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Well Ordered Subsets of Linearly Ordered Sets

HARTMUT HÖFT and PAUL HOWARD

Abstract The deductive relationships between six statements are examined
in set theory without the axiom of choice. Each of these statements follows from
the axiom of choice and involves linear orderings in some way.

1 Introduction We consider the following six consequences of the axiom of
choice:

• CF: Every linearly ordered set has a cofinal sub-well-ordering.
• LFC: If a linear order has the fixed point property then it is complete.
• DS: If a linear order has no infinite descending sequences then it is a well

ordering.
• LDF = F: Every linearly orderable Dedekind finite set is finite.
• PDF: ∀X, if P (X) is Dedekind finite then every subset ofP (X) which is

linearly ordered by⊆ has a maximum element.
• DF = F: Every Dedekind finite set is finite.

Where the relevant definitions are

1. A partially ordered set(A,≤) has thefixed point property ( f pp) if every func-
tion f : A → A which satisfies(x ≤ y ⇒ f (x) ≤ f (y)) has a fixed point.

2. A partially ordered set(A,≤) is complete if every subset ofA has a least upper
bound.

3. A set A isDedekind finite if it has no countably infinite subsets.
4. If (A,≤) is a linearly ordered set, thenC ⊆ A is acofinal sub-well-ordering of

A if ≤ well ordersC and

(∀a ∈ A)(∃c ∈ C)(a ≤ c)

The statementDF = F is the best known of these weak forms of the axiom of
choice. Both Cantor and Dedekind asserted that it was“true.” Other historical details
can be found in [7]. The statementDS is frequently used in set theory with the axiom
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of choice to show that a set is well ordered [5]. The statementCF was studied by
Sierpinski [9] andManka [6]. Jech showed (see Problem 6.9 on page 95 of his [4])
that PDF is not provable in set theory without the axiom of choice.PDF was also
studied in [3]. Hickman in [2] consideredLDF = F.

Weshow that in the theory ZFU (Zermelo-Fraenkel set theory weakened to per-
mit the existence of atoms) that

CF ⇒ LFC ⇒ DS ⇒ LDF = F ⇒ PDF

and thatDF = F impliesLDF = F. Further the following implications are not prov-
able in the theory ZFU:

LFC ⇒ CF, DS ⇒ LFC, DF=F ⇒ DS,

CF ⇒ DF = F, PDF ⇒ LDF = F.

Our results are summarized in the following diagram. Numbers refer to refer-
ences, lemmas and theorems where the results are proved.

CF
[1]−→�←−

3.3 & 3.4
LFC

2.1−→�←−
3.5

DS
2.2−→ LDF=F

trivial−→�←−
3.6–3.9

PDF

CF �−→
3.1

DF=F �−→
3.2

DS

DF=F −→
trivial

LDF=F

This decides, in the theory ZFU, whether or notA ⇒ B is provable for everyA
andB chosen from our six consequences ofAC.

Some of our independence results transfer to Zermelo-Fraenkel set theory (Z F)
using the transfer theorems of Pincus. We can show that the implications

DF=F ⇒ DS, LDF=F ⇒ DF=F andPDF ⇒ LDF=F

are not provable inZ F using these transfer theorems since the statementsDF=F,
LDF=F and PDF are injectively boundable. We refer the reader to [8] for the de-
tails. Other independence results inZ F, except those that follow directly from the
three above and known implications, are open problems. For example, we conjec-
ture thatZ F �
 DS → CF andZ F �
 DS → DF=F.

2 The Implications The implicationCF ⇒ LFC is due to Davis [1] who proved
LFC in the theoryZ F + AC. An examination of the proof shows that onlyCF is
needed. The implicationsLDF=F ⇒ PDF and DF=F =⇒ LDF=F are clear.
Weprove:

Theorem 2.1 LFC implies DS.
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Proof: AssumeLFC and that(A,≤) is a chain with no infinite descending sequen-
ces. LetC be any non-empty subset ofA, let B = C ∪ {b0} whereb0 /∈ C and let
≤∗ be the linear ordering onB defined bys ≤∗ t if and only if (s, t ∈ B ∧ s ≤ t) or
t = b0. That is,(B,≤∗) is the linear ordering obtained fromC by addingb0 as largest
element.(B,≤∗) has f pp otherwise the sequencef (b0), f (2)(b0), f (3)(b0), . . . is
an infinite descending sequence in(A,≤). By LFC, (B,≤∗) is complete. Therefore
(B,≤∗) has a least element which must be a≤-least element ofC.

Theorem 2.2 DS implies LDF=F.

Proof: AssumeDS and that(A,≤) is a linear order whereA is Dedekind finite.
Then(A,≤) has neither infinite descending sequences nor infinite ascending sequen-
ces. ByDS, (A,≤) is a well order with no infinite ascending sequences which im-
plies thatA is finite.

3 The Models In this section we construct several models of the theoryZ FU for
our independence results. Given a modelM ′ of Z FU + AC which hasA as its set of
atoms, a permutation modelM of Z FA is determined by a groupG of permutations
of A and a filter� of subgroups ofG which satisfies

(∀a ∈ A)(∃H ∈ �)(∀ψ ∈ H)(ψ(a) = a)

and

(∀ψ ∈ G)(∀H ∈ �)(ψHψ−1 ∈ �).

Each permutation of A extends uniquely to a permutation ofM ′ by∈ induction and for
anyψ ∈ G we identifyψ with its extension. IfH is a subgroup ofG andx ∈ M ′ and
(∀ψ ∈ H)(ψ(x) = x) we sayH fixes x. We will also use the following notation: If
E ⊆ A andH is a subgroup ofG then fixH(E) will denote{ψ ∈ H | (∀a ∈ E)(ψ(a) =
a)}.

The permutation modelM determined byM ′, G and� consists of all thosex ∈
M ′ such that for everyy in the transitive closure ofx, there is someH ∈ � such that
H fixesy. Werefer the reader to page 46 of [4] for a proof thatM is a model ofZ FA.

Theorem 3.1 Z FU �
 CF −→ DF=F.

Proof: For this argument, we use the basic Fraenkel model described in [4]. We
describe this model briefly:A is a countable set,G is the group of all permutations
of A and

� = {H | (∃E ⊆ A)(E is finite and fixG(E) ⊆ H}.
In this modelM, A is an infinite, Dedekind finite set (see problem 4 on page 52 of [4]).
ThereforeDF=F is false. Also, inM, every linearly ordered set is well-orderable
[3]. It follows easily from this that every linearly ordered set has a cofinal sub-well-
ordering inM.

Theorem 3.2 Z FU �
 DF=F −→ DS.
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Proof: Let M ′ be a model ofZ FU + AC with a countable setA of atoms ordered
by ≤ so that(A,≤) has the order type of the rationals. LetG be the group of all
order automorphisms ofA and let� be the filter of subgroups ofG generated by the
support groups fixG(E) whereE ranges over subsets ofA that satisfy the following
three conditions:

1. The setE is well ordered by≤.
2. The setE is bounded in the ordering≤ on A.
3. If b : α → E is an order preserving bijection from an ordinalα ontoE andλ ≤ α

is a limit ordinal then{b(γ) : γ < λ} has no least upper bound in the ordering
(A,≤). (That is, if we identify(A,≤) with the rational numbers then the least
upper bound of{b(γ) : γ < λ} is irrational.)

(We note that any order preserving permutation of a well ordered setE must fix E
pointwise hence fixG(E) = {ϕ ∈ G | ϕ fixes E pointwise}.) Since the union of two
subsets ofA satisfying (1), (2) and (3) also satisfies (1), (2) and (3), every group in the
filter contains a group of the form fixG(E) whereE satisfies (1), (2) and (3). Therefore
if we let M be the model determined by the filter�, for everyx ∈ M there is a subset
E of A satisfying (1), (2) and (3) such that

(∀ϕ ∈ fixG(E))(ϕ(x) = x).

When this happens we sayE is a support ofx.
We show thatDS is false inM by showing (by contradiction) that(A,≤) has

no infinite descending sequences inM: Assume thatE is a support of an infinite de-
scending sequence{ (n, an) | n ∈ ω} of elements ofA. Then

(*) (∀ϕ ∈ fixG(E))(∀n ∈ ω)(ϕ(an) = an).

SinceE is well-ordered by≤ there is at least onei ∈ ω such thatai /∈ E. Condition (3)
insures that there are two elementse1 ande2 of A such thatai is in the open interval
(e1, e2) and(e1, e2)∩ E = ∅. Wecan now obtain a one to one, order preserving func-
tion from (e1, e2) onto(e1, e2) which movesai (since(e1, e2) is order isomorphic to
the rationals). This can be extended to a permutationϕ of A which fixesA − (e1, e2)

pointwise. The permuationϕ therefore movesai and fixes E, contradicting(∗).
DS is false inM since(A,≤) is an infinite linear order with no infinite descend-

ing sequences inM.
Wewill show DF=F in M by showing that every infinite set inM has an infinite

subset which is well-orderable inM. AssumeX in an infinite set in M. SinceX is in
M, there is some subsetE of A such that for everyϕ in fixG(E), ϕ(X) = X and such
that E satisfies (1), (2) and (3). If fixG(E) fixes every element ofX, then X is well
orderable inM and we are done. We may therefore assume that there is ay ∈ X and
a permutationϕ0 ∈ fixG(E) such thatϕ0(y) �= y. SupposeE′ is a support ofy such
that E ⊆ E′ and letF = E′ − E.

As in (3) assumeb is an order preserving bijection from some ordinalα onto E.
Wewill use the ordinals≤ α to index the intervals in(A,≤) determined by the setE
as follows: For 0< η < α,

Iη = {a ∈ A : (∀β < η)(b(β) < a ∧ a < b(η))}.
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And
Iα = {a ∈ A : (∀β < α)(b(β) < a)}.

EachIη is an interval (in the sense that ifa1 < a2 < a3 anda1 anda3 are in Iη then
a2 is in Iη) and the set of intervals{Iη : 0 ≤ η ≤ α} is a partition of A–E. Further by
properties (1), (2) and (3), each of the setsIη is non-empty.

Temporarily fixη, 0 ≤ η ≤ α, and letFη be the intersection of the support of
y with Iη. That is,Fη = Iη∩ F. Sinceϕ0 is in fixG(E), ϕ0(Fη) ⊆ Iη. We claim that
there are two elementssη andtη of Iη such thatFη ∪ ϕ0(Fη) ⊆ (sη, tη). (Here(sη, tη)
denotes the open interval in the ordering(A,≤).) The argument, which is omitted,
uses the fact thatE andE′ satisfy property (3), the fact that the order(A,≤) is dense
and (if η = α) property (2) ofE′. Let (aη

0, cη

0), (aη

1, cη

1), . . . be a sequence of open
intervals in the ordering(A,≤), each contained inIη and chosen so that

tη < aη

0 < cη

0 < aη

1 < cη

1 < . . . < b(η)

and so that the set{aη

0, cη

0, aη

1, cη

1, . . .} has no least upper bound in(A,≤) (and in ad-
dition if η = α we require that{aη

0, cη

0, aη

1, cη

1, . . .} be bounded). Finally, for each
i ∈ ω, let ψ

η
i be an element of fixG(E) such thatψη

i fixes A − Iη pointwise, and
ψ

η
i ((sη, tη)) = (aη

i , cη
i ).

Now we combine the permutationsψ
η
i , 0≤ η ≤ α, for eachi ∈ ω: For eachi ∈ ω,

let ψi be the element of fixG(E) that agrees withψη
i on Iη for all η, 0 ≤ η ≤ α. The

permutationψi thus defined is in fixG(E) and therefore fixesX. Henceψi(y) ∈ X
for eachi ∈ ω. Furtherψi(F) ∪ E is a support ofψi(y) and

ψi(F) ⊆
⋃

η∈α+1

(aη
i , cη

i ).

Wealso claim:

A:
⋃

i∈ω ψi(F) satisfies (1), (2) and (3). (From which it follows that the set{ψi(y)

: i ∈ ω} is well orderable in M.)
B: For all i, j ∈ ω, i �= j implies ψi(y) �= ψ j(y).(From which it follows that

{ψi(y) : i ∈ ω} is infinite.)

We outline the proof ofB: There is an elementϕ∗ of fixG(E) such thatϕ∗ agrees
with ϕ0 on F and such thatϕ∗ is the identity outside of

⋃
η∈α+1(sη, tη). This uses

the denseness of the ordering onA and the fact thatF andϕ0(F) are both subsets of⋃
η∈α+1(sη, tη).

Thereforeϕ∗(y) = ϕ0(y) �= y. For eachi ∈ ω, let

ϕ∗
i = ψi ◦ ϕ∗ ◦ ψ−1

i

thenϕ∗
i is the identity outside of

⋃
η∈α+1(a

η
i , cη

i ). Therefore forj �= i, ϕ∗
i restricted to⋃

η∈α+1(a
η
j , cη

j ) is the identity. So forj �= i, ϕ∗
i fixes the supportψ j(F) ∪ E of ψ j(y)

pointwise and hence fixesψ j(y). On the other hand

ϕ∗
i (ψi(y)) = ψiϕ

∗ψ−1
i ψi(y) = ψiϕ

∗(y) �= ψi(y)

sinceϕ∗(y) �= y. Sinceϕ∗
i movesψi(y) and fixesψ j(y) we conclude thatψi(y) �=

ψ j(y).
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Theorem 3.3 Z FU �
 LFC −→ CF.

Proof: Let M ′ be a model ofZ FU + AC with a countable setA of atoms. For the
construction of the modelM we will assume thata : ω × Z −→ A is one to one and
onto so that

A = { a(i, j) | i ∈ ω ∧ j ∈ Z }
whereω is the set of natural numbers{0,1,2, . . .} andZ is the set of integers.

For eachi ∈ ω let ψi : A −→ A be the permutation defined byψi(a(i, j)) =
a(i, j + 1) andψi(a(k, j) = a(k, j) for k �= i and letG be the group of permutations
generated by{ψi | i ∈ ω }. We note that eachη ∈ G is an order automorphism of
(A,≤) where≤ is the ordering onA induced by the lexicographic ordering onω× Z,
that isa(i, j) ≤ a(m, n) if and only if i < m or (i = m and j ≤ n). For each finite
subsetE ⊆ ω we letGE = {ψ ∈ G | (∀i ∈ E)(∀k ∈ Z)(ψ(a(i, k)) = a(i, k)) }. � is
the filter of subgroups ofG generated by the groupsGE whereE ranges over the finite
subsets ofω. M is the permutation model determined by G and�.

The linear ordering(A,≤) defined above is inM since it is fixed byG. It is
also the case that(A,≤) has no cofinal-sub-wellordering inM since noH ∈ � fixes
acofinal subset of(A,≤) pointwise. ThereforeCF is false inM.

Wenow argue thatLFC is true inM. First note that the linear ordering(A,≤)

does not have the fixed point property inM since the functionf defined byf (a(i, j))
= a(i, j + 1) is order preserving, has no fixed points and is fixed byG and is therefore
in M.

Now let (C,�) be any linear ordering inM. We will assume that(C,�) is not
complete inM and construct a fixed point free order preserving function from(C,�)

into (C,�) which is in M. Since(C,�) is not complete there is some subsetB ⊆ C
with B ∈ M and such thatB has no least upper bound. We assume without loss of
generality thatB is closed downward (i.e.,(∀c ∈ C) ((∃b ∈ B)(c � b) → c ∈ B).)
It follows that if we letD = C − B, thenC = B ∪ D, (∀b ∈ B)(∀d ∈ D)(b � d), B
has no least upper bound andD has no greatest lower bound. LetE be a finite subset
of ω such that for allϕ ∈ GE, ϕ fixes(C,�), B andD.

Lemma 3.4 M contains a fixed point free order preserving function on B and a
fixed point free order preserving function on D.

Proof: Wewill prove the lemma forB. The proof forD is similar.
Wefirst partitionB into two sets:

BF = { b ∈ B | (∀ϕ ∈ GE)(ϕ(b) = b) }

and
BM = { b ∈ B | (∃ϕ ∈ GE)(ϕ(b) �= b } .

Case 1: BF is cofinal in(B,�). In this case, sinceBF is well-orderable in M (not
necessarily by�), (BF,�) has a cofinal sub-well-ordering without greatest element
which we call(B′

F,�). In this case the functionf : B → B defined by

f (b) = the least element of B′
F which is � b

is a fixed point free order preserving function on B.
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Case 2: For someb0 in BM, (∀b ∈ B)(b0 � b → b ∈ BM ). We first note that for
eachb ∈ BM, only finitely manyψi, i in ω − E, moveb. (If E′ is a support ofb then
noψi for i /∈ E′ movesb.) Choose, for eachb ∈ BM, apermutationηb from the set

{ψi | i ∈ ω − E } ∪ {
ψ−1

i | i ∈ ω − E
}

so thatηb(b) is as large as possible in the ordering� on B.

Now we claim that ifb ∈ BM andϕ ∈ fixG(E), thenηb(ϕ(b)) = ηϕ(b)(ϕ(b)).
It is clear thatηb(ϕ(b)) � ηϕ(b)(ϕ(b)). Suppose thatηb(ϕ(b)) ≺ ηϕ(b)(ϕ(b)), then
ϕ(ηb(b)) ≺ ϕ(ηϕ(b)(b)) since G is abelian. Thereforeηb(b) ≺ ηϕ(b)(b) which con-
tradicts our choice ofηb. This proves the claim.

Now we define a functiong : B → B by

g(b) =
{

b if b ∈ BF

ηb(b) if b ∈ BM

Note that forb ∈ BM, b ≺ g(b) since someψi must moveb and if ψi(b) ≺ b then
b ≺ ψ−1

i (b).
We show thatg ∈ M by showing that for allϕ ∈ fixG(E) and for allb ∈ B that

ϕ(g(b)) = g(ϕ(b)). This is clear ifb ∈ BF since for suchb, b = ϕ(b) = g(b). If
b ∈ BM then:

ϕ(g(b)) = ϕ(ηb(b)) = ηb(ϕ(b)) = ηϕ(b)(ϕ(b)) = g(ϕ(b))

where the second to last equality uses the claim proved above.
Weshowg is order preserving on(B,�). Assume thatb1, b2 ∈ B and thatb1≺

b2. If b1 andb2 are both inBF, theng(b1) = b1 ≺ b2 = g(b2). If b1 ∈ BF andb2 ∈
BM theng(b1) = b1 = ηb2(b1) ≺ ηb2(b2) = g(b2). Similarly if b1 ∈ BM andb2 ∈
BF, g(b1) ≺ g(b2). If b1 andb2 are both inBM theng(b1) = ηb1(b1) ≺ ηb1(b2) �
ηb2(b2). The functiong has fixed points ifBF �= ∅. To get the fixed point free, order
preserving functionf on (B,�) we define f by

f (b) =
{

b0 if b ≺ b0

g(b) if b � b0

It follows from our assumption{ b ∈ B | b0 � b } ⊆ BM and the fact that forb ∈ BM,
b ≺ g(b) that f is fixed point free. It also follows, sinceg is order preserving, thatf
is order preserving. Finally,f is in M since it is definable fromg, (B,�) andb0 all
of which are inM. This completes the proof of the lemma.

The proof of Theorem 3.3 is completed by combining the fixed point free order
preserving functions on B and D to get a fixed point free order preserving function on
C.

Theorem 3.5 Z FU �
 DS −→ LFC.

Proof: Let M ′ be a model ofZ FU + AC with a set of atomsA and an ordering≤ on
A such that(A,≤) is order isomorphic to the real numbers with their usual ordering.
Let G be the group of all order automorphisms of(A,≤) and let

� = { H | H is a subgroup ofG ∧ (∃E ⊆ A)(E bounded∧ fixG(E) ⊆ H } .
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M is the model determined byM ′, G and�. If z ∈ M then there is some bounded
E ⊆ A such that for allϕ ∈ fixG(E), ϕ(z) = z and as in the proof of Theorem 3.2 we
will call such anE a support of z.

We first argue that inM, (A,≤) is a witness to the failure ofLFC. The linear
ordering(A,≤) is clearly not complete sinceA has no largest element. To show that
(A,≤) has the fixed point property inM assume thatf : A → A is an order preserving
map onA which is in M. Suppose thatf has supportE ⊆ A. We may assume that
E = [a, b]—some closed bounded interval in the ordering(A,≤). If f has a fixed
point we are done. Otherwise for everyx ∈ A, f (x) must be in [a, b]. (If f (x) /∈ [a, b]
then, sincex �= f (x), there would be an elementϕ of fixG([a, b]) such thatϕ(x) = x
but ϕ( f (x)) �= f (x). This would meanϕ( f ) �= f contradicting our choice of [a, b]
as a support off .) This means thatf |[a, b] : [a, b] → [a, b]. Since([a, b],≤) is a
complete linear ordering inM ′ whereAC holds, f |[a, b] has a fixed point which is
also a fixed point off in M.

To argue thatDS is true inM, let (X,�) be a linear ordering inM which is not
a well ordering. We will show that inM there is a sequence〈yi〉i∈ω of elements ofX
such that(∀i ∈ ω)(yi+1 ≺ yi). Let E = [a, b] be a support of(X,�). Choosec andd
in A so thatc < a < b < d. Our plan is to find an infinite descending sequencey0 �
y1 � y2 · · · of elements ofX such that eachyi has a support contained in [c, d] (f rom
which it will follow that the sequence〈yi〉i∈ω is in the modelM.) More specifically,
let 〈si〉i∈ω and〈ti〉i∈ω be two sequences of elements of A satisfying

c < · · · < s2 < s1 < s0 < a < b < t0 < t1 < t2 < · · · < d.

Wewill constructyi so that it has support [si, ti].
The construction is by induction on the subscripti. To constructy0, choose any

elementz0 ∈ X and assume that [s′
0, t′0] is asupport ofz0 which contains [c, d]. There

is aϕ0 in fixG([a, b]) such thatϕ0([s′
0, t′0]) = [s0, t0] and welet y0 = ϕ0(z0). It fol-

lows that [s0, t0] is asupport ofy0.
Assume thatyi has been defined satisfyingyi ∈ X, yi has support [si, ti] and

yi ≺ y j for all j ∈ ω, j < i. The elementyi is not least inX therefore we can choose an
elementzi+1 ∈ X such thatzi+1 ≺ yi. Assume that [s′

i+1, t′i+1] is asupport ofzi+1 con-
taining [c,d]. There is aϕi+1 ∈ fixG([si, ti]) such thatϕi+1([s′

i+1, t′i+1]) = [si+1, ti+1]
and we letyi+1 = ϕi+1(zi+1). Clearly yi+1 ∈ X and has support [si+1, ti+1]. Further

yi+1 = ϕi+1(zi+1) ≺ ϕi+1(yi) = yi

where the middle inequality holds becauseϕi+1 fixes [a, b] pointwise and therefore
fixes�. This completes the proof of Theorem 3.5.

Theorem 3.6 Z FU �
 PDF −→ LDF=F.

Proof: For the construction of the permutation model we begin with a modelM ′ of
Z FU + AC with a countable setA of atoms and an ordering≤ of A so that(A,≤) has
the same order type as that of the rational numbers. We assume thatA is the disjoint
unionA = D1 ∪ D2 ∪ D3 of three dense subsetsD1, D2 andD3. Welet G be the group
of all order automorphismsϕ of A such thatϕ(Di)=Di, i = 1,2,3. The argument
we give below will require the existence of several types of permutations in G. For
example:
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Lemma 3.7

A: If E1, F1 ⊆ D1, E2, F2 ⊆ D2, E3, F3 ⊆ D3, Ei and Fi are finite for i = 1,2
and 3 and σ : (E1 ∪ E2 ∪ E3) → (F1 ∪ F2 ∪ F3) is one to one, onto, order

preserving and satisfies σ(E1) = F1, σ(E2) = F2 and σ(E3) = F3 then there
is a ϕ ∈ G such that ϕ|(E1 ∪ E2 ∪ E3) = σ.

B: If (a, b) is an interval in (A,≤) and ψ is a permutation in G which satisfies
(a, b)∪ψ((a, b)) ⊆ (u, v) and if s1 < u < v < s2 then there is a ψ′ ∈ fixG(A −
(s1, s2)) which agrees with ψ on (a, b).

Lemmas of this type can be proved by the back and forth construction used to
prove that any two countable dense linear orderings without first and last element are
order isomorphic.

Wewill call a subsetE of A a support if it satisfies the following conditions:

1. E ∩ D1 is finite.

2. E ∩ D2 is well ordered by≤
3. If b : α → E ∩ D2 is an order preserving bijection from an ordinalα onto E ∩

D2 andλ ≤ α is a limit ordinal then the least upper bound of{ b(γ) | γ < λ }
in (A,≤) exists and is inD3.

� is the filter of subgroupsH of G such that for some supportE, fixG(E) ⊆ H
andM is the permutation model determined byM ′, G and�.

If E is a support then for everyt ∈ D1, aslong ast is not in the finite setE ∩ D1,
there is aϕ ∈ fixG(E) such thatϕ(t) �= t. It follows that no well ordering of an infinite
subset ofD1 is in M. Therefore(D1,≤) is a linearly ordered, Dedekind finite, infinite
set inM henceLDF=F is false inM.

Now let X be any non-empty set inM. We will show that if P (X) is infinite in
M thenP (X) is Dedekind infinite inM from which it follows thatPDF is true inM.

Assume thatP (X) is infinite. It follows thatX must be infinite. IfX is well-
orderable inM thenP (X) is Dedekind infinite and we are done. We therefore assume
that X is not well-orderable inM. Let E be a support ofX.

Lemma 3.8 There is a subset Y ⊆ X such that

1. (∃ψ ∈ fixG(E))(ψ(Y ) �= Y )

2. Y has a support E′ such that E′ − E ⊆ D2.

Proof: SinceX is not well-orderable inM there is an elementt ∈ X such that∃ϕ ∈
fixG(E) with ϕ(t) �= t. Assume thatt has supportH ′ ⊇ E and letH = H ′ − E. Let
H ∩ D1 = {d1, d2, . . . , dn} and supposeH ′ is chosen so thatH ∩ D1 has minimum
cardinality.

If H ∩ D1 = ∅, then takingY = {t} and E′ = H ′ satisfies the lemma. IfH ∩
D1 �= ∅ then (by minimality)∃ϕ′ ∈ fixG(E) such thatϕ′ ∈ fixG(H ∩ D2) andϕ′(t) �=
t. Let b be a bijection for an ordinalα onto (H ∩ D2) ∪ E so that(H ∩ D2) ∪ E =
{ b(γ) | γ < α }. This is possible by condition (2) in the definition of support. For
eachγ < α let

Iγ = {
a ∈ A | (∀β < γ)(cβ < a < cγ

}
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and let
Iα = {

a ∈ A | (∀γ < α)(cγ < a)
}
.

TheIγ for γ ≤ α are the open intervals in(A,≤) determinted by the set(H ∩ D2)∪ E
and therefore

A − ((H ∩ D2) ∪ E) =
⋃
γ≤α

Iγ .

It follows that H ∩ D1 ⊆
(⋃

γ≤α Iγ
)
. Wealso note thatϕ′(Iγ ) = Iγ .

SinceH ∩ D1 is finite there are only finitely manyγ ≤ α for which H ∩ D1 ∩
Iγ �= ∅. For each suchγ we carry out the following construction. LetH ∩ D1 ∩ Iγ ={
dγ

1, . . . , dγ

kγ

}
then for eachi, i = 1,2, . . . kγ , ϕ′(dγ

i ) ∈ Iγ ∩ D1. Choosesγ

1 < sγ

2

in Iγ ∩ D2 so that fori = 1,2, . . . , kγ , sγ

1 < dγ
i < sγ

2 andsγ

1 < ϕ′(dγ
i ) < sγ

2. Using
Lemma 3.7, we now choose aψγ ∈ fixG(A − Iγ ) such that fori = 1,2, . . . , kγ , sγ

2 <

ψγ(sγ

1). This will insure that

ψ−1
γ (sγ

1) < ψ−1
γ (sγ

2) < sγ

1 < sγ

2 < ψγ(sγ

1) < ψγ(sγ

2)

and that fori = 1,2, . . . , kγ ,

ψ−1
γ (sγ

1) < ψ−1
γ (dγ

i ) < ψ−1
γ (sγ

2), ψ−1
γ (sγ

1) < ψ−1
γ (ϕ′(dγ

i )) < ψ−1
γ (sγ

2)

ψγ(sγ

1) < ψγ(dγ
i ) < ψγ(sγ

2) andψγ(sγ

1) < ϕ′(dγ
i ) < ψγ(sγ

2).

By Lemma 3.7, there is aϕ′′
γ ∈ fixG

(
A − (

sγ

1, sγ

2

))
such that fori = 1,2, . . . , kγ,

ϕ′′
γ (dγ

i ) = ϕ′(dγ
i ), where

(
sγ

1, sγ

2

)
denotes the interval in(A,≤).

The above construction was carried out forγ for which Iγ ∩ H ∩ D1 �= ∅. Now
we let

E′ = (H ∩ D2) ∪ E ∪ { sγ
j | Iγ ∩ H ∩ D1 �= ∅, j = 1 or 2}

and letY = {
σ(t) | σ ∈ fixG

(
E′) }

. Weclaim thatY andE′ satisfy the requirements
of the lemma. ClearlyE′ − E ⊆ D2. Also if η ∈ fixG(E′) thenη−1 ∈ fixG(E′) so that
bothη(Y ) ⊆ Y andη−1(Y ) ⊆ Y. It follows from the second inclusion thatY ⊆ η(Y )

and we therefore can conclude thatY = η(Y ). This shows thatE′ is a support ofY
and hence condition (2) of Lemma 3.8 is satisfied.

Wemust now show that there is aψ ∈ fixG(E) such thatψ(Y ) �= Y . Letψ be the
composition of the permutationsψγ such thatIγ ∩ H ∩ D1 �= ∅. (There are finitely
many suchψγ and they move disjoint sets so the order in which they are composed
does not matter.) Since eachψγ ∈ fixG(E), ψ ∈ fixG(E). Similarly, let ϕ′′ be the
composition of the permutationsϕ′′

γ defined above for ordinalsγ such thatIγ ∩ H ∩
D1 �= ∅. Sinceϕ′′ andϕ′ agree onH ′ (a support oft), ϕ′′(t) = ϕ′(t) �= t. We will
show thatψ(Y ) �= Y by showing thatψ(t) /∈ Y .

By our definition ofY this amounts to showing that for everyσ ∈ fixG(E′), σ(t)
�= ψ(t). Assume thatσ ∈ fixG(E′). We will show thatσ(t) �= ψ(t) by showing that
the permutationψϕ′′ψ−1 movesψ(t) but fixesσ(t). The first part we prove by con-
tradiction: Assumeψϕ′′ψ−1(ψ(t)) = ψ(t), it follows thatϕ′′(t) = t which we have
shown to be false. For the argument thatψϕ′′ψ−1(σ(t)) = σ(t) we note that for

eachγ such thatIγ ∩ H ∩ D1 �= ∅,
{

dγ

1, . . . , dγ

kγ

}
is a subset of the interval

(
sγ

1, sγ

2

)
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andσ fixes bothsγ

1 andsγ

2. Therefore
{
σ(dγ

1 ), . . . , σ(dγ

kγ
)
}

⊆ (
sγ

1, sγ

2

)
. Weconclude

thatσ(H) ⊆ ⋃{(
sγ

1, sγ

2

) | Iγ ∩ H ∩ D1 �= ∅

}
. Sinceσ(H) ∪ E is a support ofσ(t),

any permutation in fixG(E) that fixes
⋃{(

sγ

1, sγ

2

) | Iγ ∩ H ∩ D1 �= ∅

}
pointwise,

fixes σ(t). But for each γ such that Iγ ∩ H ∩ D1 �= ∅, ϕ′′ fixes(
ψ−1

γ (sγ

1), ψ−1
γ (sγ

2)
)

and thereforeψϕ′′ψ−1 fixes
(
sγ

1, sγ

2

)
. This completes the proof

of Lemma 3.8.

Lemma 3.9 If X has a subset satisfying the conditions of Lemma 3.8 then P (X) is
Dedekind infinite.

Proof: AssumeY ⊆ X satisfies conditions (1) and (2) of Lemma 3.8 and letF =
E′ − E ⊆ D2. As in the proof of Lemma 3.8 we assume thatb is an order preserving
bijection from an ordinalα onto E. Then E = { b(γ) | γ < α}. Wealso defineIγ for
γ ≤ α as in the proof of Lemma 3.8. For eachα < γ, Iγ is an interval with right
endpointb(γ) ∈ E and left endpoint inE ∪ D3. (We denote the left endpoint ofIγ
by b−(γ).) It follows that F ⊆ ⋃

γ≤α Iγ .
Fix γ ≤ α. By our assumption there are elementssγ

1 andsγ

2 of D2 such that

b−(γ) < sγ

1 < a < sγ

2 < b(γ)

for all a ∈ F ∩ Iγ . (The setF ∩ Iγ has a least element by (2) in the definition of support
and if F ∩ Iγ has no greatest element then by (3) in the definition of support, the least
upper bound ofF ∩ Iγ is in D3 and is therefore< b(γ).) In addition (and for similar
reasons) we may assume thatsγ

1 < a < sγ

2 for all a ∈ ψ(F) ∩ Iγ .
By Lemma 3.7 B there is a permutationψ′ ∈ fixG(E) such that

ψ′ ∈ fixG

(
A −

⋃
γ≤α

(
sγ

1, sγ

2

))

andψ′(a) = ψ(a) for all a ∈ F ∩
(⋃

γ≤α Iγ
)
. Sinceψ andψ′ agree on a support of

Y , wehaveψ′(Y ) = ψ(Y ) �= Y .
For eachγ ≤ α choose a sequence of intervals

〈(
rγ

i , qγ
i

)〉
i∈ω

in the ordering(A,≤
) and a pointtγ ∈ A so that

sγ

2 < rγ

1 < qγ

1 < rγ

2 < qγ

2 < · · · < tγ < b(γ) (1)

sup
{
rγ

i | i ∈ ω
} = sup

{
qγ

i | i ∈ ω
} = tγ (2)

rγ
i andqγ

i ∈ D2 for i ∈ ω (3)

tγ ∈ D3 (4)

By Lemma 3.7 A, for eachi ∈ ω there is a permutationηγ
i ∈ fixG

(
A − Iγ

)
such that

η
γ
i (sγ

1) = rγ
i , η

γ
i (sγ

2) = qγ
i andη

γ
i fixes the interval

[
ri+1, b(γ)

)
pointwise.

For eachi ∈ ω let ηi be the composition of the permutationsη
γ
i for γ ≤ α. Since

for eachγ ≤ α, η
γ
i is the identity outside ofIγ , we haveηi(x) = η

γ
i (x) for all x in
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Iγ . Let Yi = ηi(Y ). Sinceηi fixes X andY ∈ P (X), we haveYi ∈ P (X). Further,
since Y has supportE ∪ F andηi fixes E pointwise,Yi has supportE ∪ ηi(F). We
will complete the proof of Lemma 3.9 by proving the following two assertions:

(∀i, j ∈ ω)
(
i �= j → Yi �= Yj

)
(5)

⋃
i∈ω

(E ∪ ηi(F)) is a support. (6)

From (5) it follows that{ Yi | i ∈ ω } is infinite and by (6) it follows that{ Yi | i ∈ ω}
is in M and is well orderable inM.

For the proof of (5), assumei, j ∈ ω and thati < j. The permutationηiψ
′η−1

i
fixes Yj = η j(Y ) since the supportE ∪ ηi(F) of Yj is contained in E ∪(⋃

γ≤α

[
rγ

i+1, b(γ)
))

whichψ′ andηi both fix pointwise. On the other hand, the equa-

tion ηiψ
′η−1

i (Yi) = Yi is equivalent to

ηiψ
′η−1

i (ηi(Y )) = ηi(Y )

which in turn implies the contradictionψ′(Y ) = Y . Sinceηiψ
′η−1

i fixesYj and moves
Yi we conclude thatYj �= Yi.

For the proof of (6), letS = ⋃
i∈ω (E ∪ ηi(F)) = E ∪ (⋃

i∈ω ηi(F)
)
. We argue

thatS satisfies the three conditions in the definition of support which follows Lemma
3.7. First note thatF ⊆ D2, hence fori ∈ ω, ηi(F) ⊆ D2. ThereforeS ∩ D1 = E ∩ D1

which is finite since E is a support.
For the argument that S is well ordered letS′ be a non-empty subset of S. If the

least element ofS′ ∩ E is least inS′ then we are done. Otherwise letγ be the least
ordinal such thatIγ ∩ S �= ∅. Then∅ �= S′ ∩ Iγ = S′ ∩ (⋃

i∈ω

(
rγ

i , qγ
i

))
. Let i be the

least natural number such thatS′ ∩ (
rγ

i , qγ
i

) �= ∅. Then

∅ �= S′ ∩ (
rγ

i , qγ
i

) = ηi(F) ∩ Iγ .

Since F is well ordered by≤, ηi(F) is also well ordered by≤. If we let c be the least
element ofηi(F) ∩ Iγ thenc is the least element ofS′.

It only remains to show that ifw : λ → S wherew is one to one and order pre-
serving andλ is an ordinal, then the least upper bound of{w(β) | β < λ } is in D3.
We prove this by looking at several cases. If{w(β) | β < λ } has a cofinal subse-
quence inE then, sinceE is a support, the least upper bound of{w(β) | β < λ } ∈
D3. If {w(β) | β < λ } has no cofinal subsequence inE then we may assume that
{w(β) | β < λ } ⊆ ⋃

γ≤α Iγ . If there is a limit ordinalλ′ such that

(∀γ < λ′)
({w(β) | β < λ } ∩ Iγ �= ∅

)
and{w(β) | β < λ } ∩ Iλ′ = ∅, then the least upper bound of{w(β) | β < λ } will be
the same as the least upper bound of{ b(γ) | γ < λ′ } which is in D3.

The only remaining possiblity is that there is a largestγ ≤ α which is such
that{w(β) | β < λ } ∩ Iγ �= ∅. Since{w(β) | β < λ } ⊆ S, {w(β) | β < λ } ∩ Iγ ⊆⋃

i∈ω

(
rγ

i , qγ
i

)
. If the set

{
j | (

rγ
i , qγ

i

) ∩ {w(β) | β < λ } �= ∅

}
is infinite then

lub {w(β) | β < λ } = lub
{
rγ

i | i ∈ ω
} = tγ ∈ D3
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by (2) and (4). Finally, if there is a largesti such that
(
rγ

i , qγ
i

) ∩ {w(β) | β < λ } �= ∅

thenη−1
i

((
rγ

i , qγ
i

) ∩ {w(β) | β < λ }) ⊆ F and sinceF is a support the least upper
bound ofη−1

i

((
rγ

i , qγ
i

) ∩ {w(β) | β < λ }) is in D3. Sinceηi ∈ G we conclude that
the least upper bound of

(
rγ

i , qγ
i

) ∩ {w(β) | β < λ } is in D3.
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