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Topological Structure of Diagonalizable
Algebras and Corresponding

Logical Properties of Theories

GIOVANNA D’AGOSTINO

Abstract This paper studies the topological duality between diagonalizable
algebras and bi-topological spaces. In particular, the correspondence between
algebraic properties of a diagonalizable algebra and topological properties of
its dual space is investigated. Since the main example of a diagonalizable al-
gebra is the Lindenbaum algebra of an r.e. theory extending Peano Arithmetic,
endowed with an operator defined by means of the provability predicate of the
theory, this duality gives the possibility to study arithmetical properties of the-
ories from a topological point of view. We find topological characterization of
�1-sound theories and of sentences that are�1-conservative over such a theory.

1 Introduction The equational class of diagonalizable algebras was introduced in
the 1970s in order to study properties of arithmetical theories from an algebraic point
of view.

Definition 1.1 A diagonalizable algebra is a pair(D, ), whereD is a Boolean
algebra with operations⊥,�,∧,¬,∨, and is a map fromD to D satisfying the
following identities:

1. � = �;

2. (a ∧ b) = a ∧ b;

3. ( a → a) = a;

where, as usual,a → b is¬a ∨ b. The operator� defined as�a = ¬ ¬a is also used,
and in this case a diagonalizable algebra is considered to be a pair(D,�).

The main example of a diagonalizable algebra is the Lindenbaum algebraDS

of an r.e. theoryS extending Peano ArithmeticPA, with the defined as [ p] =
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[TheorS (p)]. Here [p] denotes the equivalence class of the sentencep with respect
to provable equivalence inS, while TheorS (x) is the provability predicate ofS.

Many results prove the class of diagonalizable algebras to be adequate for the
study of arithmetical theories: among them, we recall that, according to Solovay’s
Theorem, the diagonalizable algebra ofPA generates the variety of diagonalizable
algebras. Besides, a recent result of Shavrukov (see Shavrukov [10]) shows how the
algebraic structure is sensitive to the change of the base theory, e.g., the diagonaliz-
able algebras ofPA and Z F are not isomorphic (while they can be recursively em-
bedded each one into the other).

During the 1980s, the topological duality between Boolean algebras and Stone
spaces was extended to diagonalizable algebras. First, Esakia proved that if a topo-
logical spaceX is scattered (i.e., every nonempty subset ofX contains an isolated
point), we get a diagonalizable algebra by defining the operator� on the Boolean
algebraP(X) as the derived set operatord of the topology; moreover the class of
these “topological” algebras generates the whole equational class of diagonalizable
algebras. Later, Abashidze showed that the ordinalωω with the interval topology is
generic in the class of diagonalizable algebras (see Abashidze and Esakia [1] and also
Blass [3]).

A duality is obtained as follows. Given a diagonalizable algebra(D,�), con-
sider the Stone space(D∗, T ) of the underlying Boolean algebra (as usual, the clopen
sets of the Stone space are identified with the elements ofD). On this space define a
relationR as follows:xRy iff the ultrafilter x contains the set{�a/a ∈ y}. Wecall R
the dual relation of(D,�) and for each clopen seta of the Stone space(D∗, T ), the
clopen set�a equalsR−1(a) (see Magari [7]).

Definition 1.2 From now on, the word “clopen” always refers to a clopen set in the
Stone topology.

Let us consider in particular the Stone space ofDPA. Here, ultrafilters can be
identified with complete theories extendingPA, and the relationR has a logical mean-
ing: xRy iff the theoryx proves the consistency of all the theoriesPA + a for each
sentencea belonging to the theoryy. Note that an ultrafilterx is reflexive (with
respect to the relationR), iff the complete theoryx proves the reflection principle
TheorPA(a) → a for each sentencea.

Toobtain a topological duality for diagonalizable algebras, once(D,�) is given,
define a new topologyT in the Stone spaceD∗ by considering as open sets theR-
hereditary sets (i.e., the subsetsH of D∗ with the property thatx ∈ H andxRy imply
y ∈ H); in this topology, the interior of a clopenp is given by the setp ∧ p. The
topologyT turns out to be relatively scattered with respect to the Stone topology, that
is, each clopen set inT contains an isolated point in the topologyT . It can be proved
that the “topological” diagonalizable algebra, obtained by considering the clopen sets
with the derived set operatord of theT-topology as�, is isomorphic to the diagonal-
izable algebra(D,�) (see Bernardi and D’Aquino [2]).

In this paper, the correspondence between algebraic properties of diagonalizable
algebras and topological properties of the dual space is investigated. By restricting
this study to the case of diagonalizable algebras of theories, we find topological char-
acterization of�1-sound theories and of sentences that are�1-conservative over such
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a theory (see Corollary3.5and Theorem4.3).
In order to prove these results in full generality we recall the definition of net; we

note that this definition would be unessential if we were dealing only with diagonaliz-
able algebras of theories, because in this case the topologyT of the dual space would
be second countable and the definition of sequence would be enough to describe the
properties of the topology.

Definition 1.3 A directed system is a setS together with a transitive relation≺S,
such that, ifα, β ∈ S, there is aγ ∈ S with α ≺S γ andβ ≺S γ.

Definition 1.4 A net is a map from a directed systemS into a topological spaceX.
Wewrite xα for the value of the net atα and(xα)α∈S for the net itself.

Definition 1.5 A net (xα)α∈S is said toconverge at x ∈ X if for each open setO
containingx there isα ∈ S such thatxβ ∈ O if α ≺S β. In this case we callx a limit
point of the net(xα)α∈S. If the topologial space is not Hausdorff, it is possible for a
net to converge to more than one point.

Definition 1.6 A net(yβ)β∈T is asubnet of a net(xα)α∈S if:

1. there is a mapϕ on the directed systemT with values inS such thatyβ = xϕβ,
for eachβ ∈ T ;

2. for eachα ∈ S there is aβ ∈ T with the property that, ifβ ≺T β′, thenα ≺S ϕβ′.

We may describe a topological spaceX by using nets; in fact, a subsetC of X
is closed iff it contains all limit points of nets with values inC, while a pointx is a
cluster point for a subsetY iff there is a net inY − {x} that converges tox. We also
recall that compact spaces are exactly those topological spaces in which every net has
aconvergent subnet.

Let D be a diagonalizable algebra. The setD∗ of all ultrafilters ofD, endowed
with the Stone topology and with the topologyT described above, is called the dual
space of the diagonalizable algebraD. If R is the dual relation onD∗, then the fol-
lowing proposition is proved in D’Agostino [4]:

Proposition 1.7 Let x, y be elements of D∗. Then

xRy iff there is a net (xα)α∈S such that




∀α ∈ S xα �= x
(xα) → x in the topology T
(xα) → y in the topology T.

In particular, an element x of D∗ is reflexive iff there is a net of elements different from
x that converges to x in both T and T.

Werecall that a diagonalizable algebraD is said to beω-consistent (see Magari
[6]) if � �= ⊥, and a = � impliesa = �.

From the dual point of view, it is easy to see that an algebra isω-consistent iff
R−1(x) �= ∅ for each pointx in D∗ (for a logical counterpart ofω-consistency, see
Proposition2.2).

In D’Agostino [4] the following proposition is proved:

Proposition 1.8 D is ω-consistent iff D∗ is the only T-open set containing the set
of reflexive points.
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2 First results A diagonalizable algebraD is said to possess thedisjunction prop-
erty (see [9]) if a ∨ b = � implies a = � or b = � (equivalently,�p ∧ �q is
different from⊥ if �p,�q are different from⊥).

D is said to have thestrong disjunction property (see [9]) if it is ω-consistent
and has the disjunction property, that is,a ∨ b = � impliesa = � or b = � (equiv-
alently,�a ∧ �b is different from⊥ if both a andb are different from⊥). In the class
of diagonalizable algebras theω-consistency and the disjunction property are inde-
pendent from each other, as one can see by considering the following:

Example 2.1 The direct productF × F of a free algebraF (for instance on the
empty set) with itself isω-consistent but does not have the disjunction property, while
any finite algebra with the disjunction property (e.g., any finite diagonalizable algebra
where a = � for all a) is notω-consistent.

The situation is different if we consider diagonalizable algebras of theories,
where the following holds:

Proposition 2.2 (See Shavrukov [9]) S is �1-sound iff the diagonalizable algebra
DS is ω-consistent iff DS has the strong disjunction property.

We first intend to characterize the disjunction property and theω-consistency
from a topological point of view for all kinds of diagonalizable algebras; we will see
later that these characterizations become simpler when considering diagonalizable al-
gebras of theories.

Theorem 2.3 D is ω-consistent iff the set of points which have a nonempty T−
derived set is dense in the Stone space.

Proof: Let d be the derived set operator of the topologyT . Notice that R−1

(y) − {y} = d{y}. If D is ω-consistent andd{y} is empty, thenR−1(y) is equal to
{y}, and Proposition1.7guarantees the existence of a net(yα), with yα �= y for ev-
ery α, that converges toy in both topologies; since eventually the setd{yα} is not
empty, we conclude thaty belongs to the closure (in the Stone topology) of the set
{x/d{x} �= ∅}.

Vice versa, if there is a net(yα) in {x/d{x} �= ∅} that converges in the Stone
topology toy, then for everyp1, . . . , pn with pi ∈ y, there is anα such thatp1,...,pn

are in yα. But R−1(yα) is not empty, thus we have�p1 ∧ . . . ∧ �pn �= ⊥, and the
set {�p/p ∈ y} has the finite meet property as set of elements of the Boolean al-
gebraD; thus, there exists an ultrafilter containing the set{�p/p ∈ y} and this im-
plies R−1(y) �= ∅. Since this is true for all points in the dual space, the algebra is
ω-consistent.

Lemma 2.4 The following conditions are equivalent:

(i) D has the disjunction property;

(ii) there is a point z in the dual space such that zRx for each x with R−1(x) �= ∅;

(iii) if R−1(x) �= ∅ and R−1(y) �= ∅, then the set R−1(x)
⋂

R−1(y) is not empty.

In particular, D has the strong disjunction property iff R−1(x)
⋂

R−1(y) is not empty
for every x, y in D∗, iff there exists a point z ∈ D∗ such that zRx for all x ∈ D∗.
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Proof: (i) → (ii) Using induction we can prove that the disjunction property im-
plies then-disjunction property, that is, if�pi �= ⊥, for i = 1, . . . , n then�p1 ∧ . . . ∧
�pn �= ⊥ (see Friedman [5]). This implies that the set{�p/ � p �= ⊥} has the finite
meet property, thus it is contained in an ultrafilterz; but if z ⊇ {�p/ � p �= ⊥}, then
z satisfies (ii).

(ii) → (iii) Obvious.
(iii) →(i) If �a,�b are both different from⊥, two ultrafiltersx, y exist such that

a ∈ x, b ∈ y andR−1(x) �= ∅, R−1(y) �= ∅; from (iii) it follows that R−1(x)
⋂

R−1

(y) �= ∅, and�a ∧ �b �= ⊥.

Remark 2.5 From the Lemma we see that the disjunction property is equivalent
to the existence of an ultrafiltery such that if a ∈ y, then a = �; then the strong
disjunction property is equivalent to the existence of ay such that a ∈ y implies
a = �, that is,y “behaves like” the ultrafilter of the true sentences (in the standard
model) ofPA.

From a topologial point of view, sinceyRx for all x ∈ D∗, the pointy belongs to
the closure of every point of the space, or equivalently, the only open set containing
y is the whole space. We refer to thisy as an “antigeneric point.”

Theorem 2.6 D has the disjunction property iff every net in the set {x/R−1(x) �=
∅} converges.

Proof: (→) It follows easily from Lemma2.4part (ii).
(←) Givenx, y such thatR−1(x) �= ∅, R−1(y) �= ∅, let (xn) be the sequence

that takes alternatively the valuesx, y, and letz be its limit; thus{x, y} ⊆ {z} ∪ R(z),
and only one of the following cases occurs:

(i) x = y;
(ii) x �= y, x = z andy ∈ R(z) (or the symmetrical case);

(iii) x �= y, {x, y} ⊆ R(z).

A simple verification shows that in every case the setR−1(x)
⋂

R−1(y) is not
empty, and thusD has the disjunction property according to Lemma2.4part (iii).

Remark 2.7 Using Lemma2.4we can prove something more:D has the disjunc-
tion property iff there is a point in the dual space to which every net of the set{x/R−1

(x) �= ∅} converges.

It follows that if D has the strong disjunction property then every net inD∗ con-
verges (to the antigeneric point of Remark 2.5; see Theorem3.1for the converse).

Theorem 2.8 D has the strong disjunction property iff every nonempty closed set
in the space (D∗, T ) is connected and contains a reflexive point.

Proof: (→) If C, C1, C2 are nonempty closed sets in(D∗, T ) such thatC = C1 ∪
C2, let x ∈ C1, y ∈ C2. WehaveC1 ∩ C2 ⊇ R−1(x)

⋂
R−1(y), and this last set is not

empty according to Lemma2.4. This implies that each closed setC in (D∗, T ) is
connected; sinceD is ω-consistent, each nonemptyT-closed set contains a reflexive
point (see Proposition1.8).

(←) If a, b are different from⊥, let x, y be two ultrafilters containing respec-
tively a andb. In the dual space(D∗, T ) , the setsC1 = {x} ∪ R−1(x) andC2 =
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{y} ∪ R−1(y) are closed and not empty, and according to the hypotheses there is a
reflexive pointz in C1 ∩ C2. Sincez is reflexive, we havez ∈ R−1(x)

⋂
R−1(y), and

since�a ∧ �b ∈ z, we conclude that�a ∧ �b �= ⊥.

We can describe the set{x/R−1(x) �= ∅} of Theorem2.6 in a topological way
as the closure in the Stone topology of the set of points with nonemptyT-derivate set
(see proof of Theorem2.3). In this way we obtain a purely topological characteriza-
tion of the disjunction property, but still the preceding theorems are quite unnatural.
In the next section we will concentrate in the direction of the class of algebras that
most concern us, the algebras of theories: we will see that the use of the topology
T becomes more natural, and allows us to obtain characterizations of relevant log-
ical properties of theories (see Corollary3.5, Theorem4.3). Already in the case of
diagonalizable algebras without atoms, things become simpler.

We recall that a Boolean algebra is atomless iff there are no open points in the
dual space, or equivalently, iff for each point of the dual space there exists a net
(yα)α∈I of elements different fromy that converges toy in the Stone topology.

3 �1-Sound theories and compactness

Theorem 3.1 If a diagonalizable algebra D is atomless, the following conditions
are equivalent:

(i) D has the strong disjunction property;

(ii) the closed sets in (D∗, T ) are connected;

(iii) every net of (D∗, T ) converges.

Proof: (i) →(ii) This follows from Theorem2.8.
(ii) → (iii) From (ii) it follows that there is at most one pointz with R−1(z) = ∅.

If there is such az, andx �= z, wemust havezRx; thus, every point of the dual space
belongs to the setz ∪ R(z) and every net converges toz. Now suppose thatR−1(x) �=
∅ for eachx ∈ D∗; if x, y ∈ D∗, then R−1(x)

⋂
R−1(y) �= ∅, otherwise the closed

setR−1(x)
⋃

R−1(y) would be disconnected. It follows that for every naturaln and
x1, . . . , xn ∈ D∗, the setR−1(x1) ∩ . . . ∩ R−1(xn) is not empty. The setsR−1(xi) are
closed in the Stone topology and the Stone space is compact, thus

⋂
x∈D∗ R−1(x) �=

∅. If z ∈ ⋂
x∈D∗ R−1(x), every net in (D∗, T ) converges toz.

(iii) → (i) We will first show thatR−1(z) �= ∅ for eachz in the space, that is,
the algebraD is ω-consistent. AssumeR−1(z) = ∅, andlet u be a point different
from z: the sequence that takes alternatively the valuesu andz must converge toz
and sozRu. Since the algebra is atomless, there is a net(zα), consisting of elements
different fromz, that converges toz in the Stone topology; butzRu for eachu �= z,
thus the net converges toz also in theT topology, andzRz according to Proposition
1.7; this contradictsR−1(z) = ∅. The disjunction property of the algebra follows
from Theorem2.6.

Remark 3.2 Wedo not use the hypothesis that the algebra is atomless to prove (i)
→ (ii) and (ii) → (iii); moreover without this hypothesis we can prove (iii)→ (ii).

Indeed, letC be a closed, nonempty disconnected set, and letC1 and C2 be
two closed nonempty sets such thatC = C1 ∪ C2 andC1 ∩ C2 = ∅. If x ∈ C1 and
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y ∈ C2, let (zn) be the sequence that alternatively takes the valuesx, y. If this se-
quence converges to a pointz, then the two constant subsequences with valuesx and
y converge toz too, and soz ∈ C1 ∩ C2, contradicting the fact thatC1 ∩ C2 is empty.
The hypothesis of being an atomless algebra, however, is necessary for (iii)→ (i):
we obtain a counterexample by considering a Boolean algebra containing an atom
a, endowed with the operator that is obtained in the usual way from the relation
R = {(a, x)/x �= a, x ∈ D∗} defined in the dual space of the algebra (where we iden-
tify the atoma with the principal ultrafilter generated by it).

The topologyT defined fromR has the property that every net converges to the
pointa; nevertheless, from Lemma 2.4 we see that the diagonalizable algebra defined
in this way has not the strong disjunction property.

From Theorem3.1and Remark3.2we see that the dualT-space of a diagonaliz-
able algebra with the strong disjunction property is certainly compact. Our next step
will be to show that, under certain hypotheses, the compactness of theT-dual space
implies the strong disjunction property of the diagonalizable algebra. In general, this
is not true, as Remark3.2shows.

Moreover, the hypothesis of being atomless does not help in this case: we next
describe an atomless (ω-consistent) diagonalizable algebra without the strong dis-
junction property that has a (T)-compact dual space. Consider the diagonalizable
algebra of Peano Arithmetic,DPA, and the direct productDPA × DPA. The dual
space is the disjoint union of two copies of the dual ofDPA (see D’Agostino [4]),
and it isT- compact becauseD∗

PA is so according to Theorem3.1, while the algebra
is ω−consistent and atomless. Nevertheless, the algebra has not the (strong) disjunc-
tion property. This means that in order to prove that the compactness of the space
(D∗, T ) implies the strong disjunction property, we have to consider a smaller class
of algebras than the atomless ones. However, we can prove:

Theorem 3.3 If D is atomless and (D∗, T ) is compact, then D is ω-consistent.

Proof: We shall prove, using Proposition 1.7, that for eachy in D∗ the setR−1(y)

is not empty.
Since the algebra is without atoms, for eachy in the dual space there is a net

(yα)α∈I of elements different fromy that converges toy in the Stone space. If
(D∗, T ) is compact, there is a subnet(yα)α∈J of (yα)α∈I that converges in(D∗, T )

to some pointx. If yα �= x for eachα ∈ J, we havexRy (see Proposition1.7). In any
case, there must be aδ ∈ J such that for eachγ ∈ J, γ � δ, yγ is different fromx;
otherwise we could find a subnet of(yα)α∈J with constant valuex. Then, however,
(yα)α∈J would converge in the Stone topology tox andx would be equal toy, because
the Stone topology isT1. This is in contradiction with the choice of the net(yα)α∈I .
In this way we can prove the existence of a net of elements, different fromx, that
converges tox in the topologyT and toy in the Stone topology. We then conclude
R−1(y) �= ∅ for eachy in the dual space, and the algebra isω-consistent.

Remark 3.4 If the algebra contains atoms, Theorem3.3is not true, even for infinite
algebras. Indeed, consider the example in Remark3.2, where the space(D∗, T ) is
compact while the algebra is notω-consistent.

Since the Lindenbaum algebra of an arithmetical theory is atomless, we obtain:



570 GIOVANNA D’AGOSTINO

Corollary 3.5 The following conditions are equivalent:

(i) the theory S is �1-sound;

(ii) all closed sets in (D∗
S, T ) are connected;

(iii) every net in (D∗
S, T ) is convergent;

(iv) the space (D∗
S, T ) is compact.

Proof: (i) ↔ (ii), (i) ↔ (iii) follow from Theorem3.1and Proposition2.2.
(iii) → (iv) is trivial.
(iv) → (i) follows by applying Theorem3.3, because in the case of Lindenbaum

diagonalizable algebra theω-consistency of the algebra implies the�1-soundness of
the theory (see Proposition2.2).

4 Admissible elements Wenow want to characterize sentences that are�1-conser-
vative over a�1-sound theoryS.

Werecall that an elementa of a diagonalizable algebraD is said to be admissible
(see [9]) if a ≤ b impliesb = �, or equivalently,a ∧ �b �= ⊥, for everyb �= ⊥.

Proposition 4.1 (See Shavrukov [9]). Let S be a �1-sound theory. A sentence a
is �1-conservative over S iff a is admissible in DS; then the theory S ∪ {a} is still
�1-sound iff a is admissible.

Lemma 4.2 An element a of a diagonalizable algebra D is admissible iff for each
point x of the dual space we have R−1(x) ∩ a �= ∅.

Proof: Let x be a point inD∗; if a is admissible, the set{a ∧ �b/b ∈ x} has the
finite meet property in the sense of Boolean algebras; indeed, we havea ∧�b1 ∧ . . .∧
�bn ≥ a ∧ �(b1 ∧ . . . ∧ bn), thus ifb1, . . . , bn ∈ x anda ∧ �b1 ∧ . . . ∧ �bn = ⊥, then
a ∧ �(b1 ∧ . . . ∧ bn) = ⊥ and the admissibility ofa contradicts the hypothesisb1 ∧
. . . ∧ bn ∈ x. If z is an ultrafilter containing{a ∧�b/b ∈ x}, thenz ∈ R−1(x)∩ a �= ∅.

Vice versa, ifb is not⊥, let x be an ultrafilter containingb. From R−1(x) ∩ a �=
∅ it follows a ∧ �b �= ⊥.

Theorem 4.3 In a diagonalizable algebra with the strong disjunction property, the
following conditions are equivalent:

(i) a is admissible;

(ii) every net of (D∗, T ) converges to a point in a;

(iii) every nonempty closed set of (D∗, T ) has a nonempty intersection with a.

In particular, a sentence a in the language of PA is �1-conservative over PA iff, con-
sidering the diagonalizable algebra D = DPA, (ii) (or equivalently (iii)) holds.

Proof: (i)→(ii) Since the diagonalizable algebra has the strong disjunction prop-
erty, if x1, . . . , xn are points in the dual space, using Lemma4.2 we can provea ∩
R−1(x1) ∩ . . . ∩ R−1(xn) �= ∅; but the Stone space is compact, and we deduce the
existence of a pointz such thatz ∈ a and zRx for each pointx in the space. This
implies that every net of(D∗, T ) converges ina.

(ii)→(iii) Easy.
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(iii) → (i) From the strong disjunction property we deduce that ifb �= ⊥, then
�b �= ⊥; but�b is aT-closed set and (iii) impliesa ∧ �b �=⊥.

The Stone space of a diagonalizable algebra is always aT1 space, while the topol-
ogy T is T1 iff the algebra is trivial (i.e., if a = � for eacha in the algebra). It is
still possible for an algebra to have closed points, and we will see that this property
is linked with the admissible elements. However, we will show that the Lindenbaum
diagonalizable algebra of a�1-sound theory does not have any closed point.

Theorem 4.4 If D has the strong disjunction property, the following conditions are
equivalent:

(i) a T-closed point exists (and only one according to Theorem 2.8);

(ii) the admissible elements form an ultrafilter x0 (the closed point in (i));

(iii)
⋂{C/Cis closed and not empty in (D∗, T ) } is a singleton (the ultrafilter x0 in
(ii)).

Proof: (i) → (ii) If the diagonalizable algebra has the strong disjunction property,
then:

(a) the element� is admissible;

(b) if a ≤ b anda is admissible thenb is admissible;

(c) if a is admissible then for eachb, eithera ∧ b or a ∧ ¬b is admissible (see [9]).

To prove that the admissible elements form an ultrafilter we have just to show
that there is noa such that botha and¬a are admissible. If this were the case, us-
ing Lemma4.2we would haveR−1(x0) ∩ ¬a �= ∅, andR−1(x0) ∩ a �= ∅, which is
impossible ifx0 is closed.

(ii) →(iii) If z ∈ ⋂{C/C is closed and not empty in(D∗, T ) }, then�b ∈ z if
b �= ⊥. If a is admissible,z does not contain¬a, otherwise¬a ∧ �b would be dif-
ferent from⊥ for eachb �= ⊥ anda,¬a would both be admissible, contradicting the
hypothesis that the admissible elements form an ultrafilterx0. This implies that ev-
ery admissible element is inz and thusz = x0. On the other hand, ifC is closed and
not empty in (D∗, T ) , then, for eachx in C, x0 ∈ R−1(x), since the closed sets in
(D∗, T ) are connected (see Theorem2.8).

(iii) →(i) The pointx0 is closed.

For example, the free algebra on the empty set has a unique closed point, the
ultrafilter of cofinite sets. The situation is different in Lindenbaum algebras; indeed,
since the set

⋂{C/C is closed and not empty in(D∗, T ) } is the set of all ultrafilters
that contain{�b/b �= ⊥}, it has cardinality 2ℵ0 (see Montagna [8]) and from the pre-
ceding theorem it follows that the dual space does not have any closed point.

Admissible elements allow us to obtain a topological property that is shared by
Lindenbaum diagonalizable algebras but not by the whole class of diagonalizable al-
gebras. Let us consider finitely generated quotients of a Lindenbaum diagonalizable
algebraDS; these quotients correspond to diagonalizable algebras of theoriesS + ϕ,
for a sentenceϕ such thatS � ϕ → TeorS(ϕ): in fact, we can choose the provability
predicate ofS + ϕ to beTeorS(ϕ → x).

These quotients, when proper, cannot beω-consistent; indeed:
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DS+ϕ is ω−consistent⇒ S + ϕ is �1−sound⇒ ϕ is an admissible element ofDS

(according to Proposition2.2and Lemma4.1); but then fromϕ ≤ ϕ in DS we infer
ϕ = 1.

Note:

(a) finitely generated quotients correspond in the dual space to Stone’s clopen that
are open inT (see Bernardi and D’Aquino [2]);

(b) in Lindenbaum algebras these quotients areω-consistent iff the corresponding
sets in the dual space areT-compact (see Corollary3.5and Proposition2.2).

From this we obtain :

Lemma 4.5 If S is �1-sound, in the dual space of the Lindenbaum algebra DS

there are no nontrivial clopen sets that are both open and compact in the T-topology.

By considering the dual space of the free algebra on the empty set, we see that
this result is not true in the class of all diagonalizable algebras.
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