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Worlds of Homogeneous Artifacts

ATHANASSIOS TZOUVARAS

Abstract We present aformal first-order theory of artificial objects, i.e., ob-
jects made out of a finite number of parts and subject to assembling and dis-
mantling processes. These processes are absolutely reversible. The theory is
an extension of the theory of finite sets with urelements. The notions of trans-
formation and identity are defined and studied on the assumption that the objects
are homogeneous, that is to say, al their atomic parts are of equal ontological
importance. Particular emphasisis given to the behavior of classes of artifacts
intime. We call such classes satisfying certain preservation conditions worlds.
Variousresults concerning the existence, extension, and compl eteness of worlds
are proved.

1 Introduction  This paper isacontinuation of Tzouvaras[i5]. Inthat paper wedis-
cussed a concept of identity for artifacts based on the notion of “significant part.” We
considered objects al the parts of which are equally important only as alimit case.
L et uscall homogeneous objectswhich consist of parts of the same ontological value.
True, such artifacts are rare and marginal among those commonly constructed and
used by humans. However, one may treat an artifact as homogeneousfor variousrea-
sons, as was the case for example in the Theseus's puzzle (see Lowe [B).

On the other hand the models of homogeneous objects may offer some help in
understanding the behavior of material things as totalities of elementary particles-
congtituents. Many of these constituents (appropriately grouped according to their
size, or spin) seemin fact to be equivalent so we might think of an atom or molecule
of matter as a mere concentration of a definite number of copies from few sorts of
elementary bricks. Of course we also talk about structure. However structure could
be an outcome of the number of bricks being present or of their nature, and not an ar-
rangement imposed from without. For examplethe structure of amachine hasalready
been engraved upon the particular shape and size of its atomic parts, and once these
parts are available so is the machine's structure. An atom of carbon can fit with four
hydrogen atoms (not three or five) or two oxygen atoms, and this entails structure.
Similar phenomena may hold for the most ultimate bricks of matter.
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Our intuition, however, will be normally fed by what happens in the familiar
world of artifacts made by humans. There, if we assume that the objects are homoge-
neousin their constituents, we easily see that the continuity principle doesnot hold in
general, thusin such cases we have to take into account the amount of the parts sub-
stituted with respect to the total amount of the object’s parts and accept a principle
like the following:

Definition 1.1 (Restricted Continuity Principle (RCP))  If ahomogeneousobjectis
formed out of alarge number of partsand wereplace acomparatively small number of
them by new ones, then the identity of the object in question is preserved. Otherwise
it changes.

Now the only rigorous way to make the terms“small” and “large” preciseisto use a
nonstandard set of natural numbersfor counting, and identify “small” with“ standard”
and “large” with “nonstandard.” Then RCP entails an identity relation =. Using this
westudy artifact identitiesand their transformationsin time. In particular we consider
totalities of objects which co-exist and evolvein acertain period of time. Such total-
ities, fulfilling certain compatibility conditions are called worlds. Various results are
proved concerning worlds, specifically their extension, completion etc. The results
are based on amodel-theoretic constraint assumed to be satisfied by the “real world”
wheretheworlds of artifacts are embedded. Namely the condition that the real world
is wi-saturated. Thisis arichness condition. It means that our world realizes what-
ever it could do.

Artificial objects (or artifacts) form a category of entities that would naturally
attract mathematical investigation and abstract, formal treatment. As being products
of human intelligence, they present, at least in the most typical cases, aclear structure
aswell asirreducible constituents—i.e., what mathematical reasoning startswith. Of
course this does not suffice. We need much more in order to have some interesting
fragments of amathematical theory of artifacts. In fact, the key properties of the lat-
ter, which put them in sharp contrast with what we call natural objects (trees, rocks,
animals etc.), could be summarized as follows.

1. They are designed for some specific use or purpose. In alot of casesthe design
imitates, up to a certain limit, the form and structure of a natural object bearing
some analogous function (e.g., house-cave, airplane-bird etc).

2. They have absolutely specified boundaries and independence in space and time
relative to other entities.

3. They consist of parts which fit one to the other, and the parts consist of parts
again, until we reach parts which are atoms. In other words they are bottomed
(or well-founded) structures with respect to a “fitting relation.”

4. From the disconnected parts one can recover exactly the same object, i.e., as-
sembling and dismantling are fully reversible processes.

In contrast, natural objects lack all these properties, i.e., they satisfy the con-
traries of (1-4). Thus, (1) they are randomformations of material evolution; (2) most
frequently they do not have clear boundaries (seas, mountains); (3) in one sense they
do not consist of parts but rather they are “wholes,” out of which one might distin-
guish just pieces; in another sense, one might talk about “parts’ here as well, but it
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is by no means obvious that the parthood relation is this time bottomed; and (4) asa
consequence of thelast remark, clearly no reversible decomposition can occur—only
irreversible decay.

Moreover, as follows from property (2), each artifact can be reduced to afinite
number of atoms or atomic objects. These can exist either as independent objects or
as parts of complex objects, called in that case atomic parts. If we, now, assume that
the atoms are unchanging—and thisis a plausible assumption if we confine ourselves
in areasonable period of time—then the only changes an artifact may suffer are the
following.

a. dismantling into some of its parts;
b. replacement of one or more of its parts by similar ones; and
c. reassembling of some or all of the partsinto other parts or the initial object.

The above constitute three elementary operations in the universe of artifacts.
Notice that the third operation contains implicitly an idea that often skips our atten-
tion. Namely, that an artifact can be considered to exist even when disassembled in
its parts. Whenever a soldier, for instance, disassembles hisrifle to clean it, clearly
he does not think that the rifle ceases to exist. Rather he thinks it passes temporarily
to another state. However it can remain at that state arbitrarily long. The parts of the
rifle may be put in a case and stored, or some parts may be sent to the gunsmith for
repair. Meanwhile, of course, therifle exists—unless we have decided to useits parts
as spare partsfor other similar rifles. On the other hand, we can equally well consider
that dismantling interrupts existence. Thuswe have two alternative options concern-
ing dismantling which lead to two dlightly different versions of the theory. Here we
shall consider the less complicated version, namely the one according to which dis-
mantling leads to temporal ceasing of existence (and hence change of identity).

Let us examine these options more closely in connection with the following
guestion: can the same object be part of two distinct objects? For assembled objects
the answer is unquestionably “no.” The same whesl, for instance, cannot befitted si-
multaneously to two distinct cars. However the matter becomes more delicate when
considering dismantled artifacts. Toillustratethishby an example, suppose we decom-
poseyour car Ainto itschassis x and the engine y. Supposethat afriend of yours has
asimilar car A’ (same brand, same model) which we dismantle too into its chassis X’
and enginey'. Having before usthepartsx, y, X', y we ask: how many and what cars
are there at present? There are three possible answers.

i. Therearefour cars, namely: {x, y}, {x, Y}, {X, ¥}, {X, y'}.
ii. Thereisno car at al. Instead there are two chassis x, X' and two engines y, y'.

iii. Therearetwo cars, namely either the cars {x, y} and {X', y'} or thecars {X, y'}
and {X/, y}. It isup to usto decide which two really exist.

Answer (i) must be ruled out since we are interested in objects which are actually
and not potentially existing. Answer (ii) can be accepted. It amounts to the idea that
once an artifact is dismantled, it ceases to exist and, in turn, the parts start existing.
If we assemble back, the initial object comes into being again while the parts cease
to exist. Finaly (iii) can also be accepted. According to this, the artifacts continue
to exist after dismantling. However, human decision asto what part belongs to what
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object now plays amajor role.

Both answers (ii) and (iii), however, share the idea that an object participating
in the formation of another more complex object is consumed, and therefore cannot
be used more than once. Thus the artifacts, according to this view, appear and dis-
appear as convertible rearrangements of a multitude of ultimate elements, the atoms.
The atoms (like those of Democritus) are imperishable and ontologically equivalent.
Each artifact isatemporal assembly of afinite number of them combined in acertain
way. For aslong as an atom belongsto an assembly it isconsumed by it. If and when
the assembly disperses, the atom becomes free again. This is, intuitively, the gen-
era picture of the world of artifacts we shall attempt to formalize in the subsequent
sections.

2 Sketch of the formal framework and notation ~ We shall be rather loose in the
formal treatment of the notions involved and we shall be constantly appealing to the
reader’ sintuition. We assume familiarity with basic set-theoretic and model -theoretic
notions.

Our metatheory will be ZF4, (i.e, the ordinary ZF axioms with the infinity ax-
iom replaced by its negation) enhanced a) with urelements and b) with “classes,” i.e.,
arbitrary sets containing finite sets and urelements. Let ZFUys, be the extension of
ZFsin, by adding urelements and let ZFUs;,, be the second order extension of the lat-
ter by adding full comprehension yielding classes. It followsthat we shall have three
sorts of elements, namely i) (finite) sets, for which we shall usethelettersu, v, w, . . .,
ii) urelements which are nonsets and for which we reservetheletters x, y, z, . . ., and
iii) classes which we denote by uppercaseletters X, Y, S, .. .. Theurelementsarein-
tended to represent the “artifacts’ (or just “objects’) that we are going to formalize.
Asfor their number, we may assume for simplicity that there are as many as the nat-
ural numbers themselves. The finite sets will represent the “real” collections of the
world, for example, the set of al parts of a machine. The classes represent the “ab-
stract” collections that exceed practical manipulation in real time. Such are for in-
stance the class Sof all sets, A of al objects, and N of all natural numbers.

A model of ZFUs, will obviously have the form 9t = (M, E, M), where M
is atwo-sorted universe, containing sets and objects (i.e.,, M = Mg U M; where Mg
contains the “sets’ of 91, M1 contains the “objects’ and Mg N My = @) and M isa
collection of classesclosed under comprehension. Our “real world,” however, will be
not an arbitrary model of the above theory but one with the following two properties
(for richness and simplicity):

1. Ewill bethe standard membership relation and 9t will contain as many classes
aspossible, i.e, M = P(M).

2. M will be an w,-saturated model of ZFUsyy, that isto say, amodel M such that
ift={pi(X):1 e l}isasetof formulas of the language of ZFUs, with at most
countably many extra parameters from M, consistent with the theory of 91,
then tisrealized in M. (For the definition of saturation see Chang [[1], p. 214.)

A way to obtain such modelsis by means of suitable ultrapowers. Any such moddl is,
clearly, uncountable and nonstandard, i.€., the class of natural numbers N™ of Mt isa
proper extension of the standard model w of arithmetic. We shall refer to the numbers
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of w as"“standard,” and denotethem by m, n, k, .. ., while for the elementsof N — w,
aswell asfor arbitrary elementsof N, we shall usethelettersa, b, .... Ifae N — o,
we shall also writea > w.

A countable set X € M is said to be coded in 971 if thereis afunction f ¢ M
suchthat X = { f(n) : n € w}. A useful characterization of w,-saturation, that will be
used repeatedly in the sequel, has been given in Pabion [[4]. 9t is w,-saturated iff the
following condition holds.

(Sat) Every countable subset of M iscoded in 9.

Henceforth we shall fix an w1-saturated model 9t and we shall call it “real world.”
For simplicity we can aso require for it to have cardinality w;. It follows then that
all uncountable subsets of M are equipotent. For instance all intervals [0, a] of N™*,
for nonstandard a, are uncountable (as easily shown), hence equipotent to N itself.
Since M isfixed we shall writesimply N, A, Sinstead of N™, A™ S™ respectively.
Clearly these classes are equipotent.

3 Thelanguage and axiomsof artifacts From now on we shall be working in 9t.
The variables x, v, z, . .. should be understood as ranging over object-states rather
than objects. That is to say, when we write X = y, we do not mean that x, y are nec-
essarily distinct objects (as identities), but, rather, distinct states of the same identity.
The precise definition of identity will be given in the next section, but upon referee’s
suggestion to clear up the confusion between “object” and “object state,” | must try
to clarify herethe point. Let us say from the beginning that identity isan equivalence
relation X = y on the class of object-states, expressing the fact “x, y have the same
identity.” Now disturbances in equality and identity are exclusively due to replace-
ments of parts of an object by other spare ones or to simple reconstructions of the
existing parts. If x, X' are the states of an object in two consecutive moments and no
transformation has been executed, then of course x = X'. But if X' is, say, the result
of dismantling and assembling back x (or dismantling, replacing a part and reassem-
bling), then x = X/, though x # x'. On the other hand, there will be objects with no
proper parts, caled “atomic” (see Definition 3.4 below). These objects, clearly, can
undergo no transformation at al, therefore the relation = for them coincides with =.
Thus we can have in mind that for atoms the notions of “object” and “ object-state”
practically coincide, while for complex objects they do not. Nevertheless, we shall
keep saying “the object X" instead of the cumbersome “the object-state X", believing
that after the above explanations no confusion will arise.

A fundamenta relation among artifacts is the fitness relation. Thisis a binary
relation F, where xFy meansthat the objects“ x, y fit together and can produce anew
object z” A clock, apencil, amachine-gun is each formed out of parts which fit one
to the other in a unique manner. Fitness, however, expresses a possibility rather than
a state of affairs. The parts of a clock certainly fit al the time but at a certain time
these very parts may be dispersed here and there. The state of affairsis expressed by
the assembling operation [1. Thisisabinary partial operation on the class of objects
withdom(O) = F. That is, x O yisdefined if and only if xFy.

Let us extend the language L = {€} to

Ly = LU{F,0O).
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We identify the symbols F, OJ with corresponding entities of the world 9t which are
to satisfy the axioms stated below.

(01) Fitness-assembling relation: xFy «— (Fz)(x0y = 2).
(0,) Commuitativity of (I (henceof F): xOy=yOx.

The equality of artifacts is a somewhat delicate matter. Remembering that x stands
for an object-state, in order that x = v, they should be completely identical, i.e., not
only composed of the same parts but also in the same way. To illustrate, suppose z
isacar, xisitsfront left wheel, yis zminus x, X' is Z's front right wheel and y' is
zminus X'. Then the assemblies x O y, X' (1 Y’ represent, of course, the same car z.
Canwewrite x [ y = x' [0 y'? The answer, | think, should be“no,” if we want to be
consistent with the meaning of variables. The above assemblies are distinct states of
the same identity (that of the car in question). Therefore, though

xOy=x03Yy,
they are distinct in general. The above discussion leads to the following axiom.
(O3) Uniqueness of the decomposition: xOy=x 0O Y = {x,y} = {X, y'}.

The preceding equality principle refersaready to the part-structure of objects: if X, y
are equal, then they have the same parts. (The converse, however, is not true.)

Definition 3.1  x isanimmediate part of y, in symbols x <q v, if for some z, y =
x Oz xisaproper part of y, insymbols x <y, if

(Jae N)@f)(domf =a& f(O)=y& f(a—1) =x&
& WVb<a—-1)(f(b+1) <q¢ f(b)).

Finadly, xisapartof y, x<vy,if Xx<yorx=y.

In words, X < vy if we can reach x following a set-path f of length a (standard or
nonstandard), departing from y and going down through steps of immediate parthood.

A basic intuition, concerning existence of artifacts, was the idea that the parts
used at some moment for the formation of acertain object x are consumed and, there-
fore, cannot be used at the same time for the formation of another object y. It follows
that the objects x, y do not co-exist and, a fortiori, cannot fit. This can be formulated
asfollows.

(O4) Overlapping objectsdo not fit: (32)(z< x& z<y) = = (XFy).

Remark 3.2 If wewrite x { yfor therelation (32)(z< x& z< y),thenx O yis
precisely Nelson Goodman's “overlapping relation.” Thisrelation is taken as prim-
itive in his[2], while the parthood x < y is defined to be the relation (V2)(z 0 x =
zQy).

O4 has rather strong and good consequences. For instance the following holds.
Proposition 3.3

1. = (XFXx).

2. xOy#xX

3. = (X < X).
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4. If x < y, thenthereisa unique path f, asdefined in Definition 3.1, going down
fromyto x.

Proof: (1) X < x, therefore x { x. By O4, =(XFX). (2) Suppose x J y = X. Then
Y <o X, hence x { y. Consequently —(xFy), contrary to the assumption.

(3) Let x < x. Thenthereisapath f leadingfromxtox,i.e, f(0)= f(a—1) =
X, for somea e N. If a= 1then x <g X, which contradictsii). Supposea > 1. Let
X = f(a—2). Thenx <o X/, hencex’ = x 0 yfor somey. Now yFxandy < X' < X.
Thatis, yFxand y ¢ X, which contradicts Oy.

(4) Let x < y and suppose f, g are two pathsleading from y to x. Then f(0) =
g(0) = y. Hencethereisaleast number b suchthat f (b) = g(b) =zand f(b+ 1) =
21 #2=9g(b+1). Then, clearly, z; <g zand z, <g z. Sincez; # 2, itfollowsfrom
Osthat z= z; (0 z,. Butthen z;Fz,, whilex < z; and X < z,. Thiscontradicts again
Os. O

We seethat the axioms O3, O4 imply abinary-tree structure for each object, such that
all of its nodes are distinct. The nodes of the tree are exactly the parts of the object
with respect to a particular assembling. Another assembling (at another time) may
yield another tree-structure for the same object-identity.

What is till open iswhether the tree representing an artifact iswell-founded, or
contains non well-founded paths. This is a foundation question about the parthood
relation <, quite analogousto that about € in the universe of sets. | do not think there
can be any serious argument against the necessity of afoundation axiom for <. To
state it we need a hierarchy of objects similar to the cumulative hierarchy of sets.

Definition 3.4  xisan atomic object or an atom, if it does not have immediate parts
(therefore no proper parts at al). We write Atom for the class of atoms. In symboals:

Atom = {x: (YY) (V2)(x # yU 2)}.

Definition 3.5 Theclass C of constructsis defined inductively as follows.

Cy = Atom,
Ca+1 = CaU{XDyXFy&X»YECa},
C = [ J(CaraeNy

Obvioudy C is a definable class and is the analogue of the cumulative universe of
sets. It contains the objects constructed viall from atoms along any number of steps.
The following is straightforward.

Proposition 3.6 xe Ciff(Jae N)(@f){domf=a& f(0)=x& (Vi <a)(f(i)e
Atomv (3j, k<) (f@) = f(j) O fKk))}.

The elements of C are objectsthe corresponding trees of which arewell founded, i.e.,
all their paths are sets having atoms as terminal nodes. The next axiom says that al
artifacts are of thiskind.

(Os) Axiom of foundation: A=C
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By Os every artifact appears at some stage of the object hierarchy. Let
r(x) =least{a: x € G}
be the rank of x. Equivalently,
rex)=a <= xeCy—Cq_1.
Put also for every x,

nx = {y:y=x,
[Mo(X) = TI(x) N Atom.

Clearly TI(x), ITp(x) are definable classes. The following fact gives another formu-
lation of axiom Os.

Proposition 3.7 A= Ciiff for every x, IT(x) isa set.

Proof: Let A= C. Thenweeasily seeby inductionontherank of x that IT(x) isaset
for every x € A. Conversely, assumethat all T1(x) are sets. We show that any x € A
isaconstruct. By the properties of the model 931, there is a definable enumeration of
the set TT1(x). Fixing such an enumeration, every subset of IT(x) has aleast element.
Define the function G as follows: G(0) = x, G(1) = the least immediate part of x
(w.r.t thefixed enumeration), G(2) = the other immediate part of x, and soon. Clearly
G enumerates all the nodes of the tree-representation of x. Since IT(x) is a set and
rngG C T1(x), it follows that G is a set, hence it defines a construct according to
Proposition 3.6. O

The axiom of foundation tells us how < behaves downward. The upward behavior is
also open, sincethe operation CJ ispartial. Therefore the question “ are there maximal
elements with respect to <7’ arises naturally.

One would praobably tend to say “yes’ because we are surrounded by artifacts
which seem to be “final,” in the sense that they do not participate toward the con-
struction of other more complex objects. However, | think no object can be decided
tobein principlefinal. It sufficesto have in mind the trivial possibility to add to any
object x a “cover” or a“case’ that fits exclusively to it. So we shall postulate that
there are no maximal objects.

(Og) No-maximal-object axiom: (VX)(3y)(X < Y)

This axiom will be helpful in proving the existence (or the possibility of existence;
these two things are equivaent in a saturated model) of objects with a nonstandard
number of parts aswell asin the definition of replacement in Sections 4 and 5 below.

4 Full binarytrees. We have aready seen that every construct can be represented
by a tree whose nodes correspond to the parts. To be specific these are full binary
trees (f.b.t).

Definition 4.1 A full binarytreeisapartialy ordered set whichisarooted tree such
that each one of its nodes has two or zero children. Thereis no distinction between a
right child and aleft child. Moreover we assume that each node is fully determined
by its children. Therefore the only nodes of the tree that should be labeled are the
terminal ones.
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According to the preceding definition the following trees are all identical.

Xl//\ Xl//\ /@ X1 /@ X1
X2 X3 X3 X2 X2 X3 X3 X2

Thus, the only distinct trees with terminal nodes X1, X, X3, are the following.

Xl/>\ X />\ Xg//\
X2 X3 X1 X3 X1 X2

Given, now, an object x we define the f.b.t. T (x) corresponding to x as follows.

TX) = X if X isan atom
YN
TEY = 145 1y

It follows from O3 that there is a unique f.b.t. corresponding to the object-state x.
Different decompositions, however, of the same object may produce different trees.

Example4.2 Consider the toy-constructs y1, y», X, X' shown in Figure 1.

X1
X1 Xo | X2
X2 X3 | X3
Y1 Y2 XX

Figure 1: Toy-constructs

Then y; = x3 O Xo, Y2 = Xo [ X3, While the third drawing may depict either the state
X= (Xy O Xp) O x3=y1 (X3, 0orthestate X' = x; [J (X (0 X3) = X1 I y». Therefore

T(x) = T(X) =
X3/>\ X1/>\

X1 X2 X2 X3

Example4.3 Letybeatable, formed by thetop x and four legs x;,i = 1,..., 4.
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Then, to the various states of y there correspond the trees:

Xs(4)

Xs(3)
Xs(2)

X Xs(1)
where sisapermutation of (1, 2, 3, 4). We have, thus, 24 trees representing the var-
ious states of y.

Definition 4.4 Let T beaf.b.t. Thelength of apath (y1, ..., y,) of T isdefined to
ben—1. Theheight of T is

h(T) = max{lengths of maximal paths of T}.
Also let

p(T) = thenumber of nodesof T,
a(T) = thenumber of terminal nodesof T.

Proposition 4.5
1. Foranyfbt T,

a(T)y = a= p(T)=2a—1fora=> 0,
a(T) = a<= logba<h(T)<a-1

2. For any object x,
h(T(x)) =r(x) and a(T(x)) = [TTp(X)].

Thereforeif |TTp(x)| = a, thenlog,a < r(x) <a— 1.

Proof: Thisisleft asan easy exercise. O

Corollary 4.6
1. Let T beaf.b.t. Then,

aMew < p(Mew << h(T) cw.
2. For any object x,

Mo(X)| € 0 <= |TI(X)] € 0| <> r(X) € w.
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Proof:  Immediate from the preceding proposition and thefact that w is closed under
all arithmetic operations. O

Given aset u C Atom let us put
T(u) = {T : T isaf.b.t. whose set of terminal nodesisu}.

Then the following proposition holds.
Proposition 4.7 IfuC Atomand|u| =a, a> 2,then, |t(u)|=1-3-5--- (2a—3).

Proof: Byinductionona. Fora= 2clearly thereisasingletreewith terminal nodes
{X1, Xo}. Suppose the claim holds for u such that [u| = a— 1 and let u € Atom with
lu=a Letu=1{Xq,...,Xa}. Putu = {xq, ..., Xa—1}. By theinduction hypothesis,
[t(W)|=1-3-(2a—5). Forany T € (U'), T has2a — 3 nodes according to Proposi-
tion 4.5.1) and, consequently, 2a — 3 subtrees, since each node isthe root of asubtree
andviceversa. Now weeasily verify that any treein t arisesfrom sometreeinz(U') if
weinsert in asubtree of the latter the extranode x,. (Toinsert inthe subtree T’ the X,
means to replace T’ by another whose root branches into T’ and the node x3). Then
different subtrees produce different trees of r(u). Thus [t(u)| = |T(U)] - (2a— 3),
and the claim is proved. O

We can now make the important distinction between objects with asmall and objects
with alarge number of parts.

Definition 4.8 An object x is said to be simple if |ITo(X)| € w and intricate if
MTo(X)| > w.

Equivaently, x is simple iff the f.b.t. representing x is standard, i.e., al the magni-
tudes mentioned in Definition 4.4 are standard.

All atoms are, of course, simple objects. How do we know that intricate objects
exist after all? Thisis aconsequence of axiom Og and real world's saturation.

Proposition 4.9  For any object x thereisan intricate object y such that x < .

Proof: Here we use for the first time the saturation of the model 9. Given x, we
can find by axiom Og a sequence (X,), N € w, of objectssuchthat X =xg < X1 --- <
Xn - --. By wj-saturation the sequence is coded, i.e., thereisafunction f € 91 such
that f(n) = x, for al n € w. Since < isdefinablein N1, if we put

u={be(domf)nN: (Vc<b)(f(c) < f(c+1)},

then, clearly, u is a bounded initial set-segment of N, thusu = [0, a], and clearly, a
is nonstandard. Therefore Xg < --- < Xg, hence X < Xz and X isintricate since it
contains nonstandard-many parts. O

5 Copies and replacements  The industrial mass production of artifacts consists
in manufacturing large quantities of objects which are quite similar to one another.
That is, industrialized artifacts are produced in equival ence classes such that, if some
member X of the class | fits with some member y of the class |1, then every member
of | fitswith every member of 11. We call the members of each of those classes spare
or replicas or copies.
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Two spare objects are assumed to be absolutely interchangeable. They fulfill
exactly the same purposes and satisfy the same needs. We shall formalizethe property
of being spare by defining therelation = of “isomorphism.” Intuitively, x = yif x can
replace y wherever y appearsasapart. Here seemsto arise adifficulty concerning the
objectswhich are“final,” i.e., they do not appear as parts of other objects. However,
axiom Og helps to overcome the difficulty by asserting that there are no objectsfinal
in principle.

Obviously = isan equivalence relation that can be defined in terms of O and F.
However the details of the definition aretedious, so we shall omit it. The net outcome
of such aformal analysiswould bethatif y < X, y= y and

X=(..(yUz)UOz)...)0za1,

then thereis a (unique) X' such that

X=0..((yOz)Oz)...)dzy1.

We denote this object X" by
x[y'/yl.

The latter is the object resulting from x by replacing the part y by the copy y. We
may agree that X[y'/y] makes sense even if—(y = y'). In this case we put smply

X[y /Y] = x.

The main facts concerning replacements are the following and can be proved using
the strict definition of =.

Proposition 5.1

1L xX<y& Xx=EX = y=y[xX/X.
2. X<y<z& X=X =2ZX/X] = Z4y[X/X]/V].
3 XxEX = -(x<X).

Proof: Let usproveonly (3). Suppose X = X’ and x < X'. Then, clearly, thereisa
y < X such that xFy. But since x = x’ and y fits x, it follows that y fits X' too. This,
however, contradicts axiom Oy. O

The existence of copies is what makes transformations of artifacts possible. In a
world where everything would be authentic there would be no change of artifactsand,
consequently, no identity problem at all. On the other hand, the existence of copies
in generd is, in practice, reduced to the existence of copies for atoms. If an abun-
dance of spare atomsis available—for each particular atom—then it is clear that for
any particular artifact x there is an abundance of artifacts x’ such that X' = x. Since
thisfact does not follow from the so far accepted principles, it is necessary to include
it as an additional axiom.

(O7) Abundance of spare atoms. (VX € Atom)(Va € N)(Ju C Atom)(ju|] =
a& (VX eu)(xX =x))

This completesthe discussion of the axioms about artifacts. The system O, — O cap-
tures, we hope, some essential aspects of their behavior and, in the context of ZFUs,
constitutes what we shall call the Formal Theory of Artifacts, or FTA.
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6 Therelation of identity for homogeneous objects  We have repeatedly referred
so far to theidentity relation = among object-states. Herewe shall defineit explicitly.
Remember that we are dealing with homogeneous objects, i.e., those whose parts can-
not be distinguished in “important” and “unimportant” ones. We just possess objects
which are either simple (with a standard number of parts) or intricate.

The idea is that two simple objects cannot have the same identity, unless they
are formed precisely out of the same atoms (probably assembled in different ways);
on the other hand, two intricate objects are of the same identity iff they differ in a
standard number of atomic parts only.

Definition 6.1 X, y are of the same identity, in symbols x = v, if either they are
simple and ITp(X) = Ip(Y), or they areintricate and |TTo(X) ATlg(Y)| € w (Where A
denotes symmetric difference). The equivalence class of x is called the identity of x
and is denoted 1d(x).

Clearly, if x =y, then x, y are both simple or both intricate, therefore we may talk
about simple and intricate identities. What kind of objects does Id(x) contain?

Let us say that two objects X, X' are restructures of one another if TTg(x) =
[Mp(x'). The objects x, X/, for instance, of Figure 2, where x = (x; O Xp) [0 x3 and
X = x1 O (X2 O x3), are restructures of one another. If x issimple, then Id(x) con-
tains precisely the restructures of x. By Proposition 4.7 |Id(x)| € w, henceld(x) isa
set. If xisintricate, then Id(x) contains, besidesthe restructures, the objectsresulting
from x after some standard number of replacements of atomic parts by spare ones has
been committed on X. Since, by axiom Oy, thereis aproper class of replicasfor each
atom, it followsthat 1d(x) includes arbitrarily large sets. (Notice, however, that [d(x)
is not definable.) Thus, we have shown the following.

Proposition 6.2 If xissimple, thenld(x) isasetandif |TIo(X)] = nhe wandn > 2,
then |ld(x)| <1-3-5---(2n—3). If [TIg(X)| < 2, thenId(X) = {x}. If xisintricate,
then Id(x) is a (nondefinable) proper class including sets of arbitrarily large cardi-
nality.

Our intuition is that elements of an identity class (i.e., objects of the same identity)
could not coexist, asbeing states of the given object corresponding to distinct times. A
fortiori, objects of the sameidentity should not fit. Thisindeed can be easily deduced
by means of O,.

Proposition 6.3  If x = y then = (xFy).

Proof: If x=y,thenTIp(x) NTIg(y) ## @. Hence x, y overlap and, by Og4, = (XFY).
O

7 Continuous transformations  The notion of “continuous transformation,” in-
volved heavily for example in the ship-of-Theseus puzzle, can now berigorously de-
fined. Each step of thetransformation consistsin replacing acertain atom y by aspare
oney. If y =y, then the step leads to a mere restructure of the initial object.

Of course, the process of replacing comprises three distinct phases. (a) the dis-
mantling of the object up to the point we reach the replaceabl e part; (b) the exchang-
ing of y with y’; and (c) the reassembling. However, we may abbreviate the process
considering these three phases as a single step.
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Definition 7.1 A continuous transformation, or simply atransformation, is a set-
function f such that:

1. dom f =[a, b] for someinterval [a, b] C N,
2. mgfc Aand
3. ViedomfH)(f({i+21) = f@i)[y/y]),whereyisanatom.
Thus, time-units are discrete, represented by natural numbers. Theinterval [a, b] is

the duration of the transformation f. The definition covers all kinds of an artifact
change, namely:

a If =(y < f(i)) or =(y =y, then f(i + 1) = f(i) and we have no change at

all.
b. Ify< f(i)andy =y, then f(i + 1) isarestructure of f (i), therefore f(i +
1) = f().

c. lfy< @),y =y VY #£y thenTlg(f(i+ 1)) £ o(f(i)). If f(i)issimple,
f(i+1)# f@i),while f(i4+21)= f()if f(i)isintricate.

From now on until the end of this section the letters f, g, h. .. will denote transfor-
mations.

Itisclear that the notion of identity of the preceding section has been chosen to
the effect that the Restricted Continuity Principle (RCP) betruein the present formal-
ization. Namely, the following holds.

RCP: If xisanintricate object and f isatransformation such that f (a) = x for
somea € dom f, thenforevery ne w, f(a+n) = x.

Transformations can be thought of as motionsin the universe of object-states. Those
preserving identity keep traveling inside asingle identity 1d(x). Others cross various
identities and either return to previous ones, or leave them forever. Figure 2 shows
examples of such motions. Clearly, every transformation crosses either only simple
or only intricate identities.

ld(y)

1d(x) 1d(x) ld(y) 1d(x) ld(2)

CACD

Figure 2: Transformations

Another way to illustrate transformations is using a two-axis system, one for
time and one for object-states, asin Figure 3. Here f starts with object x and trans-
formsitinto y of different identity. We assumethat the elements of 1d(x) are crowded
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around and closeto x, so that any identity-preserving transformation of x travels par-
alel to the time-axis.

(objects) A 4
Yrp---"-"-""-"-"------- h
/ |
R
| |
; l:J > (time) N

Figure 3: Transformations (2-axis)

Asclaimed in theintroduction, transformations of artifacts arereversible. How-
ever, reversibility should be understood with respect to = rather than =.

Definition 7.2 Let f beatransformation. Then gisareverseof f if:

1. dom f =[a, b],domg=]c,d] witha<b <c < d,and

2. f(b)=g(c), f(a)=g(d).
Thesituationisdepicted in Figure 4. Clearly areverse transformation isby no means
unique.

d N

Figure 4: Reverse Transformations

We see that the relation of “being areverse of” is not symmetric. Thisis due to the
restriction imposed on the domains. We demand dom f < domg in order to capture
the actual process of “return” aong the arrow of time.

Such considerations lead naturally to the notions of “simultaneity” and “co-
existence” for which we need aglobal theory of transformations. What has been said
so far, on the contrary, isjust of alocal character.

8 Worlds For aglobal theory onehasto consider aclassof transformations obeying
some rules that make them simulate actual concurrent transformations.
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Let Sbeaclassof transformations. For any a € N put:

domS = | Jidomf: fes,

mgS = | Jimgf:fes),
Sa = {f(a):feS,
Mo(S@) = (JMox :xe S@)}.

dom Sisthetota “life” of S, rng Sisthe classof objectsinvolvedin Sand S(a) isthe
“state of Sat timea.” Finally ITp(S(a)) isthe totality of atoms which form the ob-
jectsof Sat timea. Since atoms are practically imperishable, their totality should be
preserved at | east for short periods of time, namely those extending within the horizon
w. Hence afirst condition imposed on S should be:

Mo(S(a+ 1)) = To(S(@), (W1)

for every a € domS.

A second requirement is that two “synchronous’ objects, i.e., belonging to the
same S(a), should not overlap. Thisisaconsequence of the ideathat an atom partic-
ipating in the formation of an artifact at a given time is consumed. The condition is
written asfollows:

(Ya)(¥X, y € S(a))(ITo(X) N (y) = 9). (w2)
(Afortiori, if X, y € S(a), then x # y.)

Another unnatural fact would be the crossing of transformations, i.e., f(a) = g(a)
for some f,g e S, f # g. We have to rule out situations like the ones depicted in
Figure5.

\J

Figure 5: Crossing Transformations

Thus the graphs of distinct transformations should be digjoint, that isto say the fol-
lowing holds.

vVf,ge S (f#A£g= fNng=9). (w3)
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Finally, we need arestriction on the form of the “life” of S. dom S should not
have definable gaps, such that, for instance, a < b e domSand[a+ 1,b— 1] N
domS = @. On the other hand, it is not necessary that [a, b] € dom S whenever
a < b e domS. Theright condition, | presume, is the following.

0Z€domS& (VaedomS)(a—1edomS& a+1edomS). (wg)

Given a(nonstandard) natural number a, the galaxy of aistheclassG(a) ={a+n:
n € w}. The preceding condition saysthat if a € dom S, then G(a) € dom S.

Definition 8.1 A worldisany class W of transformations, satisfying the conditions
w1—W, above.

A world puts a certain amount of the objects available “into time,” i.e., makes them
historical entities having past, present and future. A world is a possible world in the
sense that it turns certain potential entities into actual ones through some—out of
many possible—realizations. Let A/ = the class of identities over the universe A
of objectsand let | € A/ =. We say that theidentity | existsat time a with respect to
theworld W, if | NW(a) # @. Theworld W is said to be complete, if every identity
| exists at some time with respectto W, i.e,, if

(Yl € A/ =)(Fae domW)(W(a) Nl # @).

We shall see after awhile that there is an abundance of complete worlds.

Example8.2 Using the fact that the world M has cardinality w; and that all un-
countable subclasses of M are equipotent, we can enumerate al atoms by an ws-
sequence and write Atom = {X, : @ < w1}. Letaso {a, : @ < w1} be an enumera
tion of the class N — w of nonstandard numbers. For al «, 8 < w;,consider the one-
element function f.g = {(ay, Xg)}. Thisisatrivia transformation with domain the
trivial interval [a,, a,]. Put

W={fp a p<wi}.

It is easy to check that W is aworld with domW = N — w and rngW = W(a) =
Atom, for every a € N — w. Clearly, W represents a universe at rest with all arti-
facts disassembled in their atomic parts. Schematically, this motionless, decomposed
world is, as shown in Figure 6, a class of lines running parallel to the time-axis.
Instead of atomsin the preceding example, we might chooseany class X = {y, : o <
w1} of objects such that Iy (y,) N TIp(ys) = @ for all o # B and instead of the entire
N we could take any convex subclass of N.

A world is a subclass of our universe, in general not a set belonging to it. A family
of worlds {W : i € J} will besaid small if |J| < w;.

Proposition 8.3 If {W :i € J} isa small class of worlds, linearly ordered by in-
clusion, then the class W = _J; W isa world.

Proof: Clearly, W satisfies conditions w,, ws, ws. W(a) = [ J{W(a) : i € I} and
[Mo(W(a)) = U{ITo(Wi(a)) :i € J}. Sinceforali, a, [To(Wi(a+ 1)) = [To(W (a)),
it follows that wq holds too. O
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'2<--£<
f

8\/
Z

Figure 6: Universe at rest

Proposition 84 If {W :i € J} isaclassof worldswhoselivesdom W are pairwise
disioint, then | _J; W isa world.

Proof: Straightforward. O

Given aworld W with bounded domW, we can trandate it along the time-axis asfar
as we wish. To be specific, let c > domW, c € N, be abound for domW. For every
f € W, let f’ bethe function such that

(ax)e fliff (a—c,x) e f.

Then, f’ isthe trandation of f to theright of length c. Obviously, the class W' =
{f’': f € W}isaworld such that domW N domW’' = &. W’ isan exact copy of W,
i.e, a“return” of W in some futuretime. Moreover the union WU W' isalso aworld
according to Proposition 8.3.

Condition w, implies that there is no finite world. Hence the smallest size of a
world is the countable one.

Proposition 85  For every transformation f withdom f € N — w, thereisaworld
W containing it. If f issimple, then W can be countable.

Proof (Sketch): Let dom f = [a, b]. If G(a) isthe galaxy of a, put X = G(a) U
[a, b] U G(b). We can define aworld W with domW = X. To this effect, it suffices:

1. Togiveandtake away lives, accordingly, at theright time, to all spare atoms (if
any) involved in the transformation f. That is, if at sometimea, f(a+ 1) =
f(@)[y'/yl, then y should exist until a and then disappear; on the contrary, y
should come into existence exactly at timea + 1.

2. Tofill the domain X with transformations of this kind; for instance, consider
the atoms at rest before their death and after their birth.

If f issimple, then only a standard number of atoms are involved in f and since
G(a), G(b) are countable classes, we can fill X by using countably many transfor-
mations of the kind described previously. O

Proposition 86 Let W beaworld and let | be an identity. Then, thereisa world
W such that rngW C rngW’, rngW’ N | # @ and domW’ = domW.
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Proof: If WN | # @ we have nothing to prove. Let WN | = @. Choose an ob-
ject x e I. If TIp(x) N TIg(W(a)) = @ for some a, then consider the constant instant
transformations {(b, x)} for each b € G(a) and put W' = WU {{(b, X)} : b € G(a)}.
Clearly, W' is aworld meeting the identity | as required.

Suppose, now, that ITo(x) N Mg(W(a)) # & for all a € domW. Fix somea €
domW and let X = ITg(x) N [Ig(W(a)) and Y = I(x) — X. Fix also enumerations
X={Xy:a <wi},Y={Ys:a < wi}of X Y. Then, for each @ < w; thereisa
unique transformation f, € W such that x, € TTg(f,(a)).

Theideaisto cut vertically the world W aong the linet = a and trandate the
right-hand side one step to theright (or possibly more stepsif wewish). Theaxist =
a+ 1moves, then,tot = a+ 2andintheopenstripalongt = a+ 1 weinsert properly
the object x (see Figure 7). We merely have to arrange things so that not to disturb
the existing transformations. Thus, let us definefor every f € W atransformation f’
asfollows:

1. f/=fifdomf <a.

2. Ifa<domf,put f'={(b+1,2: (b2 e f}.

3. Letaedomf and f #£ f,foral o < w;. Weinsert amoment of rest in the
lifeof f changingitinto

f(b) forb<a,
f'(by=1 f(a) forb=a+ 1,
f(b—-1) forb>a+1

4, If f =1, interrupt f ata+1,i.e,put f' = f,la+ 1L

Next, put for each o < w1 ) = fo,N[a+2,c] if domf endsat c. Letasog=
{(@+1,X)}, 9w = {(b, Yo)} foreach b € G(a), b # a. gy, aretheorbits of theatoms
Va, @ < w1 Which at thetime a cease to exist, since they are assembled together with
the atoms x,,, @ < w1 to form Xx. X, on the other hand, lives for just one unit of time.
Finaly put

W ={f:feWU{f/ia<w}U{glU{gh :beGa)&b#a& a < w}.
The transformation of W to W’ is shown in Figure 7. It is not hard to verify that W’
isaworld having the required properties. O
Let uscall aworld W bounded if domW isbounded in N.

Corollary 8.7 Let W bebounded. Then for any identity I, thereisa bounded world
W' D W suchthat | nrngW’ # &.

Proof: Since W isbounded wecantranglateit along thetime-axisand get acopy W,
of W such that dom W N domW; = &. Thentransform W by the processdescribed in
the preceding proposition into aworld W such that dom W, = dom W, and rngW; N
| # @. Put W= WUW,. According to Proposition 8.4, this is a world with the
demanded properties. O

Proposition 8.8  Any bounded world can be extended to a complete world.
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Figure 7: Transformation of W — W'

Proof: The collection A/ = of identities can be, clearly, enumerated in the form
(lg), @ < w1. We shall define inductively an ascending chain of worlds (W,), o <
w1, with the following properties:

1. Wo=WandW, C W, forevery o < wy;
2. Each W, is bounded;
3. mgW, N, # @ forevery o < ws.

If we assume that the sequence is constructed, then the class W = | J,, W, isaworld
according to Proposition 8.3 and is complete sincerngW N |, # @ for dl o < w1.

Suppose W, has been defined and domW,, is bounded. By Corollary 8.7 there
is abounded world W,,, 1 2 W, suchthat rngW,,,1 N l,11 # 2.

Suppose now that « is a limit ordinal and all Wg, 8 < «, have been defined
and are bounded. Then the class W = [ J{W; : B < «} isaworld again. Moreover
domW = [ J{domWj : B < «} is bounded. Indeed the classes domWj, 8 < «, are
countably many and bounded, hence, due to the saturation of 9, their union cannot
be cofinal to N. Extend W to W’ again as in Proposition 8.6 such that W N |, £ @
and set W, = W'. This completes the construction of the sequence (W,), o < w1,
and the proof. O

A world W is said to be maximal if it is maximal with respect to C, i.e., if for every
f ¢ W thereisno world containing WU { f}.

Proposition 8.9 W ismaximal if and only if domW = N — » and for every a €
N, ITo(W(a)) = Atom.

Proof: LetW bemaximal. SupposedomW;Cé N —wandleta > wanda ¢ domW.
Then, clearly, G(a) ndomW = @. If W, is any world with domW; = G(a), then
WU W, isaworld properly extending W, acontradiction. Assume next that for some
athereisan atom x ¢ ITp(W(a)). Then x & ITg(W(a+ n)) for every n € w. There-
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fore we can add to W the transformations {(b, x) : b € G(a)}, extending properly W
again.

Conversely, suppose W isnot maximal and domW = N — w. It sufficesto show
that for some a, ITp(W(a)) # Atom. Indeed, by hypothesisthereisan f ¢ W and
aworld W > WU {f}. Leta e domf. Then IIg(f(a)) NIy(y) = @ for every
y € W(a). Hence ITg(f(a)) N TTp(W(a)) = @. Therefore ITo(W(a)) # Atom and
the claim is proved. O

Thus, theworld at rest of Example 8.2 of this section isamaximal world. We do not
know whether thisis the only maximal world.
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