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Approximation Logic and
Strong Bunge Algebra

MICHIRO KONDO

Abstract In this paper we give an axiom system of a logic which we call an
approximation logic (AL), whose Lindenbaum-Tarski algebra is a strong Bunge
algebra (or simply s-Bunge algebra), and show that

1. For every s-Bunge algebra B, a quotient algebra B∗ by a maximal filter is
isomorphic to the simplest nontrivial s-Bunge algebra � = {0, a, 1};

2. The Lindenbaum algebra of AL is an s-Bunge algebra;

3. AL is complete;

4. AL is decidable.

1 Introduction Marquis [2] investigated the relation between approximations and
truth values. He considered Bunge algebras as representing approximations and tried
to axiomatize the corresponding logic to Bunge algebras. Unfortunately he did not
succeed. The following questions were left open:

Q1. He introduced a concept of an implication → to Bunge algebras as x → y =
¬x ∨ y, but for this definition, he could not obtain the axiomatization of the
corresponding logic;

Q2. There are formulas A and B such that the truth values v f (A) and v f (B) are not
equal even if they are equivalent in the logical system which he gives.

In this paper we give a different definition of an implication x → y axiomatically
and solve these questions. First of all, we shall define a strong Bunge algebra (or
simply s-Bunge algebra) which has a different implication operator “→” from that
of [2]. As special cases these algebras include Boolean and original Bunge algebras
in [2] but not Heyting ones. For if we interpret Nx as a pseudo-complement element
of x in the Heyting algebra [0, 1], that is, Nx = x → 0, then 1/2 → 1/2 = 1 but
N(1/2) ∨ 1/2 = 1/2. This means that in general the condition (I2) does not hold in
Heyting algebras.
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Moreover we give an axiomatization of the logic which we call an approxima-
tion logic, or simply AL, whose Lindenbaum-Tarski algebras are s-Bunge algebras.
We show the completeness theorem of the logic in terms of those algebras.

In the following we prove that

1. For every s-Bunge algebra B, a quotient algebra B∗ by a maximal filter is iso-
morphic to the simplest nontrivial s-Bunge algebra � = {0, a, 1};

2. The Lindenbaum algebra of AL is an s-Bunge algebra;

3. For every formula A, A is provable in AL if and only if τ(A) = 1 for any val-
uation function τ;

4. AL is decidable.

2 Strong Bunge algebras In this section we define a strong Bunge algebra (simply
s-Bunge algebra) according to [2]. By an s-Bunge algebra, we mean the algebra B =
(B,∧,∨,→, N, 0, 1) of type (2, 2, 2, 1, 0, 0) such that

1. (B,∧,∨, 0, 1) is a bounded distributive lattice;

2. N : B → B is a map satisfying the following conditions:

(N1) x ∨ Nx = 1,

(N2) x ∨ y = 1 ⇒ Nx ≤ y

(N3) N(x ∧ y) = Nx ∨ Ny

(N4) N(x ∨ y) = Nx ∧ Ny

3. the implication → satisfies

(I1) x ∧ y ≤ z ⇒ y ≤ x → z

(I2) x → y ≤ Nx ∨ y

(I3) Nx ∧ N(x → y) ∧ y = 0

(I4) x ∧ Nx ≤ x → y

(I5) x ∧ Ny ≤ N(x → y) ∨ y

(I6) (x → y) ∧ N(x → y) ≤ x

(I7) (x → z) ∧ (y → z) = x ∨ y → z

(I8) (z → x) ∧ (z → y) = z → x ∧ y

The element Nx is regarded as a sup-complement of an element x in the Bunge
algebra as in [2]. Bunge algebras without implication in [2] are considered as the
same as our algebras satisfying only the conditions (1) and (2). For generality, we
shall take N as a sup-complement operator, that is, N is a map from an s-Bunge alge-
bra to itself satisfying the conditions (N1) – (N4). Moreover we propose an implica-
tion operator ‘→’ which is different from that of [2]. It is easy to show that, in the case
of Boolean algebras, Nx is the complement of x, Nx = x → 0, and x → y = Nx ∨ y.

Example 2.1 As models of Bunge algebras we list � = {0, a, 1}, �(4), and �(6).
� is the simplest nontrivial s-Bunge algebra.
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Figure 3

Remark 2.2

1. By (I1), we have that x → x = 1, y ≤ x → y, and x ≤ y implies x → y = 1
for every x and y.

2. The truth table of x → y are uniquely determined as above by our definitions
of implication.

3. In the s-Bunge algebra � = ({0, a, 1},∧,∨, N,→, 0, 1), if we define x∗ =
x → 0 then the structure ({0, a, 1},∧,∨, ∗,→, 0, 1) becomes the Kleene alge-
bra 3 in Kondo [1]. Conversely in the Kleene algebra 3 = ({0, 1/2, 1},∧,∨, ∗,
→, 0, 1) the definition Nx = x∗ → x yields that ({0, 1/2, 1},∧,∨, N,→, 0, 1)

is the s-Bunge algebra.

In the following we shall prove the representation theorem of s-Bunge algebras which
is one of the main theorems of this paper: for every s-Bunge algebra B, the quotient
algebra B∗ by a maximal filter is isomorphic to the simplest s-Bunge algebra �.

Let B be any s-Bunge algebra. A nonempty subset F of B is called a filter when
it satisfies the conditions:

(f1) x, y ∈ F imply x ∧ y ∈ F;

(f2) x ∈ F and x ≤ y imply y ∈ F.

A filter F is called proper when it is a proper subset of B. We define two kinds of
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filters of B. By a maximal filter F, we mean the proper filter F such that F ⊆ G
implies F = G for any proper filter G. A proper filter F is called prime if x ∨ y ∈ F
implies x ∈ F or y ∈ F for every x, y ∈ B.

It is easy to show that the next lemmas hold for any distributive lattice, so we
omit their proofs.

Lemma 2.3 If x ∈ B and x 	= 0, then there is a maximal filter M of B such that
x ∈ M.

Lemma 2.4 If M is a maximal filter of B, then it is a prime filter.

Lemma 2.5 If M is a maximal filter and x /∈ M, then there is an element u ∈ M
such that x ∧ u = 0.

We note that x /∈ M implies Nx ∈ M, provided that M is prime. In the following, let
M be a maximal filter of B.

Now we define a relation ∼ as follows: for x, y ∈ B,

x ∼ y ⇐⇒ there exists m ∈ M such that:

x ∧ m = y ∧ m, Nx ∧ m = Ny ∧ m, and

N2x ∧ m = N2 y ∧ m.

The relation ∼ is obtained alternatively as follows.

Lemma 2.6 x ∼ y iff x ∈ M ⇔ y ∈ M,

Nx ∈ M ⇔ Ny ∈ M, and

N2x ∈ M ⇔ N2 y ∈ M.

Lemma 2.7 The relation ∼ is a congruence relation on B.

Proof: It suffices to show that

1. x ∼ p and y ∼ q implies x ∧ y ∼ p ∧ q;
2. x ∼ p and y ∼ q implies x ∨ y ∼ p ∨ q;
3. x ∼ p implies Nx ∼ Np;
4. x ∼ p and y ∼ q implies x → y ∼ p → q;

It is clear by Lemma 2.6 that the conditions (1) – (3) hold, so we consider the case of
(4).

Suppose that x ∼ p and y ∼ q. It is sufficient to show that

x → y ∈ M iff p → q ∈ M,

N(x → y) ∈ M iff N(p → q) ∈ M, and

N2(x → y) ∈ M iff N2(p → q) ∈ M.

We show only that the left-hand statement implies the right-hand one in each case.

Case 1: x → y ∈ M: We need to show that p → q ∈ M. Since x → y ≤ Nx ∨ y
and M is maximal, we have two cases, Nx ∈ M or y ∈ M.
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Subcase 1: Nx ∈ M (i.e., Np ∈ M): There are two subcases, x ∈ M or x /∈ M. If
x ∈ M (i.e., p ∈ M), then we have p → q ∈ M by p ∧ Np ≤ p → q. The other case,
x /∈ M, yields p /∈ M. There is an element u ∈ M such that p ∧ u = 0 ≤ q. It follows
that u ≤ p → q ∈ M.

Subcase 2: y ∈ M: Since q ∈ M and q ≤ p → q, we have p → q ∈ M.

Thus x → y ∈ M implies p → q ∈ M.

Case 2: N(x → y) ∈ M: We have to prove that N(p → q) ∈ M. Since N(x →
y) ≤ Ny, we obtain that Ny ∈ M and Nq ∈ M. Condition (I2) yields N2 p ∧ Nq ≤
N(p → q), so there are two subcases, N2 p ∈ M or N2 p /∈ M.

Subcase 1: From N2 p ∈ M it follows N(p → q) ∈ M by Nq ∈ M.

Subcase 2: N2 p /∈ M: Since Np ∨ N2 p = 1 ∈ M, we have Np ∈ M and hence
Nx ∈ M. By (I3) we have y /∈ M (i.e., q /∈ M). If p ∈ M then we have N(p → q) ∈
M. In case of p /∈ M (hence x /∈ M), there exists u in M such that x ∧ u = 0 ≤ y.
This means that x → y ∈ M. It follows that (x → y) ∧ N(x → y) ≤ x ∈ M. But this
is a contradiction.

Thus N(x → y) ∈ M implies N(p → q) ∈ M.

Case 3: N2(x → y) ∈ M: By (I2) we get that N2(x → y) ≤ Nx ∨ N2 y and that
Nx ∈ M or N2 y ∈ M. The case of N2 y ∈ M yields N2q ∈ M and N2(p → q) ∈ M
by N2q ≤ N2(p → q). In the case of Nx ∈ M, we have Np ∈ M and N2 p /∈ M
by Np ∧ N2 p = 0 /∈ M. Since N2 p ∨ N2(p → q) ∨ Nq = 1 ∈ M, this means that
N2(p → q) ∈ M or Nq ∈ M. It is sufficient to consider the case of Nq ∈ M (hence
Ny ∈ M). There are two subcases, p ∈ M or p /∈ M.

Subcase 1: Since x ∈ M and x ∧ Ny ≤ N(x → y) ∨ y ∈ M, it follows that N(x →
y) ∈ M or y ∈ M. But N2(x → y) ∈ M yields that y ∈ M and hence q ∈ M. Now,
the assumption Np, q ∈ M and (I3) imply that N(p → q) /∈ M. Therefore N2(p →
q) ∈ M.

Subcase 2: Since p /∈ M, we have p → q ∈ M. It follows from (p → q) ∧ N(p →
q) ≤ p /∈ M that N(p → q) /∈ M and N2(p → q) ∈ M.

Thus we can show that N2(x → y) ∈ M implies N2(p → q) ∈ M. Therefore the
relation ∼ is a congruence relation on B, provided that M is a maximal filter. �

Let M be a maximal filter of B and [x] = {y ∈ B | x ∼ y} be the equivalence class of
x and B/∼ = {[x] | x ∈ B} be the set of all equivalence classes. The congruence of
the relation ∼ entails that we can consistently define operations ∧, ∨,N, and → on
B/∼ as follows:

[x] ∧ [y] = [x ∧ y]

[x] ∨ [y] = [x ∨ y]

N[x] = [Nx]

[x] → [y] = [x → y].
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By simple calculation (cf. [1]) an s-Bunge algebra B is the direct union of the follow-
ing three subsets B j ( j ∈ �):

B0 = {x ∈ B | x /∈ M, Nx ∈ M, N2x /∈ M}
Ba = {x ∈ B | x ∈ M, Nx ∈ M, N2x /∈ M}
B1 = {x ∈ B | x ∈ M, Nx /∈ M, N2x ∈ M}.

Since M is a maximal filter, we can prove that the subset B j equals some equivalence
class.

Theorem 2.8 x ∈ B0 ⇐⇒ x ∼ 0

x ∈ Ba ⇐⇒ x 	∼ 0 and Nx ∼ 1

x ∈ B1 ⇐⇒ x ∼ 1

Proof: We show only the case of Ba. If x ∈ Ba, then we have x ∈ M, Nx ∈ M,
and N2x /∈ M. Since M is maximal, there is u in M such that N2x ∧ u = 0. We put
α = x ∧ Nx ∧ u ∈ M. For that element α we obtain that

1. Nx ∧ α = α = 1 ∧ α;
2. N2x ∧ α = 0 = N1 ∧ α;
3. N3x ∧ α = Nx ∧ α = α = N21 ∧ α.

This means that Nx ∼ 1.
If x ∼ 0, then there is v in M such that x ∧ v = 0, Nx ∧ v = N0 ∧ v = v, and

N2x ∧ v = 0. Since x ∈ M, we get that x ∧ v = 0 ∈ M. But this is a contradiction.
Thus x 	∼ 0.

Conversely, we suppose that x 	∼ 0 and Nx ∼ 1. By definition of ∼, there exists
an element f ∈ M such that

Nx ∧ f = 1 ∧ f = f,

N2x ∧ f = N1 ∧ f = 0, and

N3x ∧ f = N21 ∧ f = f.

It follows that Nx ∈ M and hence that N2x /∈ M by f ≤ Nx. If x /∈ M, then x ∧ g = 0
for some g ∈ M. Put β = f ∧ g(∈ M). For that element β we get that x ∼ 0 by simple
calculation. This contradicts the assumption. Hence x ∈ M. And so x ∈ Ba. �
The next theorem is a fact of universal algebras.

Theorem 2.9 Let B be an s-Bunge algebra and M be a maximal filter of B. A quo-
tient algebra B/∼ = (B/∼,∧,∨, N,→, [0], [1]) by M is an s-Bunge algebra, and
it is isomorphic to the simplest nontrivial s-Bunge algebra �.

Proof: The map ξ : B/∼ −→ � defined by ξ([x]) = j when [x] ∈ B j gives the
desired result. �

3 Approximation logic AL In this section we shall define an approximation logic
AL. The language of AL is a countable set of propositional variables p1, p2, . . .,
pn, . . . , propositional constant f , and logical symbols ∧,∨,¬, and →. We denote
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the set of propositional variables and f by �, that is, � = { f, p1, p2, . . . , pn, . . .}.
The formulas of AL are defined as usual. Let A, B, C, . . . be arbitrary formulas of
AL. In the following we list an axiom system of AL.
Axioms

A1 A ∧ B → A
A2 A → A ∨ B
A3 A ∧ B → B ∧ A
A4 A ∨ B → B ∨ A
A5 A ∨ ¬A
A6 A → A ∧ A
A7 ¬A ∧ ¬B → ¬(A ∨ B)

A8 ¬(A ∧ B) → ¬A ∨ ¬B
A9 (A → B) → (A ∧ C → B ∧ C)

A10 (A → B) → (A ∨ C → B ∨ C)

A11 f → A
A12 (A → B) → ((B → C) → (A → C))

A13 A → (B → A)

A14 (A → (B → C)) → (B → (A → C))

A15 A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)

A16 (A ∨ B) ∧ (A ∨ C) → A ∨ (B ∧ C)

A17 (A ∧ B → f ) → (A → (B → f ))
A18 (A → B) → (¬A ∨ B)

A19 ¬A ∧ ¬(A → B) ∧ B → f
A20 A ∧ ¬A → (A → B)

A21 A ∧ ¬B → ¬(A → B) ∨ B
A22 (A → f ) ∨ B → (A → B)

A23 (A → B) ∧ ¬(A → B) → A

Rules of inference

R1 B is deduced from A and A → B (modus ponens, MP);
R2 ¬B → ¬A is deduced from A → B;
R3 ¬A → B is deduced from A ∨ B.

Let A be a formula of AL. By AL A we mean that there is a sequence of formulas
A1, A2, . . . , An of AL such that:

1. A = An

2. For every Ai, it is an axiom or it is deduced from A j and Ak ( j, k < i) by rules
of inference.

We say that A is provable in AL when AL A. If no confusion arises, we denote it
simply by  A.

It is easy to show the next lemmas, so we omit their proofs.

Lemma 3.1 (1) If  A → B and  B → C, then we have  A → C.
(2) For every formula A of AL, we have that  A → ( f → f ) and  f → A.
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We denote f → f by t. A function τ : � −→ � such that τ( f ) = 0 is called a valua-
tion function. The domain of the valuation function can be extended uniquely to the
set � of all formulas of AL as follows:

τ(A ∧ B) = τ(A) ∧ τ(B)

τ(A ∨ B) = τ(A) ∨ τ(B)

τ(¬A) = Nτ(A)

τ(A → B) = τ(A) → τ(B).

Henceforth we use the same symbol τ for the extended valuation function.
We can show that the approximation logic AL is sound for the Bunge algebra �,

that is, if AL A then τ(A) = 1 for any valuation function τ.

Theorem 3.2 Let A be an arbitrary formula of AL. If AL A then τ(A) = 1 for
every valuation function τ.

Proof: By induction on the construction of a proof. It suffices to show that τ(X) = 1
for every axiom X and that the rules of inference preserve validity. We show only
that the axiom (A18) (A → B) → ¬A ∨ B is valid. If it is not valid, then there is a
valuation function τ such that τ(A → B) = 1 and τ(¬A ∨ B) = 0, τ(A → B) = 1
and τ(¬A ∨ B) = a, or τ(A → B) = a and τ(¬A ∨ B) = 0 by Figure 1 in Section 2.
We shall show that in each case there is a contradiction. For the sake of simplicity we
consider only the case of τ(A → B) = a and τ(¬A ∨ B) = 0. Since τ(¬A ∨ B) = 0,
we have τ(¬A) = τ(B) = 0 and so τ(A) = 1. This means that τ(A → B) = 1 →
0 = 0 	= a. This is a contradiction. The other cases are proved similarly. Thus the
axiom (A18) is valid. �
As corollaries to the theorem we have following.

Corollary 3.3 AL is consistent.

Proof: Since τ( f ) = 0, the formula f is not provable in AL. Thus the approxima-
tion logic is consistent. �

Corollary 3.4 The approximation logic is different from the classical propositional
logic (CPL) and the intuitionistic propositional logic (IPL).

Proof: If we think of a valuation function τ such that τ(p) = a for any propositional
variable p, then we have that τ(p → ¬¬p) = a → N(Na) = a → 0 = a 	= 1, and
hence that the formula p → ¬¬p is not provable in AL. Thus the approximation logic
is different from CPL. Next, the formula ¬¬A → A is not provable in IPL in general,
but it is provable in AL. Thus IPL is not equal to AL. �

4 Completeness theorem In this section we shall establish the completeness theo-
rem of the approximation logic AL, and it is the main theorem of this paper. The com-
pleteness theorem of AL means that a formula A is provable in AL if τ(A) = 1 for
any valuation function τ. In order to show the theorem, we consider the Lindenbaum-
Tarski algebra of AL and investigate the property of that algebra.

We introduce the relation ≡ on � as follows. For A, B ∈ �,

A ≡ B iff AL A → B and AL B → A.
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Lemma 4.1 The relation ≡ is a congruence relation on �.

Proof: We show only that the relation ≡ satisfies the following conditions: if A ≡ X
and B ≡ Y , then

(a) A ∧ B ≡ X ∧ Y
(b) A ∨ B ≡ X ∨ Y
(c) ¬A ≡ ¬B
(d) A → B ≡ X → Y

It is evident that conditions (a), (b), and (c) hold from axioms (A9), (A10), and the
inference rule (R2). We prove that the condition (d) holds. Suppose that A ≡ X and
B ≡ Y . For condition (d), since  (B → Y ) → ((A → B) → (A → Y )) by (A12),
(A14), and (MP), we have  (A → B) → (A → Y ) by assumption  B → Y . Sim-
ilarly it follows that  (A → Y ) → ((X → A) → (X → Y )). Thus, we obtain that
 (A → B) → (X → Y ). A similar argument yields the converse  (X → Y ) →
(A → B).

Hence the relation ≡ is the congruence relation. �
We define the quotient set L∗ of � by the congruence relation ≡. That is, we set L∗ =
{[A] | A ∈ �}, where [A] = {X ∈ � | A ≡ X}. We introduce an order relation � on
L∗ as follows: for any [A], [B] ∈ L∗,

[A] � [B] iff AL A → B.

Since the relation ≡ is congruent, it is clear that the definition of � is well-defined and
that the relation � is a partial order. Concerning to this order we have the following.

Lemma 4.2 in f {[A], [B]} = [A ∧ B], sup{[A], [B]} = [A ∨ B]

Proof: We shall show the first case for the sake of simplicity. The second case can
be proved analogously.

Since  A ∧ B → A and  A ∧ B → B, we obtain [A ∧ B] � [A], [B]. For any
[C] such that [C] � [A], [B], since  C → A and  C → B, it follows that  C ∧ B →
A ∧ B by  (C → A) → ((C ∧ B) → (A ∧ B)). Thus it means  B ∧ C → A ∧ B.
On the other hand,  (C → B) → ((C ∧ C) → (B ∧ C)) and  C → B yield 
C ∧ C → B ∧ C. So we have  C → B ∧ C. These mean that  C → A ∧ B and
hence that [C] � [A ∧ B]. Thus we have in f {[A], [B]} = [A ∧ B]. �
By the lemma we can define the operations � and � respectively by

[A] � [B] = in f {[A], [B]} = [A ∧ B]

[A] � [B] = sup{[A], [B]} = [A ∨ B].

It is easy to show that the structure (L∗,�,�) is a lattice. Moreover, if we put [t] =
1, [ f ] = 0, N[A] = [¬A], and [A] ⇒ [B] = [A → B], then the axioms of AL assures
that the structure (L∗,�,�, N,⇒, 0, 1) is an s-Bunge algebra. The structure is called
a Lindenbaum-Tarski algebra of AL. Hence we have the following theorem.

Theorem 4.3 The Lindenbaum-Tarski algebra L∗ of the approximation logic AL
is an s-Bunge algebra.

We have an important lemma concerning the algebra L∗.
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Lemma 4.4 For every formula A, AL A iff [A] = 1 in L∗.

Proof: Suppose that  A. Since A → (t → A) is provable in AL, we get that  t →
A, that is, [A] = 1. Conversely if we assume that [A] = 1 then it follows  t → A
by definition. Thus we have  A by  t. �
Now we shall prove the completeness theorem of AL. In order to show that, it suffices
to indicate the existence of a valuation function τ such that τ(A) 	= 1 if A is not prov-
able in AL. Suppose that a formula A is not provable in AL. In the Lindenbaum-Tarski
algebra L∗ of AL, we have [A] 	= 1 by the lemma above. It means that N[A] 	= 0. By
Lemma 2.3, there is a maximal filter M∗ in L∗ such that N[A] ∈ M∗. Using the filter
M∗ we define a valuation function τ. For any propositional variable p, we put

τ(p) =



1 if [ p] ∈ M∗, N[p] /∈ M∗, and N2[p] ∈ M∗

a if [p] ∈ M∗, N[p] ∈ M∗, and N2[p] /∈ M∗

0 if [p] /∈ M∗, N[p] ∈ M∗, and N2[p] /∈ M∗.

As to that function τ, we can show the following lemma.

Lemma 4.5 For any formula X ∈ �,

τ(X) =



1 if [X] ∈ M∗, N[X] /∈ M∗, and N2[X] ∈ M∗

a if [X] ∈ M∗, N[X] ∈ M∗, and N2[X] /∈ M∗

0 if [X] /∈ M∗, N[X] ∈ M∗, and N2[X] /∈ M∗.

Proof: It suffices to show that τ satisfies the following: for arbitrary formulas X and
Y ,

1. τ([X] ∧ [Y]) = τ([X]) ∧ τ([Y])
2. τ([X] ∨ [Y]) = τ([X]) ∨ τ([Y])
3. τ(N[X]) = Nτ([X])
4. τ([X] → [Y]) = τ([X]) → τ([Y])

For the sake of simplicity, we show only cases (3) and (4). Let x = [X] and y = [Y].

Case 3: τ([X]) = a: It suffices to show that τ(N[X]) = 1, that is, Nx ∈ B1. By
assumption we have x /∈ M∗, Nx ∈ M∗, and N2x /∈ M∗. Clearly we get that Nx ∈
M∗, N2x /∈ M∗, and N3x = Nx ∈ M∗. This means that Nx ∈ B1. Th other cases are
proved similarly.

Case 4:

Subcase 1: τ([X]) = a, τ([Y]) = 0: It is sufficient to prove that x → y ∈ Ba, that
is x → y, N(x → y) ∈ M∗, and N2(x → y) /∈ M∗. By assumption we have x ∈
M∗, Nx ∈ M∗, N2x /∈ M∗, y /∈ M∗, Ny ∈ M∗, and N2 y /∈ M∗. We then have x →
y ∈ M∗, because x and Nx are in M∗ and x ∧ Nx ≤ x → y. From x ∧ Ny ≤ N(x →
y) ∨ y, we get that N(x → y) ∈ M∗ or y ∈ M∗. Since y /∈ M∗, it follows that N(x →
y) ∈ M∗. Hence N2(x → y) /∈ M∗. These entail that x → y ∈ Ba.

Subcase 2: τ([X]) = a, τ([Y]) = a: In this case we have x, Nx, y, Ny ∈ M∗ and
N2x, N2 y /∈ M∗ by definition. We can conclude that x → y, N2(x → y) ∈ M∗ and
N(x → y) /∈ M∗ because it is evident that x → y ∈ M∗ by y ≤ x → y. And because
Nx ∧ N(x → y) ∧ y = 0 /∈ M∗, the fact that Nx and y are in M∗ implies N(x →
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y) /∈ M∗ and hence N2(x → y) ∈ M∗. This yields that x → y ∈ B1. Thus we have
τ([X] → [Y]) = 1.

Subcase 3: τ([X]) = 1, τ([Y]) = a: It suffices to indicate that x → y ∈ Ba, that
is, x → y ∈ M∗, N(x → y) ∈ M∗, and N2(x → y) /∈ M∗. By definition, we have
x, N2x, y, Ny ∈ M∗ and Nx, N2 y /∈ M∗. Since y ∈ M∗ and y ≤ x → y, we get that
x → y ∈ M∗. The condition x → y ≤ Nx ∨ y implies N2x ∧ Ny ≤ N(x → y). There-
fore we also have N(x → y) ∈ M∗ by assumption. It follows that N2(x → y) /∈ M∗.
Thus we obtain x → y ∈ Ba.

The other cases are proved similarly.

This completes the proof of the lemma. �
Since N[A] ∈ M∗, it follows that τ(A) 	= 1 by the lemma. Hence we have the com-
pleteness theorem of AL.

Theorem 4.6 For any formula A,  A iff τ(A) = 1 for every valuation function τ.

It turns out from the theorem that it is sufficient to calculate the value of τ(A) whether
the formula A is provable or not in AL. Since any formula has at most finite numbers
of propositional variables, say n, the possible values of the n-tuple of the propositional
variables in that formula are finite (at most 3n). Thus we can establish the following.

Theorem 4.7 The approximation logic AL is decidable.
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