Well Ordered Subsets of Linearly Ordered Sets

HARTMUT HÖFT and PAUL HOWARD

Abstract

The deductive relationships between six statements are examined in set theory without the axiom of choice. Each of these statements follows from the axiom of choice and involves linear orderings in some way.

1 Introduction We consider the following six consequences of the axiom of choice:

- CF: Every linearly ordered set has a cofinal sub-well-ordering.
- LFC: If a linear order has the fixed point property then it is complete.
- DS: If a linear order has no infinite descending sequences then it is a well ordering.
- $L D F=F$: Every linearly orderable Dedekind finite set is finite.
- PDF: $\forall X$, if $P(X)$ is Dedekind finite then every subset of $\mathcal{P}(X)$ which is linearly ordered by \subseteq has a maximum element.
- $D F=F$: Every Dedekind finite set is finite.

Where the relevant definitions are

1. A partially ordered set (A, \leq) has the fixed point property ($f p p$) if every function $f: A \rightarrow A$ which satisfies $(x \leq y \Rightarrow f(x) \leq f(y))$ has a fixed point.
2. A partially ordered set (A, \leq) is complete if every subset of A has a least upper bound.
3. A set A is Dedekind finite if it has no countably infinite subsets.
4. If (A, \leq) is a linearly ordered set, then $C \subseteq A$ is a cofinal sub-well-ordering of A if \leq well orders C and

$$
(\forall a \in A)(\exists c \in C)(a \leq c)
$$

The statement $D F=F$ is the best known of these weak forms of the axiom of choice. Both Cantor and Dedekind asserted that it was "true." Other historical details can be found in [7]. The statement $D S$ is frequently used in set theory with the axiom
of choice to show that a set is well ordered [5]. The statement $C F$ was studied by Sierpinski 9 and Manka [6]. Jech showed (see Problem 6.9 on page 95 of his (4]) that $P D F$ is not provable in set theory without the axiom of choice. $P D F$ was also studied in [3]. Hickman in [2] considered $L D F=F$.

We show that in the theory ZFU (Zermelo-Fraenkel set theory weakened to permit the existence of atoms) that

$$
C F \Rightarrow L F C \Rightarrow D S \Rightarrow L D F=F \Rightarrow P D F
$$

and that $D F=F$ implies $L D F=F$. Further the following implications are not provable in the theory ZFU:

$$
\begin{gathered}
L F C \Rightarrow C F, D S \Rightarrow L F C, D F=F \Rightarrow D S, \\
C F \Rightarrow D F=F, P D F \Rightarrow L D F=F .
\end{gathered}
$$

Our results are summarized in the following diagram. Numbers refer to references, lemmas and theorems where the results are proved.

$$
\begin{gathered}
C F \underset{3.3 \& 3.4}{\stackrel{[1]}{\rightleftarrows}} L F C \underset{3.5}{\stackrel{2.1}{\rightleftarrows}} D S \xrightarrow{2.2} L D F=F \underset{3.6-3.9}{\stackrel{\text { trivial }}{\rightleftarrows}} P D F \\
C F \underset{3.1}{\nrightarrow} D F=F \underset{3.2}{\nrightarrow} D S \\
D F=F \underset{\text { trivial }}{\longrightarrow} L D F=F
\end{gathered}
$$

This decides, in the theory ZFU, whether or not $A \Rightarrow B$ is provable for every A and B chosen from our six consequences of $A C$.

Some of our independence results transfer to Zermelo-Fraenkel set theory $(Z F)$ using the transfer theorems of Pincus. We can show that the implications

$$
D F=F \Rightarrow D S, L D F=F \Rightarrow D F=F \text { and } P D F \Rightarrow L D F=F
$$

are not provable in $Z F$ using these transfer theorems since the statements $D F=F$, $L D F=F$ and $P D F$ are injectively boundable. We refer the reader to for the details. Other independence results in $Z F$, except those that follow directly from the three above and known implications, are open problems. For example, we conjecture that $Z F \nvdash D S \rightarrow C F$ and $Z F \nvdash D S \rightarrow D F=F$.

2 The Implications The implication $C F \Rightarrow L F C$ is due to Davis who proved $L F C$ in the theory $Z F+A C$. An examination of the proof shows that only $C F$ is needed. The implications $L D F=F \Rightarrow P D F$ and $D F=F \Longrightarrow L D F=F$ are clear. We prove:

Theorem 2.1 LFC implies DS.

Proof: Assume LFC and that (A, \leq) is a chain with no infinite descending sequences. Let C be any non-empty subset of A, let $B=C \cup\left\{b_{0}\right\}$ where $b_{0} \notin C$ and let \leq^{*} be the linear ordering on B defined by $s \leq^{*} t$ if and only if ($s, t \in B \wedge s \leq t$) or $t=b_{0}$. That is, $\left(B, \leq^{*}\right)$ is the linear ordering obtained from C by adding b_{0} as largest element. $\left(B, \leq^{*}\right)$ has $f p p$ otherwise the sequence $f\left(b_{0}\right), f^{(2)}\left(b_{0}\right), f^{(3)}\left(b_{0}\right), \ldots$ is an infinite descending sequence in (A, \leq). By $L F C,\left(B, \leq^{*}\right)$ is complete. Therefore (B, \leq^{*}) has a least element which must be a \leq-least element of C.

Theorem 2.2 DS implies $L D F=F$.
Proof: Assume $D S$ and that (A, \leq) is a linear order where A is Dedekind finite. Then (A, \leq) has neither infinite descending sequences nor infinite ascending sequences. By $D S,(A, \leq)$ is a well order with no infinite ascending sequences which implies that A is finite.

3 The Models In this section we construct several models of the theory $Z F U$ for our independence results. Given a model M^{\prime} of $Z F U+A C$ which has A as its set of atoms, a permutation model M of $Z F A$ is determined by a group G of permutations of A and a filter Γ of subgroups of G which satisfies

$$
(\forall a \in A)(\exists H \in \Gamma)(\forall \psi \in H)(\psi(a)=a)
$$

and

$$
(\forall \psi \in G)(\forall H \in \Gamma)\left(\psi H \psi^{-1} \in \Gamma\right) .
$$

Each permutation of A extends uniquely to a permutation of M^{\prime} by \in induction and for any $\psi \in G$ we identify ψ with its extension. If H is a subgroup of G and $x \in M^{\prime}$ and $(\forall \psi \in H)(\psi(x)=x)$ we say H fixes x. We will also use the following notation: If $E \subseteq A$ and H is a subgroup of G then fix ${ }_{H}(E)$ will denote $\{\psi \in H \mid(\forall a \in E)(\psi(a)=$ a) \}.

The permutation model M determined by M^{\prime}, G and Γ consists of all those $x \in$ M^{\prime} such that for every y in the transitive closure of x, there is some $H \in \Gamma$ such that H fixes y. We refer the reader to page 46 of 4$]$ for a proof that M is a model of $Z F A$.

Theorem 3.1 $Z F U \nvdash C F \longrightarrow D F=F$.
Proof: For this argument, we use the basic Fraenkel model described in 4. We describe this model briefly: A is a countable set, G is the group of all permutations of A and

$$
\Gamma=\left\{H \mid(\exists E \subseteq A)\left(E \text { is finite and fix }{ }_{G}(E) \subseteq H\right\}\right.
$$

In this model M, A is an infinite, Dedekind finite set (see problem 4 on page 52 of (44). Therefore $D F=F$ is false. Also, in M, every linearly ordered set is well-orderable 3]. It follows easily from this that every linearly ordered set has a cofinal sub-wellordering in M.

Theorem 3.2 $Z F U \nvdash D F=F \longrightarrow D S$.

Proof: Let M^{\prime} be a model of $Z F U+A C$ with a countable set A of atoms ordered by \leq so that (A, \leq) has the order type of the rationals. Let G be the group of all order automorphisms of A and let Γ be the filter of subgroups of G generated by the support groups fix ${ }_{G}(E)$ where E ranges over subsets of A that satisfy the following three conditions:

1. The set E is well ordered by \leq.
2. The set E is bounded in the ordering \leq on A.
3. If $b: \alpha \rightarrow E$ is an order preserving bijection from an ordinal α onto E and $\lambda \leq \alpha$ is a limit ordinal then $\{b(\gamma): \gamma<\lambda\}$ has no least upper bound in the ordering (A, \leq). (That is, if we identify (A, \leq) with the rational numbers then the least upper bound of $\{b(\gamma): \gamma<\lambda\}$ is irrational.)
(We note that any order preserving permutation of a well ordered set E must fix E pointwise hence fix ${ }_{G}(E)=\{\varphi \in G \mid \varphi$ fixes E pointwise $\}$.) Since the union of two subsets of A satisfying (1), (2) and (3) also satisfies (1), (2) and (3), every group in the filter contains a group of the form fix ${ }_{G}(E)$ where E satisfies (1), (2) and (3). Therefore if we let M be the model determined by the filter Γ, for every $x \in M$ there is a subset E of A satisfying (1), (2) and (3) such that

$$
\left(\forall \varphi \in \operatorname{fix}_{G}(E)\right)(\varphi(x)=x) .
$$

When this happens we say E is a support of x.
We show that $D S$ is false in M by showing (by contradiction) that (A, \leq) has no infinite descending sequences in M : Assume that E is a support of an infinite descending sequence $\left\{\left(n, a_{n}\right) \mid n \in \omega\right\}$ of elements of A. Then
(*) $\left(\forall \varphi \in \operatorname{fix}_{G}(E)\right)(\forall n \in \omega)\left(\varphi\left(a_{n}\right)=a_{n}\right)$.
Since E is well-ordered by \leq there is at least one $i \in \omega$ such that $a_{i} \notin E$. Condition (3) insures that there are two elements e_{1} and e_{2} of A such that a_{i} is in the open interval $\left(e_{1}, e_{2}\right)$ and $\left(e_{1}, e_{2}\right) \cap E=\varnothing$. We can now obtain a one to one, order preserving function from (e_{1}, e_{2}) onto (e_{1}, e_{2}) which moves a_{i} (since $\left(e_{1}, e_{2}\right)$ is order isomorphic to the rationals). This can be extended to a permutation φ of A which fixes $A-\left(e_{1}, e_{2}\right)$ pointwise. The permuation φ therefore moves a_{i} and fixes E, contradicting ($*$).
$D S$ is false in M since (A, \leq) is an infinite linear order with no infinite descending sequences in M.

We will show $D F=F$ in M by showing that every infinite set in M has an infinite subset which is well-orderable in M. Assume X in an infinite set in M. Since X is in M, there is some subset E of A such that for every φ in fix ${ }_{G}(E), \varphi(X)=X$ and such that E satisfies (1), (2) and (3). If fix ${ }_{G}(E)$ fixes every element of X, then X is well orderable in M and we are done. We may therefore assume that there is a $y \in X$ and a permutation $\varphi_{0} \in \operatorname{fix}_{G}(E)$ such that $\varphi_{0}(y) \neq \mathrm{y}$. Suppose E^{\prime} is a support of y such that $E \subseteq E^{\prime}$ and let $F=E^{\prime}-E$.

As in (3) assume b is an order preserving bijection from some ordinal α onto E. We will use the ordinals $\leq \alpha$ to index the intervals in (A, \leq) determined by the set E as follows: For $0<\eta<\alpha$,

$$
I_{\eta}=\{a \in A:(\forall \beta<\eta)(b(\beta)<a \wedge a<b(\eta))\} .
$$

And

$$
I_{\alpha}=\{a \in A:(\forall \beta<\alpha)(b(\beta)<a)\} .
$$

Each I_{η} is an interval (in the sense that if $a_{1}<a_{2}<a_{3}$ and a_{1} and a_{3} are in I_{η} then a_{2} is in I_{η}) and the set of intervals $\left\{I_{\eta}: 0 \leq \eta \leq \alpha\right\}$ is a partition of A-E. Further by properties (1), (2) and (3), each of the sets I_{η} is non-empty.

Temporarily fix $\eta, 0 \leq \eta \leq \alpha$, and let F_{η} be the intersection of the support of y with I_{η}. That is, $F_{\eta}=I_{\eta} \cap$ F. Since φ_{0} is in fix ${ }_{G}(E), \varphi_{0}\left(F_{\eta}\right) \subseteq I_{\eta}$. We claim that there are two elements s_{η} and t_{η} of I_{η} such that $F_{\eta} \cup \varphi_{0}\left(F_{\eta}\right) \subseteq\left(s_{\eta}, t_{\eta}\right)$. (Here $\left(s_{\eta}, t_{\eta}\right)$ denotes the open interval in the ordering (A, \leq).) The argument, which is omitted, uses the fact that E and E^{\prime} satisfy property (3), the fact that the order (A, \leq) is dense and (if $\eta=\alpha$) property (2) of E^{\prime}. Let $\left(a_{0}^{\eta}, c_{0}^{\eta}\right),\left(a_{1}^{\eta}, c_{1}^{\eta}\right), \ldots$ be a sequence of open intervals in the ordering (A, \leq), each contained in I_{η} and chosen so that

$$
t_{\eta}<a_{0}^{\eta}<c_{0}^{\eta}<a_{1}^{\eta}<c_{1}^{\eta}<\ldots<b(\eta)
$$

and so that the set $\left\{a_{0}^{\eta}, c_{0}^{\eta}, a_{1}^{\eta}, c_{1}^{\eta}, \ldots\right\}$ has no least upper bound in (A, \leq) (and in addition if $\eta=\alpha$ we require that $\left\{a_{0}^{\eta}, c_{0}^{\eta}, a_{1}^{\eta}, c_{1}^{\eta}, \ldots\right\}$ be bounded). Finally, for each $i \in \omega$, let ψ_{i}^{η} be an element of $\operatorname{fix}_{G}(E)$ such that ψ_{i}^{η} fixes $A-I_{\eta}$ pointwise, and $\psi_{i}^{\eta}\left(\left(s_{\eta}, t_{\eta}\right)\right)=\left(a_{i}^{\eta}, c_{i}^{\eta}\right)$.

Now we combine the permutations $\psi_{i}^{\eta}, 0 \leq \eta \leq \alpha$, for each $i \in \omega$: For each $i \in \omega$, let ψ_{i} be the element of $\operatorname{fix}_{G}(E)$ that agrees with ψ_{i}^{η} on I_{η} for all $\eta, 0 \leq \eta \leq \alpha$. The permutation ψ_{i} thus defined is in $\operatorname{fix}_{G}(E)$ and therefore fixes X. Hence $\psi_{i}(y) \in X$ for each $i \in \omega$. Further $\psi_{i}(F) \cup E$ is a support of $\psi_{i}(y)$ and

$$
\psi_{i}(F) \subseteq \bigcup_{\eta \in \alpha+1}\left(a_{i}^{\eta}, c_{i}^{\eta}\right)
$$

We also claim:
A: $\bigcup_{i \in \omega} \psi_{i}(F)$ satisfies (1), (2) and (3). (From which it follows that the set $\left\{\psi_{i}(y)\right.$ $: i \in \omega\}$ is well orderable in M.)
B : For all $i, j \in \omega, i \neq j$ implies $\psi_{i}(y) \neq \psi_{j}(y)$. (From which it follows that $\left\{\psi_{i}(y): i \in \omega\right\}$ is infinite.)
We outline the proof of B : There is an element φ^{*} of fix $_{G}(E)$ such that φ^{*} agrees with φ_{0} on F and such that φ^{*} is the identity outside of $\bigcup_{\eta \in \alpha+1}\left(s_{\eta}, t_{\eta}\right)$. This uses the denseness of the ordering on A and the fact that F and $\varphi_{0}(F)$ are both subsets of $\bigcup_{\eta \in \alpha+1}\left(s_{\eta}, t_{\eta}\right)$.

Therefore $\varphi^{*}(y)=\varphi_{0}(y) \neq y$. For each $i \in \omega$, let

$$
\varphi_{i}^{*}=\psi_{i} \circ \varphi^{*} \circ \psi_{i}^{-1}
$$

then φ_{i}^{*} is the identity outside of $\bigcup_{\eta \in \alpha+1}\left(a_{i}^{\eta}, c_{i}^{\eta}\right)$. Therefore for $j \neq i, \varphi_{i}^{*}$ restricted to $\bigcup_{\eta \in \alpha+1}\left(a_{j}^{\eta}, c_{j}^{\eta}\right)$ is the identity. So for $j \neq i, \varphi_{i}^{*}$ fixes the support $\psi_{j}(F) \cup E$ of $\psi_{j}(y)$ pointwise and hence fixes $\psi_{j}(y)$. On the other hand

$$
\varphi_{i}^{*}\left(\psi_{i}(y)\right)=\psi_{i} \varphi^{*} \psi_{i}^{-1} \psi_{i}(y)=\psi_{i} \varphi^{*}(y) \neq \psi_{i}(y)
$$

since $\varphi^{*}(y) \neq y$. Since φ_{i}^{*} moves $\psi_{i}(y)$ and fixes $\psi_{j}(y)$ we conclude that $\psi_{i}(y) \neq$ $\psi_{j}(y)$.

Theorem 3.3 $Z F U \nvdash L F C \longrightarrow C F$.
Proof: Let M^{\prime} be a model of $Z F U+A C$ with a countable set A of atoms. For the construction of the model M we will assume that $a: \omega \times \mathbf{Z} \longrightarrow A$ is one to one and onto so that

$$
A=\{a(i, j) \mid i \in \omega \wedge j \in \mathbf{Z}\}
$$

where ω is the set of natural numbers $\{0,1,2, \ldots\}$ and \mathbf{Z} is the set of integers.
For each $i \in \omega$ let $\psi_{i}: A \longrightarrow A$ be the permutation defined by $\psi_{i}(a(i, j))=$ $a(i, j+1)$ and $\psi_{i}(a(k, j)=a(k, j)$ for $k \neq i$ and let G be the group of permutations generated by $\left\{\psi_{i} \mid i \in \omega\right\}$. We note that each $\eta \in G$ is an order automorphism of (A, \leq) where \leq is the ordering on A induced by the lexicographic ordering on $\omega \times \mathbf{Z}$, that is $a(i, j) \leq a(m, n)$ if and only if $i<m$ or $(i=m$ and $j \leq n)$. For each finite subset $E \subseteq \omega$ we let $G_{E}=\{\psi \in G \mid(\forall i \in E)(\forall k \in \mathbf{Z})(\psi(a(i, k))=a(i, k))\}$. Γ is the filter of subgroups of G generated by the groups G_{E} where E ranges over the finite subsets of $\omega . \mathrm{M}$ is the permutation model determined by G and Γ.

The linear ordering (A, \leq) defined above is in M since it is fixed by G. It is also the case that (A, \leq) has no cofinal-sub-wellordering in M since no $H \in \Gamma$ fixes a cofinal subset of (A, \leq) pointwise. Therefore $C F$ is false in M.

We now argue that $L F C$ is true in M. First note that the linear ordering (A, \leq) does not have the fixed point property in M since the function f defined by $f(a(i, j))$ $=a(i, j+1)$ is order preserving, has no fixed points and is fixed by G and is therefore in M.

Now let (C, \preceq) be any linear ordering in M. We will assume that (C, \preceq) is not complete in M and construct a fixed point free order preserving function from (C, \preceq) into (C, \preceq) which is in M. Since (C, \preceq) is not complete there is some subset $B \subseteq C$ with $B \in M$ and such that B has no least upper bound. We assume without loss of generality that B is closed downward (i.e., $(\forall c \in C)((\exists b \in B)(c \preceq b) \rightarrow c \in B)$.) It follows that if we let $D=C-B$, then $C=B \cup D,(\forall b \in B)(\forall d \in D)(b \preceq d), B$ has no least upper bound and D has no greatest lower bound. Let E be a finite subset of ω such that for all $\varphi \in G_{E}, \varphi$ fixes (C, \preceq), B and D.
Lemma 3.4 M contains a fixed point free order preserving function on B and a fixed point free order preserving function on D.
Proof: We will prove the lemma for B. The proof for D is similar.
We first partition B into two sets:

$$
B_{F}=\left\{b \in B \mid\left(\forall \varphi \in G_{E}\right)(\varphi(b)=b)\right\}
$$

and

$$
B_{M}=\left\{b \in B \mid\left(\exists \varphi \in G_{E}\right)(\varphi(b) \neq b\} .\right.
$$

Case 1: $\quad B_{F}$ is cofinal in (B, \preceq). In this case, since B_{F} is well-orderable in M (not necessarily by \preceq), (B_{F}, \preceq) has a cofinal sub-well-ordering without greatest element which we call (B_{F}^{\prime}, \preceq). In this case the function $f: B \rightarrow B$ defined by

$$
f(b)=\text { the least element of } B_{F}^{\prime} \text { which is } \succ b
$$

is a fixed point free order preserving function on B.

Case 2: For some b_{0} in $B_{M},(\forall b \in B)\left(b_{0} \preceq b \rightarrow b \in B_{M}\right)$. We first note that for each $b \in B_{M}$, only finitely many ψ_{i}, i in $\omega-E$, move b. (If E^{\prime} is a support of b then no ψ_{i} for $i \notin E^{\prime}$ moves b.) Choose, for each $b \in B_{M}$, a permutation η_{b} from the set

$$
\left\{\psi_{i} \mid i \in \omega-E\right\} \cup\left\{\psi_{i}^{-1} \mid i \in \omega-E\right\}
$$

so that $\eta_{b}(b)$ is as large as possible in the ordering \preceq on B.
Now we claim that if $b \in B_{M}$ and $\varphi \in \operatorname{fix}_{G}(E)$, then $\eta_{b}(\varphi(b))=\eta_{\varphi(b)}(\varphi(b))$. It is clear that $\eta_{b}(\varphi(b)) \preceq \eta_{\varphi(b)}(\varphi(b))$. Suppose that $\eta_{b}(\varphi(b)) \prec \eta_{\varphi(b)}(\varphi(b))$, then $\varphi\left(\eta_{b}(b)\right) \prec \varphi\left(\eta_{\varphi(b)}(b)\right)$ since G is abelian. Therefore $\eta_{b}(b) \prec \eta_{\varphi(b)}(b)$ which contradicts our choice of η_{b}. This proves the claim.

Now we define a function $g: B \rightarrow B$ by

$$
g(b)= \begin{cases}b & \text { if } b \in B_{F} \\ \eta_{b}(b) & \text { if } b \in B_{M}\end{cases}
$$

Note that for $b \in B_{M}, b \prec g(b)$ since some ψ_{i} must move b and if $\psi_{i}(b) \prec b$ then $b \prec \psi_{i}^{-1}(b)$.

We show that $g \in M$ by showing that for all $\varphi \in \operatorname{fix}_{G}(E)$ and for all $b \in B$ that $\varphi(g(b))=g(\varphi(b))$. This is clear if $b \in B_{F}$ since for such $b, b=\varphi(b)=g(b)$. If $b \in B_{M}$ then:

$$
\varphi(g(b))=\varphi\left(\eta_{b}(b)\right)=\eta_{b}(\varphi(b))=\eta_{\varphi(b)}(\varphi(b))=g(\varphi(b))
$$

where the second to last equality uses the claim proved above.
We show g is order preserving on (B, \preceq). Assume that $b_{1}, b_{2} \in B$ and that $b_{1} \prec$ b_{2}. If b_{1} and b_{2} are both in B_{F}, then $g\left(b_{1}\right)=b_{1} \prec b_{2}=g\left(b_{2}\right)$. If $b_{1} \in B_{F}$ and $b_{2} \in$ B_{M} then $g\left(b_{1}\right)=b_{1}=\eta_{b_{2}}\left(b_{1}\right) \prec \eta_{b_{2}}\left(b_{2}\right)=g\left(b_{2}\right)$. Similarly if $b_{1} \in B_{M}$ and $b_{2} \in$ $B_{F}, g\left(b_{1}\right) \prec g\left(b_{2}\right)$. If b_{1} and b_{2} are both in B_{M} then $g\left(b_{1}\right)=\eta_{b_{1}}\left(b_{1}\right) \prec \eta_{b_{1}}\left(b_{2}\right) \preceq$ $\eta_{b_{2}}\left(b_{2}\right)$. The function g has fixed points if $B_{F} \neq \varnothing$. To get the fixed point free, order preserving function f on (B, \preceq) we define f by

$$
f(b)= \begin{cases}b_{0} & \text { if } b \prec b_{0} \\ g(b) & \text { if } b \succeq b_{0}\end{cases}
$$

It follows from our assumption $\left\{b \in B \mid b_{0} \preceq b\right\} \subseteq B_{M}$ and the fact that for $b \in B_{M}$, $b \prec g(b)$ that f is fixed point free. It also follows, since g is order preserving, that f is order preserving. Finally, f is in M since it is definable from $g,(B, \preceq)$ and b_{0} all of which are in M. This completes the proof of the lemma.

The proof of Theorem 3.3 is completed by combining the fixed point free order preserving functions on B and D to get a fixed point free order preserving function on C.

Theorem 3.5 $Z F U \nvdash D S \longrightarrow L F C$.
Proof: Let M^{\prime} be a model of $Z F U+A C$ with a set of atoms A and an ordering \leq on A such that (A, \leq) is order isomorphic to the real numbers with their usual ordering. Let G be the group of all order automorphisms of (A, \leq) and let

$$
\Gamma=\left\{H \mid H \text { is a subgroup of } G \wedge(\exists E \subseteq A)\left(E \text { bounded } \wedge \operatorname{fix}_{G}(E) \subseteq H\right\}\right.
$$

M is the model determined by M^{\prime}, G and Γ. If $z \in M$ then there is some bounded $E \subseteq A$ such that for all $\varphi \in \operatorname{fix}_{G}(E), \varphi(z)=z$ and as in the proof of Theorem 3.2 we will call such an E a support of z.

We first argue that in $M,(A, \leq)$ is a witness to the failure of $L F C$. The linear ordering (A, \leq) is clearly not complete since A has no largest element. To show that (A, \leq) has the fixed point property in M assume that $f: A \rightarrow A$ is an order preserving map on A which is in M. Suppose that f has support $E \subseteq A$. We may assume that $E=[a, b]$-some closed bounded interval in the ordering (A, \leq). If f has a fixed point we are done. Otherwise for every $x \in A, f(x)$ must be in $[a, b]$. (If $f(x) \notin[a, b]$ then, since $x \neq f(x)$, there would be an element φ of fix ${ }_{G}([a, b])$ such that $\varphi(x)=x$ but $\varphi(f(x)) \neq f(x)$. This would mean $\varphi(f) \neq f$ contradicting our choice of $[a, b]$ as a support of f.) This means that $f \mid[a, b]:[a, b] \rightarrow[a, b]$. Since $([a, b], \leq)$ is a complete linear ordering in M^{\prime} where $A C$ holds, $f \mid[a, b]$ has a fixed point which is also a fixed point of f in M.

To argue that $D S$ is true in M, let (X, \preceq) be a linear ordering in M which is not a well ordering. We will show that in M there is a sequence $\left\langle y_{i}\right\rangle_{i \in \omega}$ of elements of X such that $(\forall i \in \omega)\left(y_{i+1} \prec y_{i}\right)$. Let $E=[a, b]$ be a support of (X, \preceq). Choose c and d in A so that $c<a<b<d$. Our plan is to find an infinite descending sequence $y_{0} \succ$ $y_{1} \succ y_{2} \cdots$ of elements of X such that each y_{i} has a support contained in $[c, d]$ (from which it will follow that the sequence $\left\langle y_{i}\right\rangle_{i \in \omega}$ is in the model M.) More specifically, let $\left\langle s_{i}\right\rangle_{i \in \omega}$ and $\left\langle t_{i}\right\rangle_{i \in \omega}$ be two sequences of elements of A satisfying

$$
c<\cdots<s_{2}<s_{1}<s_{0}<a<b<t_{0}<t_{1}<t_{2}<\cdots<d
$$

We will construct y_{i} so that it has support $\left[s_{i}, t_{i}\right]$.
The construction is by induction on the subscript i. To construct y_{0}, choose any element $z_{0} \in X$ and assume that $\left[s_{0}^{\prime}, t_{0}^{\prime}\right]$ is a support of z_{0} which contains $[c, d]$. There is a φ_{0} in $^{\operatorname{fix}}{ }_{G}([a, b])$ such that $\varphi_{0}\left(\left[s_{0}^{\prime}, t_{0}^{\prime}\right]\right)=\left[s_{0}, t_{0}\right]$ and we let $y_{0}=\varphi_{0}\left(z_{0}\right)$. It follows that $\left[s_{0}, t_{0}\right]$ is a support of y_{0}.

Assume that y_{i} has been defined satisfying $y_{i} \in X, y_{i}$ has support $\left[s_{i}, t_{i}\right]$ and $y_{i} \prec y_{j}$ for all $j \in \omega, j<i$. The element y_{i} is not least in X therefore we can choose an element $z_{i+1} \in X$ such that $z_{i+1} \prec y_{i}$. Assume that $\left[s_{i+1}^{\prime}, t_{i+1}^{\prime}\right]$ is a support of z_{i+1} containing [$\mathrm{c}, \mathrm{d}]$. There is a $\varphi_{i+1} \in \operatorname{fix}_{G}\left(\left[s_{i}, t_{i}\right]\right)$ such that $\varphi_{i+1}\left(\left[s_{i+1}^{\prime}, t_{i+1}^{\prime}\right]\right)=\left[s_{i+1}, t_{i+1}\right]$ and we let $y_{i+1}=\varphi_{i+1}\left(z_{i+1}\right)$. Clearly $y_{i+1} \in X$ and has support $\left[s_{i+1}, t_{i+1}\right]$. Further

$$
y_{i+1}=\varphi_{i+1}\left(z_{i+1}\right) \prec \varphi_{i+1}\left(y_{i}\right)=y_{i}
$$

where the middle inequality holds because φ_{i+1} fixes $[a, b]$ pointwise and therefore fixes \preceq. This completes the proof of Theorem 3.5.

Theorem 3.6 $Z F U \nvdash P D F \longrightarrow L D F=F$.
Proof: For the construction of the permutation model we begin with a model M^{\prime} of $Z F U+A C$ with a countable set A of atoms and an ordering \leq of A so that (A, \leq) has the same order type as that of the rational numbers. We assume that A is the disjoint union $A=D_{1} \cup D_{2} \cup D_{3}$ of three dense subsets D_{1}, D_{2} and D_{3}. We let Ge the group of all order automorphisms φ of A such that $\varphi\left(D_{i}\right)=D_{i}, i=1,2,3$. The argument we give below will require the existence of several types of permutations in G. For example:

Lemma 3.7

A: If $E_{1}, F_{1} \subseteq D_{1}, E_{2}, F_{2} \subseteq D_{2}, E_{3}, F_{3} \subseteq D_{3}, E_{i}$ and F_{i} are finite for $i=1,2$ and 3 and $\sigma:\left(E_{1} \cup E_{2} \cup E_{3}\right) \rightarrow\left(F_{1} \cup F_{2} \cup F_{3}\right)$ is one to one, onto, order preserving and satisfies $\sigma\left(E_{1}\right)=F_{1}, \sigma\left(E_{2}\right)=F_{2}$ and $\sigma\left(E_{3}\right)=F_{3}$ then there is a $\varphi \in G$ such that $\varphi \mid\left(E_{1} \cup E_{2} \cup E_{3}\right)=\sigma$.
B: If (a, b) is an interval in (A, \leq) and ψ is a permutation in G which satisfies $(a, b) \cup \psi((a, b)) \subseteq(u, v)$ and if $s_{1}<u<v<s_{2}$ then there is a $\psi^{\prime} \in f i x_{G}(A-$ $\left.\left(s_{1}, s_{2}\right)\right)$ which agrees with ψ on (a, b).

Lemmas of this type can be proved by the back and forth construction used to prove that any two countable dense linear orderings without first and last element are order isomorphic.

We will call a subset E of A a support if it satisfies the following conditions:

1. $E \cap D_{1}$ is finite.
2. $E \cap D_{2}$ is well ordered by \leq
3. If $b: \alpha \rightarrow E \cap D_{2}$ is an order preserving bijection from an ordinal α onto $E \cap$ D_{2} and $\lambda \leq \alpha$ is a limit ordinal then the least upper bound of $\{b(\gamma) \mid \gamma<\lambda\}$ in (A, \leq) exists and is in D_{3}.
Γ is the filter of subgroups H of G such that for some support E, fix ${ }_{G}(E) \subseteq H$ and M is the permutation model determined by M^{\prime}, G and Γ.

If E is a support then for every $t \in D_{1}$, as long as t is not in the finite set $E \cap D_{1}$, there is a $\varphi \in \operatorname{fix}_{G}(E)$ such that $\varphi(t) \neq t$. It follows that no well ordering of an infinite subset of D_{1} is in M. Therefore (D_{1}, \leq) is a linearly ordered, Dedekind finite, infinite set in M hence $L D F=F$ is false in M.

Now let X be any non-empty set in M. We will show that if $\mathcal{P}(X)$ is infinite in M then $\mathcal{P}(X)$ is Dedekind infinite in M from which it follows that $P D F$ is true in M.

Assume that $\mathcal{P}(X)$ is infinite. It follows that X must be infinite. If X is wellorderable in M then $\mathcal{P}(X)$ is Dedekind infinite and we are done. We therefore assume that X is not well-orderable in M. Let E be a support of X.

Lemma 3.8 There is a subset $Y \subseteq X$ such that

1. $\left(\exists \psi \in f i x_{G}(E)\right)(\psi(Y) \neq Y)$
2. Y has a support E^{\prime} such that $E^{\prime}-E \subseteq D_{2}$.

Proof: Since X is not well-orderable in M there is an element $t \in X$ such that $\exists \varphi \in$ $\operatorname{fix}_{G}(E)$ with $\varphi(t) \neq t$. Assume that t has support $H^{\prime} \supseteq E$ and let $H=H^{\prime}-E$. Let $H \cap D_{1}=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ and suppose H^{\prime} is chosen so that $H \cap D_{1}$ has minimum cardinality.

If $H \cap D_{1}=\varnothing$, then taking $Y=\{t\}$ and $E^{\prime}=H^{\prime}$ satisfies the lemma. If $H \cap$ $D_{1} \neq \varnothing$ then (by minimality) $\exists \varphi^{\prime} \in \operatorname{fix}_{G}(E)$ such that $\varphi^{\prime} \in \operatorname{fix}_{G}\left(H \cap D_{2}\right)$ and $\varphi^{\prime}(t) \neq$ t. Let b be a bijection for an ordinal α onto $\left(H \cap D_{2}\right) \cup E$ so that $\left(H \cap D_{2}\right) \cup E=$ $\{b(\gamma) \mid \gamma<\alpha\}$. This is possible by condition (2) in the definition of support. For each $\gamma<\alpha$ let

$$
I_{\gamma}=\left\{a \in A \mid(\forall \beta<\gamma)\left(c_{\beta}<a<c_{\gamma}\right\}\right.
$$

and let

$$
I_{\alpha}=\left\{a \in A \mid(\forall \gamma<\alpha)\left(c_{\gamma}<a\right)\right\} .
$$

The I_{γ} for $\gamma \leq \alpha$ are the open intervals in (A, \leq) determinted by the set $\left(H \cap D_{2}\right) \cup E$ and therefore

$$
A-\left(\left(H \cap D_{2}\right) \cup E\right)=\bigcup_{\gamma \leq \alpha} I_{\gamma} .
$$

It follows that $H \cap D_{1} \subseteq\left(\bigcup_{\gamma \leq \alpha} I_{\gamma}\right)$. We also note that $\varphi^{\prime}\left(I_{\gamma}\right)=I_{\gamma}$.
Since $H \cap D_{1}$ is finite there are only finitely many $\gamma \leq \alpha$ for which $H \cap D_{1} \cap$ $I_{\gamma} \neq \varnothing$. For each such γ we carry out the following construction. Let $H \cap D_{1} \cap I_{\gamma}=$ $\left\{d_{1}^{\gamma}, \ldots, d_{k_{\gamma}}^{\gamma}\right\}$ then for each $i, i=1,2, \ldots k_{\gamma}, \varphi^{\prime}\left(d_{i}^{\gamma}\right) \in I_{\gamma} \cap D_{1}$. Choose $s_{1}^{\gamma}<s_{2}^{\gamma}$ in $I_{\gamma} \cap D_{2}$ so that for $i=1,2, \ldots, k_{\gamma}, s_{1}^{\gamma}<d_{i}^{\gamma}<s_{2}^{\gamma}$ and $s_{1}^{\gamma}<\varphi^{\prime}\left(d_{i}^{\gamma}\right)<s_{2}^{\gamma}$. Using Lemma 3.7, we now choose a $\psi_{\gamma} \in \operatorname{fix}_{G}\left(A-I_{\gamma}\right)$ such that for $i=1,2, \ldots, k_{\gamma}, s_{2}^{\gamma}<$ $\psi_{\gamma}\left(s_{1}^{\gamma}\right)$. This will insure that

$$
\psi_{\gamma}^{-1}\left(s_{1}^{\gamma}\right)<\psi_{\gamma}^{-1}\left(s_{2}^{\gamma}\right)<s_{1}^{\gamma}<s_{2}^{\gamma}<\psi_{\gamma}\left(s_{1}^{\gamma}\right)<\psi_{\gamma}\left(s_{2}^{\gamma}\right)
$$

and that for $i=1,2, \ldots, k_{\gamma}$,

$$
\begin{gathered}
\psi_{\gamma}^{-1}\left(s_{1}^{\gamma}\right)<\psi_{\gamma}^{-1}\left(d_{i}^{\gamma}\right)<\psi_{\gamma}^{-1}\left(s_{2}^{\gamma}\right), \psi_{\gamma}^{-1}\left(s_{1}^{\gamma}\right)<\psi_{\gamma}^{-1}\left(\varphi^{\prime}\left(d_{i}^{\gamma}\right)\right)<\psi_{\gamma}^{-1}\left(s_{2}^{\gamma}\right) \\
\psi_{\gamma}\left(s_{1}^{\gamma}\right)<\psi_{\gamma}\left(d_{i}^{\gamma}\right)<\psi_{\gamma}\left(s_{2}^{\gamma}\right) \text { and } \psi_{\gamma}\left(s_{1}^{\gamma}\right)<\varphi^{\prime}\left(d_{i}^{\gamma}\right)<\psi_{\gamma}\left(s_{2}^{\gamma}\right) .
\end{gathered}
$$

By Lemma 3.7, there is a $\varphi_{\gamma}^{\prime \prime} \in \operatorname{fix}_{G}\left(A-\left(s_{1}^{\gamma}, s_{2}^{\gamma}\right)\right)$ such that for $i=1,2, \ldots, k_{\gamma}$, $\varphi_{\gamma}^{\prime \prime}\left(d_{i}^{\gamma}\right)=\varphi^{\prime}\left(d_{i}^{\gamma}\right)$, where $\left(s_{1}^{\gamma}, s_{2}^{\gamma}\right)$ denotes the interval in (A, \leq).

The above construction was carried out for γ for which $I_{\gamma} \cap H \cap D_{1} \neq \varnothing$. Now we let

$$
E^{\prime}=\left(H \cap D_{2}\right) \cup E \cup\left\{s_{j}^{\gamma} \mid I_{\gamma} \cap H \cap D_{1} \neq \varnothing, j=1 \text { or } 2\right\}
$$

and let $Y=\left\{\sigma(t) \mid \sigma \in\right.$ fix $\left._{G}\left(E^{\prime}\right)\right\}$. We claim that Y and E^{\prime} satisfy the requirements of the lemma. Clearly $E^{\prime}-E \subseteq D_{2}$. Also if $\eta \in \operatorname{fix}_{G}\left(E^{\prime}\right)$ then $\eta^{-1} \in \mathrm{fix}_{G}\left(E^{\prime}\right)$ so that both $\eta(Y) \subseteq Y$ and $\eta^{-1}(Y) \subseteq Y$. It follows from the second inclusion that $Y \subseteq \eta(Y)$ and we therefore can conclude that $Y=\eta(Y)$. This shows that E^{\prime} is a support of Y and hence condition (2) of Lemma 3.8 is satisfied.

We must now show that there is a $\psi \in \operatorname{fix}_{G}(E)$ such that $\psi(Y) \neq Y$. Let ψ be the composition of the permutations ψ_{γ} such that $I_{\gamma} \cap H \cap D_{1} \neq \varnothing$. (There are finitely many such ψ_{γ} and they move disjoint sets so the order in which they are composed does not matter.) Since each $\psi_{\gamma} \in \operatorname{fix}_{G}(E), \psi \in \mathrm{fix}_{G}(E)$. Similarly, let $\varphi^{\prime \prime}$ be the composition of the permutations $\varphi_{\gamma}^{\prime \prime}$ defined above for ordinals γ such that $I_{\gamma} \cap H \cap$ $D_{1} \neq \varnothing$. Since $\varphi^{\prime \prime}$ and φ^{\prime} agree on H^{\prime} (a support of t), $\varphi^{\prime \prime}(t)=\varphi^{\prime}(t) \neq t$. We will show that $\psi(Y) \neq Y$ by showing that $\psi(t) \notin Y$.

By our definition of Y this amounts to showing that for every $\sigma \in$ fix $_{G}\left(E^{\prime}\right), \sigma(t)$ $\neq \psi(t)$. Assume that $\sigma \in \operatorname{fix}_{G}\left(E^{\prime}\right)$. We will show that $\sigma(t) \neq \psi(t)$ by showing that the permutation $\psi \varphi^{\prime \prime} \psi^{-1}$ moves $\psi(t)$ but fixes $\sigma(t)$. The first part we prove by contradiction: Assume $\psi \varphi^{\prime \prime} \psi^{-1}(\psi(t))=\psi(t)$, it follows that $\varphi^{\prime \prime}(t)=t$ which we have shown to be false. For the argument that $\psi \varphi^{\prime \prime} \psi^{-1}(\sigma(t))=\sigma(t)$ we note that for each γ such that $I_{\gamma} \cap H \cap D_{1} \neq \varnothing,\left\{d_{1}^{\gamma}, \ldots, d_{k_{\gamma}}^{\gamma}\right\}$ is a subset of the interval $\left(s_{1}^{\gamma}, s_{2}^{\gamma}\right)$
and σ fixes both s_{1}^{γ} and s_{2}^{γ}. Therefore $\left\{\sigma\left(d_{1}^{\gamma}\right), \ldots, \sigma\left(d_{k_{\gamma}}^{\gamma}\right)\right\} \subseteq\left(s_{1}^{\gamma}, s_{2}^{\gamma}\right)$. We conclude that $\sigma(H) \subseteq \bigcup\left\{\left(s_{1}^{\gamma}, s_{2}^{\gamma}\right) \mid I_{\gamma} \cap H \cap D_{1} \neq \varnothing\right\}$. Since $\sigma(H) \cup E$ is a support of $\sigma(t)$, any permutation in $\operatorname{fix}_{G}(E)$ that fixes $\bigcup\left\{\left(s_{1}^{\gamma}, s_{2}^{\gamma}\right) \mid I_{\gamma} \cap H \cap D_{1} \neq \varnothing\right\}$ pointwise, fixes $\sigma(t)$. But for each γ such that $I_{\gamma} \cap H \cap D_{1} \neq \varnothing, \varphi^{\prime \prime}$ fixes $\left(\psi_{\gamma}^{-1}\left(s_{1}^{\gamma}\right), \psi_{\gamma}^{-1}\left(s_{2}^{\gamma}\right)\right)$ and therefore $\psi \varphi^{\prime \prime} \psi^{-1}$ fixes $\left(s_{1}^{\gamma}, s_{2}^{\gamma}\right)$. This completes the proof of Lemma 3.8.

Lemma 3.9 If X has a subset satisfying the conditions of Lemma 3.8 then $\mathcal{P}(X)$ is Dedekind infinite.

Proof: Assume $Y \subseteq X$ satisfies conditions (1) and (2) of Lemma 3.8 and let $F=$ $E^{\prime}-E \subseteq D_{2}$. As in the proof of Lemma 3.8 we assume that b is an order preserving bijection from an ordinal α onto E. Then $E=\{b(\gamma) \mid \gamma<\alpha\}$. We also define I_{γ} for $\gamma \leq \alpha$ as in the proof of Lemma 3.8. For each $\alpha<\gamma, I_{\gamma}$ is an interval with right endpoint $b(\gamma) \in E$ and left endpoint in $E \cup D_{3}$. (We denote the left endpoint of I_{γ} by $b^{-}(\gamma)$.) It follows that $F \subseteq \bigcup_{\gamma \leq \alpha} I_{\gamma}$.

Fix $\gamma \leq \alpha$. By our assumption there are elements s_{1}^{γ} and s_{2}^{γ} of D_{2} such that

$$
b^{-}(\gamma)<s_{1}^{\gamma}<a<s_{2}^{\gamma}<b(\gamma)
$$

for all $a \in F \cap I_{\gamma}$. (The set $F \cap I_{\gamma}$ has a least element by (2) in the definition of support and if $F \cap I_{\gamma}$ has no greatest element then by (3) in the definition of support, the least upper bound of $F \cap I_{\gamma}$ is in D_{3} and is therefore $<b(\gamma)$.) In addition (and for similar reasons) we may assume that $s_{1}^{\gamma}<a<s_{2}^{\gamma}$ for all $a \in \psi(F) \cap I_{\gamma}$.

By Lemma 3.7 B there is a permutation $\psi^{\prime} \in \operatorname{fix}_{G}(E)$ such that

$$
\psi^{\prime} \in \operatorname{fix}_{G}\left(A-\bigcup_{\gamma \leq \alpha}\left(s_{1}^{\gamma}, s_{2}^{\gamma}\right)\right)
$$

and $\psi^{\prime}(a)=\psi(a)$ for all $a \in F \cap\left(\bigcup_{\gamma \leq \alpha} I_{\gamma}\right)$. Since ψ and ψ^{\prime} agree on a support of Y, we have $\psi^{\prime}(Y)=\psi(Y) \neq Y$.

For each $\gamma \leq \alpha$ choose a sequence of intervals $\left\langle\left(r_{i}^{\gamma}, q_{i}^{\gamma}\right)\right\rangle_{i \in \omega}$ in the ordering $(A, \leq$ $)$ and a point $t_{\gamma} \in A$ so that

$$
\begin{gather*}
s_{2}^{\gamma}<r_{1}^{\gamma}<q_{1}^{\gamma}<r_{2}^{\gamma}<q_{2}^{\gamma}<\cdots<t_{\gamma}<b(\gamma) \tag{1}\\
\sup \left\{r_{i}^{\gamma} \mid i \in \omega\right\}=\sup \left\{q_{i}^{\gamma} \mid i \in \omega\right\}=t_{\gamma} \tag{2}\\
r_{i}^{\gamma} \text { and } q_{i}^{\gamma} \in D_{2} \text { for } i \in \omega \tag{3}\\
t_{\gamma} \in D_{3} \tag{4}
\end{gather*}
$$

By Lemma 3.7 A, for each $i \in \omega$ there is a permutation $\eta_{i}^{\gamma} \in \operatorname{fix}_{G}\left(A-I_{\gamma}\right)$ such that $\eta_{i}^{\gamma}\left(s_{1}^{\gamma}\right)=r_{i}^{\gamma}, \eta_{i}^{\gamma}\left(s_{2}^{\gamma}\right)=q_{i}^{\gamma}$ and η_{i}^{γ} fixes the interval $\left[r_{i+1}, b(\gamma)\right)$ pointwise.

For each $i \in \omega$ let η_{i} be the composition of the permutations η_{i}^{γ} for $\gamma \leq \alpha$. Since for each $\gamma \leq \alpha, \eta_{i}^{\gamma}$ is the identity outside of I_{γ}, we have $\eta_{i}(x)=\eta_{i}^{\gamma}(x)$ for all x in
I_{γ}. Let $Y_{i}=\eta_{i}(Y)$. Since η_{i} fixes X and $Y \in \mathcal{P}(X)$, we have $Y_{i} \in \mathcal{P}(X)$. Further, since Y has support $E \cup F$ and η_{i} fixes E pointwise, Y_{i} has support $E \cup \eta_{i}(F)$. We will complete the proof of Lemma 3.9 by proving the following two assertions:

$$
\begin{align*}
& (\forall i, j \in \omega)\left(i \neq j \rightarrow \quad Y_{i} \neq Y_{j}\right) \tag{5}\\
& \bigcup_{i \in \omega}\left(E \cup \eta_{i}(F)\right) \text { is a support. } \tag{6}
\end{align*}
$$

From (5) it follows that $\left\{Y_{i} \mid i \in \omega\right\}$ is infinite and by (6) it follows that $\left\{Y_{i} \mid i \in \omega\right\}$ is in M and is well orderable in M.

For the proof of (5), assume $i, j \in \omega$ and that $i<j$. The permutation $\eta_{i} \psi^{\prime} \eta_{i}^{-1}$ fixes $Y_{j}=\eta_{j}(Y)$ since the support $E \cup \eta_{i}(F)$ of Y_{j} is contained in $E \cup$ $\left(\bigcup_{\gamma \leq \alpha}\left[r_{i+1}^{\gamma}, b(\gamma)\right)\right)$ which ψ^{\prime} and η_{i} both fix pointwise. On the other hand, the equation $\eta_{i} \psi^{\prime} \eta_{i}^{-1}\left(Y_{i}\right)=Y_{i}$ is equivalent to

$$
\eta_{i} \psi^{\prime} \eta_{i}^{-1}\left(\eta_{i}(Y)\right)=\eta_{i}(Y)
$$

which in turn implies the contradiction $\psi^{\prime}(Y)=Y$. Since $\eta_{i} \psi^{\prime} \eta_{i}^{-1}$ fixes Y_{j} and moves Y_{i} we conclude that $Y_{j} \neq Y_{i}$.

For the proof of (6), let $S=\bigcup_{i \in \omega}\left(E \cup \eta_{i}(F)\right)=E \cup\left(\bigcup_{i \in \omega} \eta_{i}(F)\right)$. We argue that S satisfies the three conditions in the definition of support which follows Lemma 3.7. First note that $F \subseteq D_{2}$, hence for $i \in \omega, \eta_{i}(F) \subseteq D_{2}$. Therefore $S \cap D_{1}=E \cap D_{1}$ which is finite since E is a support.

For the argument that S is well ordered let S^{\prime} be a non-empty subset of S. If the least element of $S^{\prime} \cap E$ is least in S^{\prime} then we are done. Otherwise let γ be the least ordinal such that $I_{\gamma} \cap S \neq \varnothing$. Then $\varnothing \neq S^{\prime} \cap I_{\gamma}=S^{\prime} \cap\left(\bigcup_{i \in \omega}\left(r_{i}^{\gamma}, q_{i}^{\gamma}\right)\right)$. Let i be the least natural number such that $S^{\prime} \cap\left(r_{i}^{\gamma}, q_{i}^{\gamma}\right) \neq \varnothing$. Then

$$
\varnothing \neq S^{\prime} \cap\left(r_{i}^{\gamma}, q_{i}^{\gamma}\right)=\eta_{i}(F) \cap I_{\gamma} .
$$

Since F is well ordered by $\leq, \eta_{i}(F)$ is also well ordered by \leq. If we let c be the least element of $\eta_{i}(F) \cap I_{\gamma}$ then c is the least element of S^{\prime}.

It only remains to show that if $w: \lambda \rightarrow S$ where w is one to one and order preserving and λ is an ordinal, then the least upper bound of $\{w(\beta) \mid \beta<\lambda\}$ is in D_{3}. We prove this by looking at several cases. If $\{w(\beta) \mid \beta<\lambda\}$ has a cofinal subsequence in E then, since E is a support, the least upper bound of $\{w(\beta) \mid \beta<\lambda\} \in$ D_{3}. If $\{w(\beta) \mid \beta<\lambda\}$ has no cofinal subsequence in E then we may assume that $\{w(\beta) \mid \beta<\lambda\} \subseteq \bigcup_{\gamma \leq \alpha} I_{\gamma}$. If there is a limit ordinal λ^{\prime} such that

$$
\left(\forall \gamma<\lambda^{\prime}\right)\left(\{w(\beta) \mid \beta<\lambda\} \cap I_{\gamma} \neq \varnothing\right)
$$

and $\{w(\beta) \mid \beta<\lambda\} \cap I_{\lambda^{\prime}}=\varnothing$, then the least upper bound of $\{w(\beta) \mid \beta<\lambda\}$ will be the same as the least upper bound of $\left\{b(\gamma) \mid \gamma<\lambda^{\prime}\right\}$ which is in D_{3}.

The only remaining possiblity is that there is a largest $\gamma \leq \alpha$ which is such that $\{w(\beta) \mid \beta<\lambda\} \cap I_{\gamma} \neq \varnothing$. Since $\{w(\beta) \mid \beta<\lambda\} \subseteq S,\{w(\beta) \mid \beta<\lambda\} \cap I_{\gamma} \subseteq$ $\bigcup_{i \in \omega}\left(r_{i}^{\gamma}, q_{i}^{\gamma}\right)$. If the set $\left\{j \mid\left(r_{i}^{\gamma}, q_{i}^{\gamma}\right) \cap\{w(\beta) \mid \beta<\lambda\} \neq \varnothing\right\}$ is infinite then

$$
\operatorname{lub}\{w(\beta) \mid \beta<\lambda\}=\operatorname{lub}\left\{r_{i}^{\gamma} \mid i \in \omega\right\}=t_{\gamma} \in D_{3}
$$

by (2) and (4). Finally, if there is a largest i such that $\left(r_{i}^{\gamma}, q_{i}^{\gamma}\right) \cap\{w(\beta) \mid \beta<\lambda\} \neq \varnothing$ then $\eta_{i}^{-1}\left(\left(r_{i}^{\gamma}, q_{i}^{\gamma}\right) \cap\{w(\beta) \mid \beta<\lambda\}\right) \subseteq F$ and since F is a support the least upper bound of $\eta_{i}^{-1}\left(\left(r_{i}^{\gamma}, q_{i}^{\gamma}\right) \cap\{w(\beta) \mid \beta<\lambda\}\right)$ is in D_{3}. Since $\eta_{i} \in G$ we conclude that the least upper bound of $\left(r_{i}^{\gamma}, q_{i}^{\gamma}\right) \cap\{w(\beta) \mid \beta<\lambda\}$ is in D_{3}.

REFERENCES

[1] Davis, A., "A characterization theorem of complete lattices," Pacific Journal of Mathematics, vol. 5 (1955), pp. 311-319.
[2] Hickman, J., "A class of near finite order types," Zeitschrift für mathematische Logik und Grundlagen Mathematik, vol. 25 (1979), pp. 79-92.Zbl 0404.04005 MR 80h:04003 1
[3] Howard, P., and M. Yorke, "Definitions of finite," Fundamenta Mathematicae, vol. 133 (1989), pp. 169-177.Zbl 0704.03033||MR 91h:03068 1.3
[4] Jech, T., The Axiom of Choice, North-Holland, Amsterdam, 1973.Zbl 0259.02051 MR 53:139 1,3,3,3,3
[5] Kunen, K., Set Theory. An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.Zbl 0443.03021MR 82f:03001]
[6] Manka, R., "Some forms of the axiom of choice," Jahrbuch der Kurt-GödelGeselleschaft, (1988), pp. 24-34.Zbl 0687.04002/MR 90j:03091
[7] Moore, G., Zermelo's Axiom of Choice, Springer-Verlag, New York, 1982. Zbl 0497.01005|MR 85b:01036
[8] Pincus, D., "Zermelo-Fraenkel consistency results by Fraenkel-Mostowski methods," Journal of Symbolic Logic, vol. 37 (1972), pp. 721-743.ZZbl 0268.02043MR 49:2374 1
[9] Sierpinski, W., "L'Axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse," Bulletin de l'Académie des Sciences de Cracovie, Série A (1918), pp. 97152. 1

Department of Computer Science
Eastern Michigan University
Ypsilanti, MI 48197

Department of Mathematics
Eastern Michigan University
Ypsilanti, MI 48197

