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Abstract In this paper we study numeral systems in the λβη-calculus. With
one exception, we assume that all numerals have normal form. We study the in-
dependence of the conditions of adequacy of numeral systems. We find that, to
a great extent, they are mutually independent. We then consider particular ex-
amples of numeral systems, some of which display paradoxical properties. One
of these systems furnishes a counterexample to a conjecture of Böhm. Next, we
turn to the approach of Curry, Hindley, and Seldin. We dwell with the general
problem of obtaining their results with the additional requirement of noncon-
vertibility of numerals. In particular we solve a problem that they left open.
Finally, we give the first example of an adequate unsolvable numeral system
without a test for zero in the usual sense, thus solving a problem of Barendregt
and Barendsen.

1 Introduction and summary In the λ-calculus numeral systems are, informally
speaking, sets of terms suitable for playing the role of numerals in the representation
of recursive functions by λ-terms. Formally a numeral system d = d0, . . . ,dn, . . . is
called adequate if all the recursive functions can be λ-defined with respect to d (see
Definition 3.3).

In a classical approach, first proposed by Böhm and Gross [3] and further de-
veloped in Barendregt [1], Curry, Hindley, and Seldin [6], and Wadsworth [10], this
question is reduced to the existence of four terms satisfying a few natural equations
(which are exactly the functional counterpart of the first two Peano axioms of arith-
metic). More formally, it can proved that if the successor, the predecessor and a test
for zero can be λ-defined then the system is adequate (see Proposition 6.4.3 of [1]).
The simple character of this test facilitated the understanding of the great complexity
of numeral systems and related ones, see [10], and Rezus [7].

To simplify matters it is natural to require that numerals are terms in normal
form. In this paper we adopt this requirement and we study (quasi)-numeral systems
with numerals in normal form, (with the exception of Section 6).
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Nevertheless, it is also possible to study numeral systems with numerals with-
out normal form. This was first done by Böhm and Dezani, see [7]. Although these
numerals do not have normal form it is generally possible to detect when the com-
putation of a numerical result is completed. However complications arise for there
exist adequate numeral systems without a test for zero in the usual sense, so that in
this case the above-mentioned conditions are not necessary. Improving previous re-
sults of Barendregt and Barendsen, we are able to give an example of such a system in
Section 6 (see Barendsen [2] for a different exposition). We also discuss how to refine
in this context the Barendregt-Wadsworth thesis that “undefined means an unsolvable
term.”

In Section 3 of this paper we study the independence of the above mentioned
conditions of adequacy. This problem has been extensively treated in Chapter 13 of
[6]. In Section 3 we consider the independence questions in the general setting of
(closed) quasi-numeral systems (in short QNS) see [7], i.e., infinite sets of pairwise
non-convertible (closed) terms. We show that even in the restricted case of r.e. nor-
mal, closed QNS, the existence of successor, predecessor and test for zero are, with
only one exception, completely independent of each other.

In fact the following table holds:

sucessor predecessor test for zero r.e, QNS
Y Y Y Y
Y Y N Y
Y N Y Y
Y N N Y
N Y Y N
N Y N Y
N N Y Y
N N N Y

Table 1

where the first three columns describe the eight a priori possibilities (about the ex-
istence of successor, predecessor and test for zero) and the last one is set to Y or N
according to whether there exists a r.e., normal, closed example. We also show that it
is possible to find a normal, closed QNS of (N,Y,Y) “type” and that every such QNS
must be not r.e.

In Section 4, we consider particular examples of numeral systems, some of
which display paradoxical properties. One of these systems furnishes a counterex-
ample to the following conjecture of Böhm [4]:

Claim 1.1 Let d be an adequate numeral system with numerals in normal form. It
is always possible to find a successor [s]d, a predecessor [p]d and a test for zero [z]d

such that:

1. [s]d dn � dn+1;

2. [p]d dn+1 �dn;

3. [z]d d0 � T, [z]ddn+1 � F;
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(where � means strong normalization, i.e., every sequence of reductions is finite, see
Section 2).

We exhibit as a counterexample a system d with numerals, successor, predecessor and
a test for zero in normal form, such that for every choice of [s]d, [p]d and [z]d none of
(i) – (iii) holds. Independently, Statman [9] found a different counterexample which,
in a sense, furnishes a stronger negative result. Statman’s NS has numerals in normal
form, but it cannot have a test for zero in normal form.

These systems are, in a sense, paradoxical. In the numerals some information
is coded which is completely useless from the computational point of view and has
the unique function of creating infinite reduction processes. We show that another
such system, consisting of λI-terms in normal form, is an adequate numeral system
in the λK-calculus but not in the λI-calculus. We also generalize some constructions
of [7], showing that some natural sequences of terms turn out to be adequate numeral
systems.

In Section 5 we come back to [6]. In this framework an abstract set of terms:

[0], [s][0], [s]([s][0]). . .

is considered, and abstract operations on this set satisfying some given equations are
studied.

No hypothesis is made on previous terms, so they may turn out to be mutually
convertible. We try to link this approach with the previous one (in term of QNS) and
we also dwell with the general problem of obtaining the results of [6] with the ad-
ditional requirement of the none convertibility of numerals. As far as successor and
predecessor functions and test for zero are concerned we show that the corresponding
results hold, but in [6] many other operations and functionals were considered: the re-
cursion operator, the µ-operator, etc. We do not consider these operations here, with
the exception of the µ-operator, and we show that it cannot be defined from successor
and predecessor only, thus solving a problem left open in [6].

2 Preliminary remarks We work in the λβη calculus. We follow [1] for notation
and terminology. However, especially with respect to Böhm trees, we often use infor-
mal arguments based on the well known informal picture ([1], 19.1.3) of the Böhm
tree BT(N) of a term N with head normal form λx1 . . . xn.xiM1 . . . Mt:

BT(N) =
λx1 . . . xn.xi

/ \
BT(M1) . . . BT (Mt)

In this case we say that xi is the head variable and x1 . . . xn the head abstraction vari-
ables of the node. If N is as above, then the grade of N is t.

We shall often use, without explicitly mentioning them, the basic results on
terms with head normal form (see Paragraph 8.3 of [1]). We use capital letters M, N,
L,. . . for arbitrary terms. The lowercase letters x, y, z, and ξ, (possibly with indexes)
denote variables. Other lowercase letters such as k, n, m, p, r, t. . . denote natural num-
bers. We denote with N the set of natural numbers. The symbol “≡” between terms
denotes identity modulo α-convertibility, whereas “=” denotes β-η-convertibility and
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“�= ” denotes non-β-η-convertibility. We read X > Y as meaning that X reduces (mul-
tistep) to Y. A term X is in normal form if it cannot be reduced. Sometimes we shorten
“normal form” to “nf.” When Y is in normal form, we write X � Y to mean that X
strongly reduces to Y, i.e., X reduces to Y and every chain of reduction steps starting
from X is finite. As usual, by combinator we mean a closed term. We shall often use
the following combinators:

I ≡ λx1.x1; K ≡ λx1x2.x1; O ≡ λx1x2.x2.

In particular, we use K to represent the Boolean value “True” (also denoted by T) and
O to represent the value “False” (also denoted by F). If M and N are terms, 〈 M, N 〉 is
λx.xMN and, more generally, if M1 . . .Mn are terms 〈 M1 . . .Mn 〉 is λx.xM1 . . .Mn.
Given a term M, Mn denotes the composition of M with itself n times.

3 Quasi-numeral systems

3.1 Definitions and notation We recall some definitions from Paragraph 6 of [1],
and from [7].

Definition 3.1 A quasi-numeral system (QNS) d is an infinite sequence of terms:

d = d0, . . .dn . . .

such that for i �= j, di �=d j. A QNS is normal if each dn is in normal form. A QNS is
closed if each dn is closed.

In the remainder of this paper (with the exception of Section 6) we only consider nor-
mal closed QNSs so that, par abus de langage, QNS always means normal closed
QNS. We denote QNSs with letters c, d, q.

Definition 3.2 A QNS d:

• has a successor if there exists a term [s]d such that [s]ddn = dn+1;

• has a predecessor if there exists a term [p]d such that [p]ddn+1 = dn;

• has a test for zero if there exists a term [z]d such that [z]dd0 = T and [z]ddn+1

= F.

If the QNS d is clear from the context, we drop the subscript and simply write [s], etc.

Definition 3.3 A QNS d:

• is a numeral system in the strong sense (NS) if it has a successor, a predecessor,
and a test for zero;

• is an adequate numeral system if for every partial recursive function f with
value f (n1, . . . , nm) there is a term F such that:

Fdn1 . . .dnm = d f (n1...nm) if f is defined for n1 . . . nm;
= an unsolvable term otherwise.
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Remark 3.4 It is well known that every NS is an adequate numeral system (see
Proposition 6.4.3 of [1]). Conversely an adequate numeral system with numerals in
normal form is a NS. However this holds true only for normal QNSs, see Section 6.

Remark 3.5 An example of a classical NS is the Church NS: n = λyx.ynx.

In the following, we shall denote with n the nth element of Church system, and
with [s], [p] and [z] respectively a (standard) successor, predecessor and test for zero
of the Church NS (see Chapter 13A of [6]).

3.2 Independence of adequacy conditions A natural question to ask is whether
the three requirements in the definition of NS (the existence of successor, predecessor
and test for zero) are mutually independent. To answer this question we observe that a
well known result of Barendregt and Wadsworth (see [10] or 6.8.21 of [1]) establishes
that the QNS d defined as follows:

dn = KnI

has successor and predecessor but not test for zero. Looking for a QNS without suc-
cessor, we have first to make another distinction between different QNS.

Definition 3.6 A QNS d is recursively enumerable (r.e.) if {dn}n∈N is a r.e. set of
terms.

Lemma 3.7 A QNS with successor is r.e.

Proof: We use Church thesis. Let [s] be a successor for the QNS d. To have an
effective enumeration of the elements dn of d, we start with d0 and observe that for
each n, [s]nd0 reduces to the unique normal form dn.

Theorem 3.8 There exists a QNS without successor but with predecessor and test
for zero.

Proof: Let Q be a non r.e. set of Church numerals such that 0 ∈ Q. We set:
qn = the nth element of Q in the increasing order,
d0 = 〈0, 0 〉
dn+1 = 〈qn+1,dn 〉.

Obviously, d is a QNS with predecessor [p]dn+1 = dn+1O, and test for zero [z]dn =
[z](dnK). By Lemma 3.7 d does not have a successor.

In the following section, we show that is impossible to find a r.e. QNS with the
properties of Theorem 3.8. In order to establish the independence of adequacy re-
quirements, it remains to prove that there exist QNSs with successor and test for zero
but without predecessor.

Theorem 3.9 There exists a QNS with successor and test for zero, but without pre-
decessor.

Proof: Let d0 = 〈 I,T 〉, then dn+1 = 〈Kn+1I,F 〉. Obviously d has a successor and
a test for zero. Assume [p] to be a predecessor for d. Let X be of the form KnI, then
we have:

[p]〈KX, F〉O = T if X = I, and

= F if X �= I.
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But then λx.[p]〈 Kx,F〉O would be a test for zero for the QNS q with qn = KnI, which
is impossible.

3.3 Further results on independence We show that even in the restricted case of
r.e. QNSs the existence of successor, predecessor and test for zero are, with only one
exception, completely independent of each other. In fact Table 1 holds.

Now the line (Y,Y,Y) of this table corresponds to NS. The lines (Y,Y,N) and
(Y,N,Y) were treated above, and we shall consider line (N,Y,Y) in the following sec-
tion. We consider the other lines in Table 1 below.

Theorem 3.10 There exists a r.e. QNS without any successor, predecessor or test
for zero. (Case (N, N, N)).

Proof: Let dn = Kn+1n + 1. We claim that d is the required example. Our method
of proof is almost the same as that of [10]. For brevity we consider only the successor,
the other cases being similar.

Assume that [s] = λx1 . . . xk.ξM1 . . . Mp is a successor for d. If ξ �= x1, then
[s]dm cannot have, when reduced to nf, more than k − 1 head abstractions for every
m, which is impossible. If ξ = x1, then for m > p we have:

[s]dm = λx2 . . . xk.Km+1−pm + 1 = Km+k−pm + 1.

On the other hand:
dm+1 = Km+2m + 2,

and hence we have a contradiction.

Theorem 3.11 There exists a r.e. QNS with only a test for zero. (Case (N, N, Y)).

Proof: Let dn be defined as in the proof of Theorem 3.10. We set:

q0 = 〈 d0,T 〉 qn+1 = 〈 dn+1,F 〉.
Obviously, q = q0,. . ., qn,. . . is a r.e. QNS with test for zero. On the other hand, q
cannot have a successor [s]q for otherwise we could find a successor [s]c for c = d−
{ d0}, setting:

[s]c = λx.[s]q〈x, F 〉K.

However c cannot have a successor (see the proof of Theorem 3.10). To prove that
a predecessor cannot exist, we invoke Corollary 4.7 of the next section. In fact, q
being r.e., a test for zero together with the existence of a predecessor would imply the
existence of a successor.

Theorem 3.12 There exists a r.e. QNS with only a successor. (Case (Y, N, N)).

Proof: We set:

d0 = K
dn+1 = dn◦ dn,

where ◦ represents infixed composition. Obviously d = d0, . . .,dn, . . . is a r.e. QNS
with a successor. By a simple induction, we find that:
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dn = λyx1 . . . x2n .y.

Now suppose [p] is a predecessor for d. We can assume [p] = λz1 . . . zr.ziM1 . . .Mm.
We note that i must be 1, for otherwise [p] dn+1 = dn could not have unbounded
many head abstractions. It follows, for 2n+1 > m, [p]dn+1 = λz2 . . . zrx1 . . . xs.(M1)�;
where (M1)� = M[dn+1/z1] and s = (2n+1 − m + 1). Now observe that the variables
z1 . . . zs do not appear, after renaming, in (M1)�, so they cannot be eliminated by η-
reduction.

It follows that [p] dn+1—when reduced to nf—has no less than s irreducible head
abstractions, but s > 2n + 1 (beginning from a suitable n0) and this is impossible. For
a test for zero, the proof is similar.

Theorem 3.13 There exists a r.e. QNS with only the predecessor. (Case (N, Y, N)).

Proof: We set:

dn = 〈 K2n
I,. . ., K2i

I,. . .,KI 〉.
where 0 ≤ i ≤ n. Obviously d = d0, . . . ,dn, . . . is a r.e. QNS with a predecessor
[p] = λx.x◦K. Now, suppose that [s] is a successor for d. We can assume [s] =
λx1 . . . xr.xiM1 . . .Mt. We note that i must be 1, for otherwise [s] dn = dn+1 could
not have an arbitrary large grade (recall that the grade is the number of arguments of
the head variable). Now we consider the leftmost branch B of the Böhm tree of [s].
Suppose that B is an infinite chain of occurrences of the variable x1 as head variable
at every node. Then we have in [s] dn an infinite leftmost sequence of the form:

〈. . .〉(〈. . .〉(〈. . .〉 . . .

so that [s] dn cannot reduce to nf because it has an infinite leftmost reduction se-
quence.

It follows that for some m the mth node of B is a variable ξ �= x1. Now we in-
troduce some definitions to describe the situation after substitution of dn for x1 in [s],
and after reductions of the form:

(�) dnX = X(K2n
I). . . (K2i

I). . . (KI).

Let M1, j denote the jth term, for 1≤ j ≤ m, of the following sequence: let

M1,1 = M1;

for j < m assume inductively that M1, j has the form:

λx j1 . . . x jr j
.ξ jM j1 . . .M jt j

,

then we put

M1, j+1 = M j1 .

Notice now that ξ j is x1 if j < m and it is ξ otherwise (i.e., for j = m). We abbreviate
with X j the sequence x j1 . . . x jr j

; and with M j the sequence M j2 . . .M jr j
after sub-

stitution of dn for x1. Moreover we abbreviate with X0 the sequence x2 . . . xr, with
M0 the sequence M2 . . .Mt after substitution of dn for x1, and with K n the sequence
(K2n

I). . .(K2i
I). . .(KI). Then after reductions of the form (�) we obtain:

[s] dn = λX0.(λX1.(λX2 . . . (λXm−2. (1)

(λXm−1.(λXm.ξMm)K nMm−1)K nMm−2) . . .K nM2)K nM1)M0.



530 BENEDETTO INTRIGILA

Now we have different cases:

Case 1: ξ is a free variable. This is impossible because [s] dn must reduce to a
closed term;

Case 2: ξ is one of the x jk for 1 ≤ j ≤ m, 1 ≤ k ≤ r j, then a term of the form K2u
I

is substituted for ξ so that for n sufflciently large [s] dn reduces to Kt(n)I where:

t(n) ≥ 2(n−m�) − � jt j − t − n · (m − 1) (2)

and m� = max jr j.
Now everything is fixed, with the exception of n, so that for n ⇒ ∞ the right

side of (2) is a well defined positive number, however

Kt(n)I �= dn+1,

and we obtain a contradiction.

Case 3: If ξ, is one of the variables x2, . . . , xr, then after substitution of dn for x1,

Mm1 must reduce to K2n+1
I; we can now repeat on Mm1 the same reasoning we fol-

lowed for [s] in Cases 1 and 2. For brevity we give only a sketch, noticing that:

• The leftmost branch B′ of the Böhm tree of Mm1 cannot be an infinite chain of
occurrences of the variable x1;

• After reductions of the form (�) we obtain for Mm1 [dn/x1] an expanded form
strictly analogous to equation (1), to be put inside (1)
(expanding Mm1 [dn/x1]);

• Now consider the new head variable ξ�:

1. ξ� cannot be a free variable;

2. ξ� cannot be an abstracted variable different from x2, . . . , xr (only con-
stants change in the right side of formula (2) and we have to add a constant
number of abstractions, but this cannot give us K2n+1

I);

3. Assume now that ξ� is one of the variables x2, . . . , xr, then for every n it
is possible to obtain in Mm1 [dn/x1] only a fixed number of head abstracted
variables, as is easily seen from formula (1). However this is impossible
since Mm1 [dn/x1] must reduce to K2n+1

I.

This completes Case 3 and we have proved that a successor cannot exist. To prove
that a test for zero cannot exist we invoke Corollary 4.7 of the next section.

4 A trip into the zoology of numeral systems NSs, although they are the simplest
infinite sets of terms, can still be very complicated. In [7] the problem of a general
classification of NSs was posed and partially solved. However there seems to be room
for the “zoological” stadium of research (i.e., the description of “strange specimens”).
In this section, after giving a few well known instrumental results, we give some ex-
amples of the complexity of this subject.
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4.1 CH-sets We recall that QNS always means “normal, closed QNS.” As before,
we use the notation [. . .] to denote operations on QNSs.

Definition 4.1 A QNS d:

• Has an iterator if there exists a term [it] such that [it]dn = n;
• has a test for equality if there exists a term [eq] such that:

[eq] dndm = T if dn = dm;
= F otherwise.

Now we prove the characterization of NSs stated in the introduction.

Lemma 4.2 Let Q be a r.e. set of terms in normal form, then there is a term F such
that:

Q = {Fn | n ∈ N }.

Remark on notation: equality modulo convertibility is extended for brevity to sets.

Proof: This follows easily from the existence of an universal generator E (see para-
graph 8.1.6 of [1]). We can also require that F is injective on Church numerals.

Theorem 4.3 A QNS d is a NS iff it is r.e. and has a test for equality.

Proof: One direction follows easily. For the other assume d to be a r.e. QNS and
let [eq] be a test for equality of d. Moreover let F be such that Fn = dn. Obviously d
has a test for zero. We show that d has a successor as follows. Let G be defined by
the following fixed point equation:

Gxy = [eq]x(Fy)(F(sy))(Gx(sy)).

It is easily seen that G dn0 = dn+1. The existence of a predecessor is proved in a
similar way.

Definition 4.4 A QNS d is a CH-set if there is a term H such that:

(i) For every dn Hdn is a Church numeral;

(ii) For every dn, dm if dn �= dm then Hdn �= Hdm.

Remark 4.5 It is sometimes easier to test whether a QNS is a CH-set than to find an
iterator. However, as far as r.e. QNSs are considered, these conditions are equivalent.
In a sense the CH-sets are those enumerable “from inside the λ-calculus.” We have
the following “Post-like” result:

Theorem 4.6 The r.e. CH-sets are exactly the NSs.

Proof: Immediate by Theorem 4.3.

Corollary 4.7 A r.e. QNS q with test for zero and predecessor is a NS.

Proof: By a standard fixed point construction q has an iterator. So it is a CH-set and
the result follows.

Remark 4.8 Notice that it is not too difficult to find a QNS not r.e. with an iterator.
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4.2 Böhm-Wadsworth unusual NSs In [10] the problem of finding NSs such that
numerals have unbounded head abstractions is posed and solved. NSs with this prop-
erty were found independently by Böhm. With the aid of previous results it easy to
find a plethora of such NSs, like the following one:

Example 4.9 dn = λyx1 . . . xn.yn(Kx1) . . .(Kxn).

Proof: We have to show that d = d0, . . . ,dn, . . . is a NS. Obviously d is r.e., and
moreover it is not difficult to find an iterator.

Remark 4.10 Examples like the previous one—but not those examples of Böhm
and Wadsworth—are clearly “redundant.” However the question arises as to how one
can formally discriminate between the two kinds of NS.

4.3 Paradoxical NSs In [4] the following problem is posed (recall that we are as-
suming that numerals are in nf):

Problem Let d be a NS. Is it always possible to find a successor [s], a predecessor
[p] and a test for zero [z] such that:

1. [s] dn � dn+1;
2. [p] dn+1 � dn;
3. [z] d0 � T, [z] dn+1 � F?

Recall that � means strong normalization, i.e., every sequence of reductions is finite.
We exhibit a counterexample below. Independently Statman [9] found a differ-

ent counterexample which, in a sense, furnishes a stronger negative result. In fact
Statman’s NS cannot have a test for zero in nf.

Theorem 4.11 There exists a NS d such that:

1. d has a successor [s], a predecessor [p] and a test for zero [z] in normal form;
2. For every choice of [s], [p] and [z] none of the strong normalizability relations

(1) – (3) above hold.

Informal sketch of the proof: We start informally explaining the ideas involved in
the proof. We want to disprove Böhm’s conjecture, so we look for a NS d such that,
though numerals are in nf, for every choice of a successor [s], [s] dn reduces to dn+1

but not strongly. This means that the reduction process of [s] dn creates subterms
without nf, which are subsequently erased. To make sure that this will be the case for
every choice of [s], observe that we can obviously assume that [s] is already in nf. So
to get the counterexample we encode in the numerals of d larger and larger sequences
Zn of terms suitable to generate � (i.e., (λx.xx)(λx.xx)) when substituted in terms in
nf of a given complexity. So for every nf N there will be a numeral large enough to
create an � subterm when substituted inside N.

Proof: For every n, we abbreviate with Zn the following sequence:

Zn = (Kun I) . . . (Kun I)︸ ︷︷ ︸
vn-times

I I . . . I I︸ ︷︷ ︸
wn-times

ωω

where un, vn and wn are to be defined, and ω ≡ λx.xx.
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Now we set:

dn = λx.xn (xZn) . . . xZn)︸ ︷︷ ︸
zn-times

(3)

and we put:
zn = 22n

, un = 2zn , vn = 2un and wn = 2vn .

We claim that the QNS d determined by (3) is the required NS. We subdivide the proof
into two different parts:

1. d is a NS with successor, predecessor and test for zero in nf.

2. For every successor [s] for d there exist numerals dn such that [s] dn � dn+1

does not hold.

Proof: Part (1): Obviously d is r.e. and has an iterator [it] in normal form. In fact
we can put:

[it]= λy.y(λy1.y12 2Ky1)

using the well known fact that nm is represented, inside Church numerals, by appli-
cation of m to n. It follows from Theorem 4.6 that d is a numeral system. Observe
that the dn terms are uniformly solvable by the sequence

λy1.y12 2Ky1,I, I.

With the aid of this sequence it is possible, by a standard construction (or by the ant-
lion paradigm of Böhm and Intrigila [5]) to “make a normal” successor, predecessor
and test for zero.

Proof: Part (2): Suppose that [s] is a successor for d. We can assume:

[s]= λx1 . . . xr.xi M1 . . .Mt.

We note that i must be 1 for otherwise [s] dn = dn+1 could not have an arbitrary large
grade. As in the proof of Theorem 3.13 we consider the leftmost branch B of the
Böhm tree of [s]. We assume that [s] � nf (otherwise we would be done); so that we
can directly assume that [s] is in normal form. Hence B is finite and we let k be the
length of B. Two cases can occur:

Case 1: for some m ≤ k, the mth element of B is a variable ξ �= x1.

To prove Case 1 we shall introduce some new definitions: let M1, j denote the jth
term, for 1 ≤ j ≤ m of the following sequence: let M1,1 = M1. For j < m assume
inductively that M has the form λx j1 . . . x jr j

.ξ jM j1 . . .M jt j
. Then we put M1, j+1 =

M j1 . Observe that ξ j is the ( j +1)th element of B, and it is the variable x1 if j +1 < m
and ξ j �= x1 if j + 1 = m. We abbreviate with X j the sequence x j1 . . . x jt j

and with

M j the sequence M j2 . . .M jt j
after substitution of dn for x1. Moreover we abbreviate

with X0 the sequence x2 . . . xr, and with M0 the sequence M2 . . .Mt after substitution
of dn for x1. We consider the situation in [s] dn after reductions of following form:

(�) dnY = Yn(YZn) . . .(YZn).
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Starting from M and considering reduction of type (�) we obtain the following
sequence:

N 0 = λXm.ξMm

N i+1 = λXm−(i+1).N in(N iZn) . . . (N iZn)Mm−(i+1)

N m = λX0.N m−1n(N m−1Zn) . . . (N m−1Zn)M0.

Observe that [s] dn = N m. Now ξ, cannot be free, so that we have:

Subcase 1: ξ = xi for xi in N 0. By induction on construction of the sequence N i

we have the following upper bound for the grade g(ξ) of ξ in [s] dn:

g(ξ) ≤ (22n + 1) · m + � jt j + r. (4)

But this implies g(ξ) < 22n+1
, which is impossible.

Subcase 2: ξ = x jh for 1 ≤ j ≤ m and 1 ≤ h ≤ r j. Then we consider the subterm L
= N m− jZn in the term N (m− j)+1. Clearly L can be β-reduced, so that a term of the
form Kun I will be eventually substituted for ξ. But un = 2zn and the upper bound (4)
holds a fortiori for g′(ξ), the grade of ξ in N m− j. It follows that:

L > (Kun I) . . . (Kun I)︸ ︷︷ ︸
a-times

I I . . . I I︸ ︷︷ ︸
wn-times

ωω

where a > 2un − 2 · un. By the choice of un and wn, L reduces to �, where � ≡ ωω.
This completes the proof of Case 1.

Case 2: For every m ≤ k, the mth element of B is x1;
We can use the same setting of Case 1, and define a sequence M1, j of terms, for

1 ≤ j ≤ k − 1, as follows: let M1,1 = M1. For j < k − 1 assume inductively that M1, j

has the form λx j1 . . . x jr j
·M j1 . . .M jt j

. Then we put M1, j+1 = M j1 . Observe that ξ j

is the ( j + 1)th element of B, and is x1 for every j. Moreover M1,k−1 has the form:
λx(k−1)1 . . . x(k−1)r(k−1)

· x1.

As in Case 1, we abbreviate with X j the sequence x j1 . . . x jr j
and with M j the

sequence M j2 . . .M jt j
after substitution of dn for x1. Now we are in a situation sim-

ilar to Case 1, but much more simple. Substitution of dn for x1 in M1,k−2 gives us:
λX(k−2) ·λX(k−1) ·dn)n(λX(k−1) · dnZn) . . . (λX(k−1) · dnZn)Mk−2. Now we consider
one subterm L of the form: (λX(k−1) · dnZn. We have:

L > dn(Kun I). . .(Kun I)︸ ︷︷ ︸
a-times

I I . . . I I︸ ︷︷ ︸
wn-times

ωω

where a = vn − rk−1 > 0. Now consider the following subterm L′ of L: L′ = dn(Kun I)
as is immediately seen in the reduction of L′ the following subterm L′′ occurs: L′′ =
Kun IZn. But then by the form of Zn we obtain L′′ > �. This completes the proof of
Case 2, and Part 2 follows.
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The cases of predecessor and test for zero are similar to the one just developed, and
will be omitted. This completes the proof of Theorem 4.11.

Now we show that we can find a NS similar to the one considered in the proof
of Theorem 4.11 which is such that its numerals are λ-I-terms.

Theorem 4.12 There exists a NS d′ such that d′ satisfies conditions (1) and (2) of
Theorem 4.12 and moreover every d′

n is a λ-I-term.

Proof: For every n we abbreviate with Sn the following sequence:

Sn = Vn . . . Vn︸ ︷︷ ︸
vn-times

I I . . . I I︸ ︷︷ ︸
wn-times

where Vn is the following term:

Vn = λx1 . . . xun · x1ωω(x2ωω) . . . (xunωω)

and un, vn and wn are natural numbers to be defined. We define:

d′
n = λx.xn (xSn) . . . (xSn)︸ ︷︷ ︸

zn-times

and we put zn = 22n
, un = 2zn , vn = 2un and wn = 2vn . Now the proof follows strictly

the one of Theorem 4.11, observing that if in Vn some xi is substituted with I or Vn,
then (sub)terms of the form � arise.

Corollary 4.13 There exist QNSs of the λ-I-calculus which are not NS in the λ-I-
calculus but are NS in the λ-K-calculus.

Proof: By Theorem 9.1.5 of [1], the NS d′ of Theorem 4.12 cannot have a successor
or a predecessor or a test for zero in the λ-I-calculus.

Remark 4.14

1. If NS with numerals without nf are admitted then it is easy to find examples of
NS with the properties of Corollary 4.13. However we stress that the example
we give does have numerals in nf.

2. As noted above, Statman has found NSs without test for zero in nf. Let us call
d a Statman NS if d is a NS (with numerals in normal form as we always as-
sume) which does not have a successor, a predecessor and a test for zero all in
nf. Questions now arise similar to those considered in Section 3, except that
where before we were concerned with existence we are now concerned with
having nf. We conjecture that these conditions are also highly independent of
each other. Finally we observe that it is possible, with the trick used in the proof
of Theorem 4.12, to obtain a Statman NS such that its numerals are λ-I-terms.
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4.4 Church-sequences We now generalize some results of [7].

Definition 4.15 For a given term N, the Church sequence uniform in N (in short
SU(N)) is a sequence sN of terms such that:

sN,0 = N
sN,n+1 = 〈N, . . . , N 〉︸ ︷︷ ︸

n + 1-times

= λx.xN˜n+1.

Theorem 4.16 For every closed normal term N, SU(N) is a NS.

To prove this Theorem we need the following lemma:

Lemma 4.17 For every closed nf N there is a nf U such that UN = U.

Proof: We use the “ant-lion paradigm” from [5]. Let S = M1 . . .Mk be a finite se-
quence of terms in nf such that NS = I. Let V be such that Vx = 〈S, x, x〉. Then we
set U = VV.

Proof of Theorem 4.16: Clearly SN(N) is a QNS with successor and predecessor. To
find a test for zero let t be a natural number such that for every nf X we have N(KtX)
> nf. That such a t exists is easily proved by induction on the complexity of N. More-
over, by Lemma 4.17, let U be a closed nf such that UN = U. Notice now that:

sN,n(KkU) =



N[KtU/x1] if n = 0;
Kt−nU if t > n;
U otherwise.

Notice moreover that by a suitable choice of U and t, we can always make N[KtU/x1]
different from U. Now we can discriminate sN,0 from sN,n for n > t and therefore,
by two applications of the (generalized) Böhm theorem, we are done.

Definition 4.18 For a given term N, the descending sequence from N (in short
SD(N)) is a sequence s′

N of terms such that:

s′
N,0 = N

s′
N,n+1 = 〈 〈 . . . 〈 〈︸ ︷︷ ︸

n + 1-times

N 〉 〉 . . . 〉 〉.

Theorem 4.19 For every closed normal term N, SD(N) is a NS.

Proof: Clearly SD(N) is a QNS with successor and predecessor. To find a test for
zero, let N = λx1 . . . xq.xiM1 . . . Mm. We have different cases:

Case 1: m = 0 so that N = λx1 . . . xr.xi. This case is known, see [7].

Case 2: m > 0 and q �= m. Let t > 1 such that NV > nf; where V = KtI. Now we
have s′

N,n+1V = Kt−1I and NV�=Kt−1I for a suitable choice of t(t > q − 1); therefore
we can apply the Böhm Theorem.
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Case 3: m > 0 and q = m. We can assume that i = 1, otherwise we can simply use
the argument of Case 2. Now, let V′ = λzy1 . . . yt.z where t is great enough to have
N[V’/x1] > nf. Then we have:

s′
N,nV′ I I . . . I︸ ︷︷ ︸

t-times

=
{

s′
N,n−1 if n > 0;

M1[V′/x1] otherwise;

and we obtain a new sequence: M1[V′/x1], N, 〈 N 〉, 〈〈 N 〉〉 . . . If M1[V′/x1] has the
form: M1[V′/x1] = λx1 . . . xp.x1Q1 . . . Qp then we can iterate the process and after
a finite number of steps we arrive at a term M′ of the form: M′ = λx1 . . . xp . x jQ1 . . .

Qp′ such that either p �= p′, or j �= 1, or M′ = λx1 . . . xp.x j. Now we consider the
final sequence:

Pk, Pk−1, . . . , P1, N, 〈N〉, 〈 〈N〉 〉 . . . (5)

where Pk =M′. For a suitable choice of t, every term T in (5) is such that T(KtI) =
Kt−1I with the exception of M′(KtI) �= Kt−1I, but again in nf. Then we can apply the
Böhm Theorem. This completes the proof of Theorem 4.19.

5 The Curry-Hindley-Seldin abstract approach

5.1 Generalities For completeness of exposition, we recall some definitions and
results from Chapter 13A of [6].

Definition 5.1 We say that c is a set of combinatory numerals (SCN) if there exist
closed terms F, G such that:

c = {FnG|n ∈ N }.

Notation Following [6] we introduce the metavariables [s] and [0] for terms F and
G respectively. We let [n] stand for FnG; that is, the nth numeral of c. But we also
make use of the notation cn . Observe that this is coherent with the terminology of
Sections 2 and 3. We use c, d, q as metavariables for SCN. As before we append
subscripts to operations or numerals (as [s]d, [0]d, etc.) only when it is needed to
avoid confusion. To link this new approach to the previous one we assume that all
numerals [n] reduce to nf. Thus all the SCNs that we shall consider in this section are
assumed to have numerals in nf. Par abus de langage, they will be indicated simply
with SCN.

Theorem 5.2 A SCN c is a finite set or a QNS with successor.

Proof: Assume that for some m, n, with m > n, [n] = [m]. Then for every q ≥ m
we have FqG = FsG where s = n + re(q − n, m − n), and re(n1, n2) = the remainder
of the division of n1 by n2. Therefore c is a finite set.

Now we define operations on SCNs. Definitions of successor [s], predecessor
[p], test for zero [z] and iterator [it] are done in the obvious way. If we consider QNSs
as a particular case of SCNs the old definitions agree with the new ones.

Definition 5.3 A SCN c:
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1. has a recursor if there exists a term [R] such that for all terms T1, T2:

[R]T1T2[0] = T1 and
[R]T1T2([s][n]) = T2[n]([R]T1T2[n]);

2. has a µ-operator if there exists a term [pe] such that for all terms T1, T2:

[pe]T1T2 = T2 if T1T2 = [0]; and
[pe]T1T2 = [pe]T1([s]T2) if T1T2 = [n + 1] for some n.

The following theorem is taken from [6], see Chapter 13A Paragraph 3, Theorems 1
and 2.

Theorem 5.4 For SCNs:

(i) each of the terms [it] and [R] is interdefinable with the pair [p], [z];

(ii) none of the terms [p], [z], [it], and [R] are definable only by [0] and [s].

Remark 5.5 The content of Theorem 5.4 (i) is included in that of Theorem 2.6.1,
which is slightly stronger. In fact, by Lemma 3.7 SCN are r.e. sets of terms.

Remark 5.6 Theorem 5.4 (ii) follows from the results of Section 3. We observe
that to prove Theorem 5.4 (ii) in [6] SCNs are given that turn out to be finite. Now
the general question arises as to whether one can obtain the results of [6] with the ad-
ditional requirement of the mutual nonconvertibility of numerals. We shall be con-
cerned with an example of this general question below.

5.2 Indefinability of the µ operator We observe that [pe] is a weak form of test for
zero. In fact the existence of [z] implies the existence of [pe] by the following fixed
point construction: [pe]xy =[z](xy)y([pe]x([s]y)).

On the other side we know from Section 3 that [z] cannot be defined by [0], [s]
and [p], even in the QNS case. In [6], Chapter 13A, Paragraph 3, Remark 1, it is asked
whether [pe] can be defined by [0], [s] and [p]. We answer this question negatively
below, proving that for the Barendregt-Wadsworth QNS, dn = KnI, there is not a term
satisfying the properties of [pe].

Theorem 5.7 The QNS dn=KnI does not have a [pe] term.

In order to prove the theorem we need the following lemma:

Lemma 5.8 Let M be such that MI reduces to nf. Then there exists a n0 such that,
for n ≥ n0, M(KnI) reduces to nf.

Proof: We consider the Böhm tree of M. First of all M has a head nf: M = λx1 . . .

xq.ξM1 . . . Mm. If ξ = x1 the lemma follows. If ξ �= x1 then we can assume that x1

occurs in some M j for 1 ≤ j ≤ m.
For each M j, we observe that M j must have a head nf and if for all M j, x1 is the

head variable then the lemma follows. Repeating this argument at each level of the
Böhm tree of M, we have the following alternatives:

(a) for some level every subterm containing x1 has x1 as head variable;
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(b) for every level there exists a term containing x1, such that x1 is not the head
variable.

In (a) the lemma follows. In (b) we observe that by König’s Lemma there exists an
infinite branch of the Böhm tree of M in which x1 is not the head variable of any node.
But in this case M[I/x1] cannot have nf, so that (b) is impossible. Now we turn to the
proof of Theorem 5.7.

Proof of Theorem 5.7: Assume that a [pe] term exists. Then for each X, Y: [pe]XY
= Y if XY = I and [pe]XY = [pe]X(KY) if XY = KnI for some n > 0. Put X = C�I,
(where C�xy ≡ yx) and let M = [pe]X. Then MI = I, (in fact C�I I = I); and M(KI)
= KI, (in fact C�I(KI) = I).

Now for m, n ≥ 2 we have M(KmI) = M(KnI). By the Lemma, M(KnI) must
reduce to nf for n ≥ n0, for some n0. Therefore for n ≥ 2, M(KnI) = U for some
normal form U. If U = I then we can find a test for zero for d putting [z]dn = Mdn+1.
If U = KI then M would directly be a test for zero. Finally, if U �= I and U �= KI, then
by Böhm’s Theorem, we could again find a test for zero for d. So all these cases lead
to a contradiction and Theorem 5.7 follows.

Now it is natural to ask if [pe] is strictly weaker than test for zero. If finite coun-
terexamples are admitted, it is easy to see that if we put [s] = I and [0] = I, the resulting
SCN c = {I} has predecessor and a [pe] term (that in both cases is I) but obviously not
test for zero. We do not know if this is the case also for QNSs.

Open Problem 5.9 Does there exist a QNS d with successor, predecessor and [pe]
operator, but without a test for zero?

6 Adequate, nonnormal, numeral systems without test for zero As we stated in
Section 1, there exist adequate numeral systems without the usual test for zero. Since
the r.e. function f such that: f (0) = 0 and f (n + 1) = 1 must be representable, it
follows from Böhm’s Theorem that the numerals have no nf. We give an example of
this kind of numeral system below. First however, we have to agree about the meaning
of “undefined” in the representation of recursive functions. In fact the Barendregt-
Wadsworth thesis: “undefined means an unsolvable term” must now be refined, since
numerals may also not have head normal form.

Definition 6.1 Let d be a QNS (normal or not). A partial recursive function f :
N m → N is represented on d by a term F if:

(i) Fdn1 . . .dnm = d f (n1...nm) if f is defined for n1 . . . nm;

= an unsolvable term different from each dn otherwise;

(ii) we can effectively recognize if a computation has terminated.

Definition 6.2 Let d be a QNS (normal or not), d is an adequate numeral system
if every recursive function is representable on d, in accordance with Definition 6.1.

The following lemma has interest in its own right and states that it is sufficient that
binary functions are representable.

Lemma 6.3 Let d be a QNS (normal or not). Moreover let d be an adequate nu-
meral system for every unary and binary recursive function. Then d is adequate for
every recursive function.
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Proof: Let f (m, n, p) be a tertiary recursive function (the general case is similar).
As it is well known (see paragraph 5.3 of Rogers [8]) there exist a recursive pair-
ing function j and recursive projection functions l, r. By hypothesis they are repre-
sented by terms J, L, R. Let the recursive function g(m, n) be defined by g(m, n) =
f (l(m), r(m), n). Let G be a term representing g. It is easily seen that the term F
defined by Fxyz = G(Jxy)z represents f .

Theorem 6.4 There exist adequate numeral systems without test for zero.

Proof: Let Ux ≡ (xx) ◦ (xx) and set P ≡ UU so that:

(��) P ◦ P= P.

Now we put dn = λx.P(xn). We have to show that:

(i) d = d0, . . . ,dn, . . . is an adequate numeral system;

(ii) d cannot have a test for zero in the usual sense.

Proof of (i): By the Lemma 6.3, let f be a recursive function of two arguments.
Then there exists a term F such that F represents f on Church numerals. First sup-
pose that n, m are such that f (n, m) exists. Let H1 ≡ λywz.y(wz), i.e., let H1 be the
combinator B. Then H1dn = λwz.P(wzn). Let H2 ≡ λx1x2x3.x1(Bx2(Fx3)), then
H2dm = λx2x3.P(x2(Fx3m)). Now we have: H1dn(H2dm) = λz.P(P(z(Fn m))) and
by (��):

= λz.P(z(Fn m) = d f (n,m).

We have proved that f , when defined, is represented on d by:

F� = λxy.H1x(H2 y).

Now suppose that n, m are such that f (n, m) is not defined. Then Fn m is an unsolv-
able term, so thatF�n m does not reduce to any numeral dk. Furthermore it is clear
that we can effectively recognize if a computation has terminated.

Proof of (ii): Now we show that d cannot have a test for zero [z]. By [10], [z] must
have the form [z] = λx1 . . . xm.x1M1 . . . Mq. Now, if q = 0, i.e., [z] = λx1 . . . xm.x1

then [z]dn = λx2 . . . xmz.P(zn) which cannot reduce to nf. If q > 0 then:

[z] dn = λx2 . . . xm.P(M1[dn/x1]n)M2[dn/x1] . . . Mq[dn/x1]

which also cannot reduce to nf. This completes the proof of Theorem 6.4.
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