∈ SSy(M ). Then
Lt(M ) has an ideal isomorphic to D(X).

Lemma 5.3 follows from the lemmas below. It suffices to show that there is a set
�(x) of formulas consistent with each completion of PA, such that �(x) is recur-
sive in X and whenever N |= PA is generated by an element realizing �(x), then
Lt(N ) ∼= D(X). For any set A, let �(A) be the lattice of partitions of A, where
π1 � π2 whenever π2 refines π1. Let 1A be the partition into singletons and 0A =
{{A}}. Then 0A � π � 1A for any π ∈ �(A).

See [13] and [14] for more on the relationship between �(A) and Lt(N ).

Definition 5.4 If Y ⊆ n < ω, then an embedding α : D(Y, n) → �(A) will be
called a standard representation of D(Y, n) if the following three conditions hold.

1. if x, y ∈ D(Y, n) and x � y, and if E ∈ α(x), then there are infinitely many F ∈
α(y) for which F ⊆ E;
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2. if x, y ∈ D(Y, n) and x ∧ y � x, y � x ∨ y, and if E ∈ α(x ∧ y), E1 ∈ α(x), E2 ∈
α(y) and E1, E2 ⊆ E, then E1 ∩ E2 	= ∅;

3. α(0) = 0A and α(1) = 1A.

Notice that (1) implies that if α : D(Y, n) → �(A) is a standard representation, then
A is infinite. We observe that if A and B are countable and α : D(Y, n) → �(A) and
β : D(Y, n) → �(B) are standard representations, then α and β are isomorphic (that
is, there is a bijection γ : A → B such that whenever x ∈ D(Y, n) and a, b ∈ A, then
{a, b} ⊆ α(x) iff {γ(a), γ(b)} ⊆ β(x)).

The following lemma is not difficult to prove by induction on n, using several
applications of Ramsey’s Theorem. The proof of Lemma 5.6 is easy.

Lemma 5.5 Suppose that Y ⊆ n < ω, that α : D(Y, n) → �(A) is a standard rep-
resentation, and that π ∈ �(A). Then there is B ⊆ A such that α | B : D(Y, n) →
�(B) is a standard representation and (α | B)(x) = π | B for some x ∈ D(Y, n).

Lemma 5.6 Suppose that Y ⊆ n + 1 < ω and that α : D(Y ∩ n, n) → �(A) is a
standard representation. Then there is a standard representation β : D(Y, n + 1) →
�(A) which extends α.

Both of these lemmas have appropriate formalized versions which are provable in
PA. Suppose m = D(Y, n) and 〈ϕi(x, y) : i < m〉 is an m-tuple of formulas with free
variables x and y. Then we say that PA proves that 〈ϕi(x, y) : i < m〉 is a standard
representation of D(Y, n) if m = D(Y, n) and, letting θ(x) = ϕ0(x, x), then PA proves
each of the following.

1. each ϕi(x, y) is an equivalence relation on the set θ(x);
2. if i � j < m, then each equivlence class of ϕi(x, y) contains unboundedly many

equivalence classes of ϕ j(x, y);
3. if i, j < m and i ∧ j � i, j � i ∨ j, then ϕi∨ j(x, y) ↔ ϕi(x, y) ∧ ϕ j(x, y) and

ϕi∧ j(x, y) ↔ ∃z(ϕi(x, z) ∧ ϕ j(z, y)).
4. ϕ0(x, y) ↔ θ(x) ∧ θ(y) and ϕ1(x, y) ↔ θ(x) ∧ x = y.

Lemmas 5.7 and 5.8 are the formalizations in PA of Lemmas 5.5 and 5.6 respectively.
It is these lemmas that we actually use.

Lemma 5.7 Suppose that Y ⊆ n < ω and that PA proves that 〈ϕi(x, y) : i < m〉 is
a standard representation of D(Y, n). Suppose that ψ(x, y) is a formula. Then there
is a formula θ(x) such that PA proves that 〈ϕi(x, y) ∧ θ(x) ∧ θ(y) : i < m〉 is a stan-
dard representation of D(Y, n), and PA also proves: if ψ(x, y) defines an equivalence
relation on the universe, then for some i < m,

∀x∀y[θ(x) ∧ θ(y) ∧ ϕ0(x, y) → (ψ(x, y) ↔ ϕi(x, y))].

Moreover θ(x) can be effectively obtained from Y, n and 〈ϕi(x, y) : i < m〉.
Lemma 5.8 Suppose that Y ⊆ n + 1 < ω and that PA proves 〈ϕi(x, y) : i < m〉 is a
standard representation of D(Y ∩ n, n). Then there are ϕi(x, y) for m ≤ i < k (where
k = m + 3 if n ∈ Y, and k = m + 1 if n /∈ Y) such that PA proves 〈ϕi(x, y) : i < k〉
is a standard representation of D(Y, n + 1). Moreover ϕm(x, y), . . . , ϕk−1(x, y) can
be effectively obtained from Y, n + 1 and 〈ϕi(x, y) : i < m〉.
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Now, given X ⊆ ω, we construct the set �(x) of formulas. Let 〈ψi(x, y) : i < ω〉 be a
recursive list of all formulas in the language of PA. We construct, recursively in X, a
doubly indexed sequence 〈ϕin(x, y) : i ∈ D(X ∩ n, n), n < ω〉 of formulas such that,
for each n < ω, PA proves that 〈ϕin(x, y) : i ∈ D(X ∩ n, n)〉 is a standard represen-
tation of D(X ∩ n, n). Let ϕ00(x, y) be the formula x = x ∧ y = y and ϕ10(x, y) be
the formula x = y. Then PA proves that 〈ϕ00(x, y), ϕ10(x, y)〉 is a standard repre-
sentation of D(∅, 0). At stage n we will have 〈ϕin(x, y) : i < m〉, which PA proves
is a standard representation of D(X ∩ n, n). By Lemma 5.7 let θ(x) be such that
〈ϕin(x, y) ∧ θ(x) ∧ θ(y) : i < m〉 is proved by PA to be a standard representation of
D(X ∩ n, n) and such that for some i < m

PA � ∀x∀y[θ(x) ∧ θ(y) ∧ ϕ0n(x, y) → (ϕin(x, y) ↔ ψn(x, y))].

Then by Lemma 5.8, let 〈ϕi,n+1(x, y) : i < k〉 be such that PA proves that it is a stan-
dard representation of D(X ∩ (n + 1), n + 1) and that ϕi,n+1(x, y) = ϕin(x, y) ∧
θ(x) ∧ θ(y) for i < m.

Now let �(x) = {ϕ0n(x, x) : n < ω}. It is easily seen that Th(M ) ∪ �(x) gen-
erates a unique type p(x) and there is b ∈ M realizing p(x). It is also easily shown
that Lt(K(M ; b)) ∼= D(X). This completes the proof of Lemma 5.3 and finishes the
proof of Theorem 5.1.
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