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On the Strength of Ramsey’s Theorem

DAVID SEETAPUN and THEODORE A. SLAMAN

Abstract  We show that, for every partition F of the pairs of natural num-
bers and for every set C, if C isnot recursive in F then there is an infinite set
H, such that H is homogeneous for F and C is not recursive in H. We con-
clude that the formal statement of Ramsey’s Theorem for Pairs is not strong
enough to prove ACAy, the comprehension scheme for arithmetical formulas,
within the base theory RCAg, the comprehension scheme for recursive formu-
las. We also show that Ramsey’s Theorem for Pairsis strong enough to prove
some sentences in first order arithmetic which are not provable within RCAg.
In particular, Ramsey’s Theorem for Pairs is not conservative over RCA for
I3-sentences.

1 Introduction In this paper we study the logical strength of Ramsey’s Theorem,
especially of Ramsey’s Theorem for partitions of pairs into two pieces.

Definition 1.1  For X C N, let [ X]" denote the size n subsets of X. Suppose that n
and m are positive integers and F isafunction from [N]" to {0, ..., m— 1}. We say
that H € N ishomogeneous for F if F isconstant on [H]".

Theorem 1.2 (Ramsey) For all positive integers n and m, if F maps [N]" to
{0, ..., m— 1} thenthereis an infinite set H such that H is homogeneous for F.

If we fix n and m, we represent the above conclusion as N — [N]R,. Theorem[L2]
has a curiously noneffective proof and has been a fruitful example for mathematical
logicians.

1.1 Recursion theoreticanalysis  Jockusch [[5] showed that the noneffective meth-
ods in the proof of Theorem[L2]cannot be eliminated.

Theorem 1.3 (Jockusch)

e Thereisarecursive partition of [N]2 into 2 pieces such that 0’ is recursive in
any infinite homogeneous set.

e Thereisarecursivepartition of [N]2into 2 pieceswith noinfinite homogeneous
set recursivein 0.
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Theorem [L.3]gives a good recursion theoretic understanding of Ramsey’s theorem
except for the case of partitions of [N]2. Jockusch posed the following question.

Question 1.4 (Jockusch)  Is there a recursive partition of [N]? into 2 pieces such
that 0’ isrecursive in any infinite homogeneous set?

Seetapun answered Jockusch's question negatively. We present the proof of Seeta-
pun’s theorem in Section[2] We also give Seetapun’s application showing that there
are no nontrivial bi-introreducible subsets of N.

1.2 Fragments of second order arithmetic  In Section [3] we analyze Ramsey’s
Theorem asaformal statement within second order arithmetic. Toreview, P~ + | ZJ?
states the algebraic properties of addition and multiplication and the scheme that ev-
ery set that is defined by a Z‘g’ formula, contains 0 and is closed under the successor
function contains every natural number. Primarily, the second order systems which
will concern usare RCAg, P~ + | Z‘f with the scheme for recursive comprehension;
WKLy, RCAy with the statement that every infinite binary tree hasan infinite path; and
ACAy, RCAq with the scheme for arithmetic comprehension. A detailed discussion of
these systems can be found in Friedman [3].
Jockusch’s theorem can be recast in terms of fragments of arithmetic:

RCAy + N— [N + ACAy: (1)
WKL, t N — [N]5. (2)

In (1), one notes that Jockusch’s proof can be formalized in RCAg. In (2), one must
observe that thereis astandard model of WKLo in which every setis AS. Wewill say
more about obtaining such a model Section 2] Then one can conclude from Theo-
rem[L3}hat this model failsto satisfy N — [N]2.

Jockusch's question tranglates to the following, which was known as the 3-2
guestion.

Question 1.5 DoesRCAg + N — [N]3 - ACA;?

Wewill show that anegative answer to Question[L.5Followsfrom Seetapun’s sol ution
to Jockusch’s original question. Seetapun’s theorem also appears in Hummel [E].

In response to Seetapun’s results, Simpson asked whether N — [N]% is conser-
vative over RCA for 1‘[% sentences. Such isthe case for WKL by atheorem of Har-
rington (unpublished). We will prove Slaman’s theorem that there is a 1‘[2 sentence
which is provable from RCAg + N — [N]% but which is not provable in RCAg, and
hence not provable in WKL,.

2 Analysisby recursion theoretic complexity In thissection, we prove Seetapun’s
theorem and answer Question[L.4] The proof that we give is due to Jockusch, which
isan improved version of Seetapun’s original proof.

Theorem 2.1 (Seetapun) Fix areal Z and a partition F : [N]?> — {0, 1} such that
Fisrecursivein Z. Let Cq, Cy, ... be a countable list of reals such that for each i,
Ci £t Z. Then F has an infinite homogeneous set H such that for eachi, C; £t H.
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2.1 Notation We regard Turing functionals as recursively enumerable sets of ax-
ioms. In what follows, all strings will be increasing sequencesin N<N, In the course
of the argument below, we constantly need to refer to the range of strings o € N<N,
wewritethisasrng(o). Alsoif o € N<N and X isared, o ¢ X meanso isaninitial
segment of X.

Definition 2.2 If I"isa Turing functional, Z isarea and o € N<N we define
Ffo®dZ={t|t=a®BABCZA(c ~a)dBell.

ThusT | o ® Z isthe set of extensions of o that together with Z forceI” to converge.
WenoteTI" | o @ Z isrecursively enumerablein Z.

2.2 Scott sets
Definition 2.3 (Scott) Fixareal Z. A Scott set § containing Z isdefined asfollows.

e Sisaset of realswhich form anideal under Turing reducibility and recursive
join.

e Z€38.

e If TisaY-recursive Y-recursively bounded infinitetreeand Y € S then there
isaninfinite path f € [T] with f € 8.

Given area Z, we expand the language of arithmetic by adding a unary predicate
U and we add to the axioms of PA axioms for the predicate: n € U if n € Z and
n¢Uif ng Z. Wecal the resulting system PAZ. By arelativization of atheorem
of Scott [[11], we have that the reals recursively coded in anonstandard model of PAZ
form a Scott set containing Z.

Now we may obtain maximal consistent extensions of any recursive extension
of PAZ aspathsin Z-recursive binary branching trees and thus the following theorem
of Jockusch and Soare [[6] comesinto play.

Theorem 2.4 (Jockusch and Soare) If Zisareal and C; isa countablelist of reals
with each C; £1 Z then any Z-recursive binary branching tree has a path f with
CzfoZ

Noting that the above observations yield, by the Henkin construction, models recur-
sivein pathsof an appropriate Z-recursive binary branching tree and using thelemma,
we obtain.

Lemma?25 |If Zisareal and C; isa countable list of reals with each C; £1 Z
then thereisareal Sand a Scott set § containing Z whose elements are uniformly
recursivein Sand for eachi, C; £7 S.

We note we may also build a Scott set containing Z by iteratively applying Theo-
rem[24]and then finding an upper bound on the Scott set which avoids computing
any of the Gj's.

2.3 Forcing over Scott sets  In what followsfix area Z and a partition F : N —
[N]% such that F isrecursivein Z. We will be forcing over Scott sets containing Z.
All notionsrelated to a partition refer to F. We will say {X, y} isred or blue to mean
that F (X, y) isequal to O or 1, respectively.
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Definition 2.6 Suppose (ay, . . ., a) is a sequence of numbers and each a; is des-
ignated red or blue. A number x is acceptable for the sequenceif {a, x} hasthe same
color as g;. Similarly, if oy, ..., ok are sequences as above then x is acceptable for
(00, ..., o) if itisacceptable for each oj.

Definition 2.7 If I"isaTuring functional and X isaset of numbers, ared split (o, )
of I"'in X consists of two axioms o, tin I" withrng(o), rng(t) C X suchthat rng(o)
and rng(t) are finite red homogeneous sets (in the sense of F) which force different
valuesof T'.

We note that we have an analogous definition of blue split or of a split relative to Z.
Note that to say that I" | o @ Z does not blue split in X or does not red-splitin X is
(X e 2).

Definition 2.8 Let S be a Scott set containing Z. We define Pg to be the collection
of al triples (pr, ps, X) such that

1. pr, pg € NN

2. rng(pR) isafinite red homogeneous set and rng(pp) is afinite blue homoge-
Neous set.

3. Xes§

4. Xisaninfinite set of acceptable numbers for pr and pg where each member
of pr and pg is designated the obvious color.

5. max(rng(pr) Urng(ps)) < min(X).

Definition 2.9  If p, g e Pg with p= (pR, pB, X) and q= (o, p5, X') theng< p
if

1 prC PR PB C PG

2. rng(pr) —rng(pr) C X, rng(pg) —rng(ps) C X, and X’ < X.

If G is generic over Ps then we have generic homogeneous sets pS and pS.
This next lemma allows us to force the generic homogeneous sets through any
segment which has infinitely many acceptable numbers.

Lemma2.10 Let (pRr, pB, X) be a condition in Pg, let o be a string such that
rng(o) isared homogeneous subset of X, and let X* bethe set of acceptable numbers
in X for rng(o) when each element of o is designated red. Then, either X* isfinite
or (pr — o, pg, X*) isa condition in Pg.

Proof: We may assume that X* isinfinite. Now, rng(pr —~ o) isafinite red ho-
mogeneous set since rng(o) is such a set and is contained in a set of acceptable
numbers for rng(pr). Also, X* is an infinite collection of acceptable numbers for
rng(pr —~ o) Urng(ppe) since X* C X and each element of X* is acceptable for
rng(o). Thusit sufficesto show X* € 8. To seethis, X* isrecursivein X & Z and
thefinite setsrng(pr —~ o) andrng(pg). But X® Z € § whichimplies X* € §. [

Lemma21l If (pR, pB, X) IF pg isfinite, then thereis a blue homogeneous set in
S.
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Proof: By moving to a stronger condition if necessary, we may assume (pr, o8,
X) - pg isbounded by b. Set X* to be those numbersin X which are bigger than b.
Clearly X* <t X and there is no number in X* which is colored red with infinitely
many numbersin X* for otherwise as above we may concatenate this number to pr
to obtain a contradiction.

We may now define a blue homogeneous set recursively in X* & Z. Pick anum-
ber n; € X* andwait for theleast number n, € X* whichiscolored bluewithn,. If we
wait forever, it is easy to see there are infinitely many numbers colored red with n;.

Inductively, we may suppose we have picked afinite homogeneousset ny, ..., nk. To
define ny, 1, we wait for the least number in X* colored blue with every nq, ..., ng.
If no such number appears, one of the numbersn;, i < kiscolored red with infinitely
many numbersin X*. O

Lemma?2.12 Let ® beaTuringfunctional and p = (pr, pg, X) bea condition. If
pl- ®PRPZ s total and @ | pr @ Z does not red-split on X, then p I+ DPROZ <T
Xo Z

Proof: Since p I+ dPROZ jstotal, we may expect to seean axiomin ® [ pr® Z
whose range is a finite homogeneous subset of X. The value of ® | pr @ Z forced
by this axiom must be the value forced by the axiom which applies to the generic set
for otherwise we have ared-split. O

Lemma2.13 Fixareal C and suppose (pRr, pB, X) IF [PROZ — C, then every red
split of I'*rR®Z in X has finitely many acceptable numbersin X.

Proof: Suppose not and we have a red-split (o, 7) of T'*rR®Z in X with infinitely
many acceptable numbersin X. Wenow note (pr —~ o, pg, X*) isacondition (theel-
ements of X* arethe acceptable numbersfor pr —~ o in X) and (pr —~ 7, pB, X**) is
acondition (the elements of X** are the acceptable numbersfor pr —~ tin X). These
two conditions are below (pg, pg, X) and force incompatible values of '*r®Z, This
isacontradiction since (pR, pg, X) IF [PR®Z = C. O

Lemma214 Let T and ® be pair of Turing functionals. Fix reals C and D. If
pl-TPR®Z = C A dPE®Z = D, then pI- Ce SV D € 8.

Proof: Fix any condition q < p, we show thereisr < gsuchthatr I C e § or
ri-Des.

Suppose q = {pr, B, Y). We define the sequence (o1, 1), (02, T2), ... recur-
sively in Y. Assume (o1, 11), ..., (on, Tn) &€ defined such that

1 Forl<i<n max(rng(oi)Urng(t)) < min(rng(oiy1) Urng(tii1)).
2. Forl<i<n,{oj,1)red-splitI' | pr® Z.

Search recursively in Y @ Z for the least axioms o and t which red-split " |
PR® ZinY and max(rng(on) Urng(zy)) < min(rng(o) Urng(t)).

If no suchaxiomsarefound, let b = max(rng(on) Urng(t,)). Set Y* to bethose
numbersin Y which are bigger than b. Y* isrecursivein Y so Y* € 8. We now see
(PR, pB, Y*) IF r°R®Z jstota and T I pr @ Z does not red-split in Y*. Applying
LemmalZTZInow yields the result.
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Thus we may assume we have an infinite sequence (o1, 11), (02, 2), .... We
now let T = {o € NN | a(n) e rng(on) Urng(tn)}. TisaY & Z-recursive, Y @ Z-
recursively bounded finitely branching tree.

Set U = {8 | 9% does not blue-split along B in Ih(B) steps}. U isa Z-
recursive tree. We now distinguish two cases.

Casel: Wesupposefirst TN U isfinitewith bound | and obtain acontradiction. We
may suppose each of the red-splits (o, 7;) has finitely many acceptable numbersin
any subset of Y, for otherwise LemmalZ13}ieldsacontradictionto p - [*?®Z = C.
We now show thereisanode y of length | in T such that if we designate each member
of y blue, y has infinitely many acceptable numbersin Y. We do this by induction.
Since there are finitely many acceptable numbersfor (o1, 71) in Y thereis a number
ki € rng(oq) Urng(zy) such that there are infinitely many numbersin'Y colored blue
with k;. By induction, suppose we have yj = (kq, Ko, ..., kj) such that there is an
infinite set Yj C Y of acceptable numbersfor y; where we designate each member of
yj blue. There are only be finitely many elements of Y and hence of Yj, which are
acceptable for (o1, Tj4+1) when they are designated red. Now we observe there is
anumber Kj;1 € rng(oj41) Urng(zj;1) suchthat there are infinitely many numbers
in'Y; colored blue with kj, 1. Wenow set yj 1 = (kq, Ko, ..., Kjy1). Thestring y is
anode of length | for which there areinfinitely many acceptable numbersin Y. Now
sincetheheight of TNU islessthan|, wesee ® | pg @ Z blue-splitsalong y. Thus
we have ablue split with infinitely many acceptable numbersin Y. Thisisthedesired
contradiction (to Lemmal213]and the assumption that (pr, pg, X) IF ®PE9Z = D).

Case2: Wesuppose TNU isinfinite. Now TNU isaY @ Z-recursive, Y & Z-
recursively bounded finitely branching tree. Thus thereisapath Y’ € 8. We now
have (pRr, pg, Y') IF ®78%Z jstotal and I pg ® Z does not blue-split in Y. Now
we apply LemmalZ12]and conclude that (pR, pg, Y') IF D € 8. O

Theorem [2.2]follows from Lemma[2.14] Suppose that Z is given to compute F :
[N]?2 — {0, 1} and unable to compute any of {C; : i € N}. Then either there do not
exist p,i andI" such that p I+ [PROZ — C; and thereis ared homogeneous set as de-
sired or thereare such p, i and I'. In the second case, Lemmal2. 14§ mplies that for all
jand @, pl- PrEez # C; and there is a blue homogeneous set as desired.

In fact, the meet of the two generic homogeneous setsis contained in 8.

Lemma215 LetT and ® bea Turing functionals. If p - I'PR®Z = drE®Z then
pIF [PR®Z = §rE®Z ¢ §

Proof: Fix any condition g < p, we show thereisr < g such that r I+ [PREZ —
drE9Z ¢ 8. Supposeq = {pr, pa, Y). It sufficesto derive acontradiction in the case
where we have ared-split or a blue-split with infinitely many acceptable numbersin
Y. Let us suppose we have ared-split (o, ) of I" | pr @ Z with infinitely many ac-
ceptable numbersin Y. Consider the condition g = (pR, pg, Y*) where Y* isthe set
of acceptable numbers for (o, 7) in Y. Now g < g so we may find an axiom « in
@ | pg @ Z with infinitely many acceptable numbersin Y*. Set Y** to be the accept-
able numbers for « in Y*. We may now choose the axiom g of the red split which
forcesavalue of I' | pr @ Z different from the value of ®»89Z forced by «. The
condition 4’ = (pr ~ B, pg —~ &, Y**) isbelow qand g IF TPR®Z £ drESZ, [
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2.4 Bi-introreduciblesets  The first author thanks C. G. Jockusch, Jr. for pointing
out the following fact which enabled an argument of histo be combined with Theo-
remBP.1}o yield Theorem2.19]

Definition 2.16 A set Xishi-introreducibleif for every infiniteset Y, if Y isasub-
set of X or of the complement of X thenY >1 X.

Lemma2.17 If Cisanonrecursiveset, thenthereisaset Asuchthat C £+ Aand
C<tA.
Proof: Given C, we construct A asin Friedberg's [2] proof of the Jump Inversion

Theorem. We alternate the following steps. we decide facts about the jump of A to
diagonalize against computing C; we code atomic facts about C. O

Lemma 2.18 (Jockusch)  Suppose C <t A’ then thereisa partition of pairsrecur-
sive in A such that any infinite homogeneous set is a subset of C or a subset of its
complement.

Proof: Since C <7 A/, Cisan A-recursive limit of A recursive sets. Let C(X)[y]
equal 0 if during the yth stage in A’s approximation to C it appears that x is hot an
element of C. Let C(x)[y] equal 1, otherwise. Consider the partition F given by

0, IfCXLyl =Cylyl

FOGy) :{ 1, otherwise.

Suppose that H is an infinite set which is homogeneous for F. Suppose that X, and
Xy arein H, xg ¢ C and x; € C. Fix yp so that for every y greater than or equal to Yy,
C(xo)[yl =0and C(xy)[y] = 1. Now let y be an element of H such that y is greater
than yo. But then C(Xg)[Y] # C(x1)[y] and H is not homogeneous. Thus, either H
iscontained in C or is contained in the complement of C. O

Theorem 2.19 (Seetapun)  The only bi-introreducibl e sets are the recursive sets.

Proof: Supposethat C isnot recursive. By Lemmal2.17] fix A sothat Cisrecursive
in A’ but not recursivein A. By Lemmal2.18]fix F sothat F : [N]2 — 2, F isrecur-
sivein A, and any infinite set which is homogeneous for F is either a subset of C or
asubset of the complement of C. By Theorem[2.1] fix H so that H is homogeneous
for F and H #1 C. Then H isacounterexample to C's being bi-introreducible. [

3 Analysis by axiomatic strength

3.1 Second order consequencesof N — [N]% We begin by showing that Ramsey’s
theorem for pairsis arelatively weak subtheory of second order arithmetic. It does
not imply the arithmetic comprehension axiom.

Theorem 3.1 (Seetapun) WKLo + N — [N]3 does not prove ACAy.

Proof: By recursion, we construct aset of reals § such that 8 isa Scott set; for each
X e 8,if F:[N]? — 2isarecursivein X then thereisaninfinite set H suchthat H is
homogeneousfor F and H € §; and 0" is not an element of 8. We begin with the col-
lection of recursive setsand let S; be arecursivereal. At step n, we consider a parti-
tion F : [N]? — 2whichisrecursivein some element of 8. By TheoremZT] thereis
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aninfiniteset H suchthat H ishomogeneousfor Fand H & S, #1 0'. By Lemmal2.5)
let S, 1 compute a Scott set 8,1 suchthat H® S, € Spy1 and Spp1 #7 0. Welet
8 be the union of the §,,. We arrange our recursion so that for every X in 8§ and F
recursive in X as above, there is a step n such that we add an infinite homogeneous
set for F to 8 during step n. O

3.2 Conservation

Definition 3.2 If Ty and T, are two theoriesand I" is a set of formulasthen T, is
I'-conservative over T, if whenever ¢ e T'and To - ¢ then Tp - ¢.

In the analysis of WKL, Harrington has shown in an unpublished paper that if 91 is
a countable model of RCAg then there is a second order model 9t such that

e The numbers of 9t are exactly thosein 91;
e N = WKLo.

That is, 99t isaobtained from 91 by adjoining additional setsof numbers. Thefollowing
theorem results.

Theorem 3.3 (Harrington)

e WKLy is IT}-conservative over RCAy.
e For all n, WKL is Hﬂ—conservative over P~ + 1%,.

Proof:  For thefirst claim in Harrington's theorem, suppose that ¢ isa I} sentence
and ¢ fails in some model of RCAg. Then let 91 be a countable model of RCAg in
which ¢ failsand let Xy, ..., X, be setsin 91 such that 91 satisfies the arithmetic sen-
tence about Xy, ..., X, which makes them a counterexample to ¢. Now, if M isan
extension of 91 obtained by adding new sets but not new natural numbers to 9t then
X1, ..., Xp will till satisfy the arithmetic statement that makes them a counterexam-
pleto ¢ even when that statement is interpreted in 9. In short, the meaning of the
arithmetic functions and relations, the relation € and the arithmetic quantifiersis ab-
solute between 9t and 9t. Now, if 9T isthe model of WKL produced by Theorem[3.3]
then 90t shows that ¢ is not a consequence of WKL.

The second claim follows from thefirst and the observation that if 91p isamodel
of P~ + 1 X, then the second order model 9t obtained by adding the sets which are
recursively definablein 91g isamodel of RCAy. O

Harrington produced 97t from 91 by iterating the forcing of the Jockusch and Soare
Theorem R.4]lover N to add paths through recursively bounded trees. In the proof
of Theorem[2.4] one uses aforcing construction to define a path through a recursive
binary treeand control its Turing jump. In particular, generic setsfor thisforcing have
low Turing degrees. By adapting the proof of lowness for generic sets, Harrington
showed that the interpretation of thisforcing in 91 preserves| 3.

Upon hearing of Seetapun’s Theorem [2.1] Simpson raised the question as to
whether Seetapun’s forcing could be adapted similarly.

However, there is an immediate difference between the two situations. Sup-
posethat F : [N]? — 2 isarecursive partition and H is the F-homogeneous set ob-
tained in the proof of Theorem[2.1] For any recursive function f and any condition
p = (pR, pB, X) if X* isthe subset of X chosen so that for al but finitely many n
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the nth elements of rng(pr) U X* and of rng(pg) U X* are greater than f(n) then
{pr, pB, X*) isacondition extending p. Consequently, the function enumerating the
elementsof H inincreasing order eventually dominates every recursive function. By
atheorem of Martin [[9], H must be high. So, for Seetapun’sforcing, thereisno proof
of lowness to be adapted to the nonstandard setting.

This apparent obstruction to adapting Seetapun’s forcing argument is insur-
mountable. Slaman showed that Ramsey’s theorem for pairs has first order conse-
quences beyond P~ + | 4, aswe shall seein Theorem[3.6]

We begin with awell known lemma.

Lemma3.4 Thereisa nonstandard model 91 such that

e NP +1X.
e Thereisa projection 7 of 9 into its standard part such that 7 is a recursive
limitin91.
Proof: Let 9t* be a nonstandard model of first order Peano Arithmetic. We define
91 so that for every X'y unary formula ¢ with parameters from 91, the least solution
to ¢ in 9T* isan element of .

We proceed by recursion. Suppose that ap, . . ., a, have been determined to lie
in 9% and that ag is not standard. Let ¢, 1 be the n+ 1st unary X; formulain the
parameters ag, . .., a,. If N* = (YX)—¢ then let a1 equal ag. Otherwise, let an, 1
be the least element a of Dt* such that 9* = ¢(a). Thereissuch ana since 9t* isa
model of Peano Arithmetic. We organize our construction so that for every 24 for-
mulag(X, Yo, ..., Yk) and every g, ..., &, thereisan nsuchthat ¢(x, &, ..., &)
isequal to gny1.

Note that by closing 9t under the operation of adding the least solutions to Xy
predicates we have ensured that 91 isa X1 substructure of 91*. But then the least so-
lution to a X7 predicate with parameters from 91 is the same whether computed in 91
or in9t*. Thus, 9tisamodel of P~ +1 2.

Now, in 9t we can approximate the above construction. By recursion, let
ao[9], ..., an[s] be our approximation to ay, ..., a, during stage s. First, we define
¢n+1[S] to be the X1 formula which would be used in the above recursion should
ap, ..., anequa aglg, ..., an[s]. Define a,,1[s] to be the least a less than or equal
to ssuch that aisasolution to ¢, 1[S] and the witnesses to its existential quantifiers
aredl lessthan s, if thereis such an a; define a,, 1[S] to be ay, otherwise.

As9tisamoded of | £, for each s, thisrecursioniswell defined in 91. For each
standard n, once sis so large that for each m less than or equal to n+ 1 s bounds a,
and, if necessary, the witnesses needed to verify its existential property then an1[9]
isequal to an 1. Of course, when nisnot standard, the sequence of values a,[s| need
not reach alimit. O

Lemma3.5 Let 91 bethe model of Lemma[B:4] Then thereisa recursive predicate
F such that 9t isa model of the following propositions.

1. Fisatotal function mapping the pairs of numbersto {0, 1}.

2. Thereisan ain 91 such that for all h, if his (the code for) a finite set with a
many elements and h is homogeneous for F then thereisa y such that for all
Zz >y, hU{z is not homogeneous for F.
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Proof: Letabeanonstandard element of O1. Let 7 bethe projection of 91 described
in Lemma34]

We define F by recursion. During stage s+ 1, we define F(x, s+ 1) for each x
lessthan or equal to sasfollows. If s+ 1islessthanor equal toa+ 1thenset F(x, s+
1) equal to 0. Otherwise, we order the domain of the stage s+ 1 approximation to
by saying that x comes before y if 7 (X) is approximated to be less than (y) during
stage s+ 1. Thenwelet hg[s+ 1], ..., ha [S+ 1] be the sets of cardinality a all of
whose elements are less than s+ 1 which comefirst in the stage s+ 1 approximation
to the ordering of the domain of 7. We let a; be the greatest number less than a such
that there are at least that many sets of size a so ordered.

Define F so that for each i less than or equal to a;, h; U {s+ 1} isnot F homo-
geneous. This may be accomplished by recursion on i: choose an element x; from
h; sothat F(x;, s+ 1) is not defined, which is possible since the recursion has taken
lessthan a steps and h; has a many elements; define F (x;, s+ 1) differently from the
value of F on thefirst two elements of h;. Now, define F(x, s+ 1) to be O for each x
for which the previous recursion did not decide the value of F(x, s+ 1). By | 1 in
M, F(X,y) isdefined for al x < yin 9.

For every set h with a many elements there is a standard n and at such that for
al s+ 1 > t histhe nth element of the domain of the approximation to sz during stage
s+ 1. Then for every s+ 1 greater thant, hU {s+ 1} isnot homogeneousfor F. [

Theorem 3.6 (Slaman) Thereisa 1‘191 statement ¢ such that
RCAo + N — [N]3 I ¢ and RCAg I ¢.

Proof: Supposethat 9t isamodel of RCAg+ N — [N]%. Supposethat F isarecur-
sivepartition of pairsinto two piecesin9t. For each ain 9, thefirst a many elements
of aninfinite homogeneous set H for F would have infinitely many one point homo-
geneous extensions, namely those given by the larger elements of H. Thus, we may
conclude that 9t does not satisfy itemPlof Lemmal3.5] Counting the quantifiers, 9
must satisfy the T3 statement which is the negation of Item[2]

Now, since 9t does not satisfy this I3 statement it cannot be provable from
RCAy. O

3.3 The cardinality scheme

Definition 3.7 Welet I be a set of formulas and define the cardinality scheme CT°
for T. If p(x,y) € T then the universal closure of the following formulaisin CI': If
@(X, y) defines an injective function then its range is unbounded.

Let C bethe |, .y CZn.

Remark 3.8 Our proof of Theorem[E&lshows that RCAy + N — [N]2 proves CT’
for I" the set of formulas which define functions as arecursive limit.

Slaman gave examples of models of P~ with an additional unary predicate U which
were models of | i (U) 4+ C(U) but not models of PA(U). Slaman posed the ques-
tion, answered by Kaye [[Z] with the following theorem, whether the same theorem is
true when the extra predicate is removed.
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Theorem 3.9 (Kaye) For each k thereisamodel of P~ + BXy 4+ C whichisnot a
model of | X\.

In fact, Kaye has uncovered a great deal of information on models of C and its vari-
ants. See aso Kaye [B].

4 Questions and further remarks

4.1 A recursion theoretic question A particular case of Theorem 2 Tkstates that
thereisno recursive partition of pairs such that every infinite homogeneous set com-
putesO’. However, theforcing to produce the example homogeneous set which avoids
the cone above 0’ produces a high set. We observed that any notion of forcing which
produces low generic sets is likely to lead to a conservation theorem, as in Theo-
rem[3:3] For another example, Brown and Simpson [[I] proved that the Baire Cat-
egory Theorem (suitably stated as BCT-I1?) is I1] conservative over RCA. Their
proof rests on showng that Cohen forcing preserves | ;. Of course, Cohen’s forc-
ing with finite conditionsiswell known to produce sets G whose Turing jump iswell
behaved.

Question 4.1  Does there exist an n such that every F : [N]? — 2 has an infinite
homogeneous set H such that H™ isrecursivein F(™M? Here H™ and F™ refer to
the nth iterates of the Turing jump applied to H and F, respectively.

Onewould expect that an affirmative answer to Question[Z_Ivould lead to aI1j con-
servation theorem over RCAg + | X9, for that n which appears in the affirmative an-
swer to the question.

4.2 Fragmentsof arithmetic  Theorem[3.1lgives the impression that the principle
N — [N]% produces arelatively weak fragment of second order arithmetic. However,
a curious restriction appears in its proof. Seetapun’s notion of forcing to construct
homogeneous sets requires that the conditions be drawn from a Scott set. To iterate
this forcing and produce a model of N — [N]%, one must also iterate the forcing to
produce a model of WKL,.

Question 4.2 (Seetapun)  Does RCAg + N — [N]3 - WKLg?

Question 4.3 (Slaman)  Characterize the set of first order consequences of RCAg +
N — [N]%

e Does RCA; + N — [N]3 prove PA? Does RCA; + N — [N]3 prove C?
e Istherean n such that RCAg + N — [N]g is conservative over P~ + | X, for
sentencesin first order arithmetic?

In Figure 1, we display the known relationships between the subsystems of ACAg in-
troduced by Friedman; BCT-IT?, an equivalent to the version of the Baire Category
Theorem studied by [[I]; Ramsey’s Theorem for pairs, as studied here; and Ramsey’s
Theorem for partitions of pairsinto finitely many pieces. The calculations involving
N — [N]2<N may be found in Mytilinaios and Slaman [[10]. Solid arrowsindicateim-
plication; dashed arrows indicate that whether implication holds is not known; and
dotted arrows indicate going from a second order theory to the set of its first order
consequences.
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ACAy _ @---ommemeeeee PA

RCA, Np-oooooooiio NPt

Figure 1: Subsystems of ACAq and their first order parts

The picture one obtains is that the ordering by direct provability of subsystems
of analysis is complicated, even for these few natural examples. In addition to the
guestions that we rai sed above concerning the unknown features of this ordering, we
wonder whether there is a clearer way to organize these systems. Perhaps the only
workable answer isto adopt the ordering by relative consistency, as has been adopted
in axiomatic set theory.

Question 4.4

o Does RCA; + N — [N]3 prove the consistency of P~ +1 X;?
e What isthe consistency strength of RCAg + N — [N]3?
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