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A Dilemma in the Philosophy
of Set Theory

RALF-DIETER SCHINDLER

Abstract We show that the following conjecture about the universe V of all
sets is wrong: for all set-theoretical (i.e., first order) schemata � true in V there
is a transitive set u “reflecting” � in such a way that the second order statement
σ corresponding to � is true in u. More generally, we indicate the ontological
commitments of any theory that exploits reflection principles in order to yield
large cardinals. The disappointing conclusion will be that our only apparently
good arguments for the existence of large cardinals have bad presuppositions.

Bernays’ celebrated system BL of class theory (presented in his [1]) yields all current
large cardinals below measurability (see Tharp [8]). As Gloede (in his [2], Corollary
3.7) remarks, for proving the existence of all Mahlo cardinals a much weaker sub-
system BL1 of BL suffices. BL1 comes from some standard system of class theory
(e.g., the von Neumann-Bernays-Gödel system NBG including choice) by adjoining
the schema of partial reflection

PR�1
1 � → ∃u(Trans(u) ∧ �u), for all �1

1-formulae �,

where Trans(u) means that u is transitive and �u is the relativization of � to u ob-
tained in the usual manner (set quantifiers ∀x(∃x) are replaced by ∀x ∈ u (∃x ∈ u),
class quantifiers ∀X(∃X) by ∀X ⊂ u (∃X ⊂ u)).

In the following, we investigate which classes BL1 forces to exist. Let us first
sketch the philosophical motivation for this enterprise, presupposing a realistic atti-
tude toward sets. PR�1

1 is the weakest reflection schema giving large cardinals (see
Schindler [7], Section 2, for a thorough elaboration on the “no weaker. . .”-part of
this claim). If reflection principles were the only seemingly convincing arguments
for the actual existence of large cardinals in the real world V, our belief in those car-
dinals would be no more justified than our belief in just those classes PR�1

1 commits
us to accept. We shall find that predicative classes (see below) cannot satisfy PR�1

1 in
that any model of BL1 must have nonpredicative classes in its domain interpreting the
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class variables (see our Theorems 1 and 2; however, arbitrary impredicative classes
need not exist, see Theorem 3 and corollary). Thus the disillusioning result would be
that anyone who does not believe in nonpredicative classes on philosophical grounds
has no justification at all for believing in the existence of large cardinals.

We in fact claim that believing in the reality of large cardinals is an irrational
form of behavior. Set theory without large cardinals would be a poor thing, and we
do not have a bias against them, but knowledge that large cardinals really exist cannot
be attributed to set theorists. By what has been said so far, to support our claim we
would have to establish three subclaims:

1. Our only apparently good arguments for the actual existence of large cardinals
in V come from reflection principles.

2. There are no nonpredicative classes.
3. PR�1

1 presupposes the existence of nonpredicative classes.

Subclaims (1) and (2) are philosophical matters which will be dealt with here
only by giving indications and references, as the present paper intends to focus on
its technical part verifying (3). Nevertheless, we suppose that there are convincing
arguments for (1) and (2) which we shall expose in a forthcoming paper.

Concerning Subclaim (1) There is a list along the lines of Maddy [4], pp. 501ff.,
categorizing the current arguments offered in favor of the existence of large cardinals.
Reflection principles appear the most sophisticated realizations of the fairly vague but
indisputable idea of V’s being “maximal,” or “inexhaustible” (“absolut grenzenlos,”
in Cantor’s phrase): the iterative process generating V is so endless that V itself can-
not be characterized by significant linguistic means. Thus reflection principles are of
natural descent. And they look clearcut as well as they can be written down in formal
language and so have neat applications.

On the other hand, all other kinds of arguments seem to be of a somewhat suspi-
cious nature; viz, they all suffer from a notoriously opalescent range of applicability
of the underlying “principle,” whose piloting’s having success seems to be conceiv-
able only as lucky chance. It just could be that every level of the cumulative hierarchy
has its own pecularities, it could be that ω is the only inaccessible number, and it could
be that there are no weakly compacts although they can be characterized in so many
different ways. This scenario only challenges us to refute its actuality, and reflection
principles appear to be the only available method to do this job. Reinhardt, in his [6],
p. 90, holds a similar view:

The picture provided [i.e., the idea of the cumulative hierarchy] suffices to set up
the basic axioms of set theory. It [. . .] does not tell us much about the transfinite
sequence of ordinals [. . .]. Insofar as we know anything more about this, our
knowledge seems to depend on so-called reflection principles.

Concerning Subclaim (2) If V denotes the universe of all sets, a predicative
class is any sub-collection of V whose elements are separated by a “sound” predicate.
The prototype of predicative classes are all {x : �(x)}’s where � is set-theoretical.
What distinguishes predicative classes from others (e.g., impredicative ones) is that
in the defining � variables ranging over a totality of classes given in advance must
not (and may, respectively) occur. This fact is intended to be referred to by using
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the epithet “sound.” The underlying philosophical idea is that there are no classes “in
themselves,” but that classes have to be constructed step by step and at each stage by
means of what has been constructed so far. This constructivistic concept of classes
yields the above prototype first, and then a natural well-ordered hierarchy of predica-
tive classes (see Schindler [7], Sections 0 and 1).

If, on the contrary, arbitrary classes existed in themselves, we could collect them
together into a power hyper class ℘V of V. There is no reason, then, why we should
not be able to repeat this process of adding a new layer above V, and thus we obtain
℘℘V, ℘℘℘V, etc. But

[. . .] if you are going to add a layer at the top [of V] it looks like you just forgot
to finish the hierarchy. (Reinhardt [6], p. 196).

Thus, arbitrary classes existing in themselves contradict the very idea of V being the
collection of all layers in the process of set formation. Therefore classes have a fun-
damentally different ontological status than sets, namely they exist only as extensions
of sound predicates. This is the philosophical origin of our disbelief in nonpredicative
classes (see also Maddy [3], p. 122).

Now let � be the collection of all classes {x : �(x, a0, . . . , an)} where � is a
set-theoretical predicate and the ai’s (i � n) are set parameters. We may well think of
the prototype � as the intended domain of the class variables in the class-theoretical
system NBG. � allows us to connect the negative result “predicative classes do not
satisfy PR�1

1” with the conjecture about V expressed in the abstract (and which was
announced in footnote 27 of Schindler [7]). Because, if the class variables in PR�1

1
range over �, then (fix a �1

1-formula �!) the antecedents � of PR�1
1 states in effect

a set-theoretical schema, while �u states the corresponding second order assertion.
Thus, as PR�1

1 is false if the only classes are those in �, that conjecture is false, too.
Concerning Subclaim (3) We are now going to prove the following (see the

proofs for concepts and notation):

Theorem 1 For all predicative classes, �1,NBG
1 -comprehension fails.

Theorem 2 BL1 � �1,NBG
1 -comprehension.

Theorem 3 Let κ be weakly compact. Then 〈Lκ,�
1
1(

℘Lκ ∩ L),∈〉 |= BL1.

Corollary 4 �1
1-comprehension may fail in BL1.

Proof Theorem 1: The theorem is stated somewhat vaguely. Actually, we shall
show that �1

1-comprehension fails if the only classes are those in �. To be even more

precise, we shall prove that �1,NBG
1 -comprehension fails, if the class variables range

over the set �ω〈M,∈〉 of all subsets of M set-theoretically definable over M with pa-
rameters from M, for any set model M of ZF. The method of our proof can then easily
be applied to predicative classes in the sense of Schindler [7], giving a full proof of
the lemma.

Without proof, we use the fact that the class of all true set-theoretical sentences
is a �1,NBG

1 -class. The reason for this fact is that this “truth class” can be defined as
{x : ∃X(�∧ x ∈ X)} where, for a given x, � recursively describes a unique restricted
truth class. See Mostowski [5], Schindler [7], Section 1. Existence and uniqueness
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of the (former, unrestricted) truth class can be proved in NBG, and hence, in NBG, it
equals {x : ∀X(� → x ∈ X)}, and so is �1,NBG

1 .
Now, by Tarski’s Undefinability Theorem it follows that the truth predicate for

the set-theoretical language is not itself set theoretical. Therefore the unrestricted
truth class is not of the form {x : �} for a set-theoretical � (i.e., �1,NBG

1 is best pos-
sible). But this means that there is no element of �ω〈M,∈〉 (i.e., no class in �) equal
to the �1,NBG

1 -truth class. In other words, �1
1-comprehension fails.

Proof Theorem 2: Assume NBG � ∃X� ↔ ∀X	 for set-theoretical formulae �, 	
with free set variables x, y1 . . . yn. Then, also in BL1,

∃X� ↔ ∀X�. (1)

Furthermore, already in a very weak set theory, and a fortiori in BL1, it is provable
that 〈u, k,∈〉 ˙|= NBG → 〈u, k,∈〉 ˙|= �∃X� ↔ ∀X	� for any u, k, where ˙|= denotes
the formal representation of the model relation, �. . .� means Gödelization, and u(k)

is the domain of the set (class) variables. This quickly implies that, in BL1:

〈u, ℘u,∈〉 ˙|= NBG → ∀xy1 . . . yn ∈ u(∃X ⊂ u�u ↔ ∀X ⊂ u	u). (2)

We work in BL1 from now on. We have to show ∃Y Y = {x : ∃X	}. By (1), this
formula can be written as ∃Y∀x∃X
(Y, x, X), were 
 is set-theoretical. Hence it suf-
fices to show ∃Y∃Z∀x
(Y, x, Zx), where Z codes a “choice class” {〈x, y〉 : y ∈ Zx}
in such a way that ∃X
(Y, x, X) → 
(Y, x, Zx). Herein, as can easily be checked,

(Y, x, Zx) can be written set theoretically.

Now let us consider the contraposition PR*�1
1 of the self-strengthening of PR�1

1
where Trans(u) is replaced by Trans(u) ∧〈u, ℘u,∈〉 ˙|= NBG. We have, as an instance
of PR*�1

1:

∀u(Trans(u) ∧ 〈u, ℘u,∈〉 ˙|= NBG → ∃Y ⊂ u ∃Z ⊂ u ∀x ∈ u(
(Y, x, Zx))
u)

→ ∃Y∃Z∀x
(Y, x, Zx). (3)

By our remarks, we only have to prove the antecedens of (3). ∃Y ⊂ u ∃Z ⊂
u ∀x ∈ u(
(Y, x, Zx))

u can be transformed equivalently into ∃Y ⊂ u ∀x ∈ u ∃X ⊂
u(
(Y, x, X))u (here we use that for any subset of u we have a class equal to this
subset), and, by using (2), the latter is equivalent to ∃Y ⊂ u Y = {x ∈ u : �u}. But
this is trivially valid, and so we have Theorem 2.

Of course, our result could be strengthened to BL1 � �1,T
1 -comprehension, for

any theory T for which there is a self-strengthening of PR�1
1 where Trans(u) is re-

placed by Trans(u) ∧〈u, ℘u,∈〉 ˙|= T.

Proof Theorem 3: Let κ be weakly compact. Then M = 〈Lκ, ℘Lκ ∩ L,∈〉 |= BL1,
and we have to show that 〈Lκ,�

1
1(

℘Lκ ∩ L),∈〉 |= BL1. Herein, �1
1(

℘Lκ ∩ L) means
the set of all X ∈ ℘Lκ ∩ L for which there are set-theoretical 	,
 with M |= X =
{x : ∀Y	(Y, x)} = {x : ∃Y
(Y, x)}. Obviously it suffices to prove that if there is X ∈
℘Lκ ∩ L with M |= �(X), then there is X ∈ �1

1(
℘Lκ ∩ L) with M |= �(X) for any

set-theoretical �. Our proof is an adaptation of Gödel’s proof that, if V=L, then there
is a �1

2-well-ordering of the reals.
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Let M |= �(X) with set-theoretical � and X ∈ ℘Lκ∩L. Let ZFL=ZF+V=L and
let 〈L be the �1-definable canonical well-ordering for L. Our comprehension term
witnessing that there is a �1

1(
℘Lκ ∩ L)-solution of �(Z) is

{x : ∃E, Z(〈V,E〉 |= ZFL ∧ E is well-founded ∧ ∀α∀ y(y ∈ α ↔ yEα) ∧
if z representsZ in〈V,E〉, 〈V,E〉 |= “z is 〈L-minimal with �(z)“ ∧ x ∈ Z)}. (4)

In the first conjunct V is a class parameter that denotes the universe of all sets
(which can easily be eliminated), and E stands for a binary relation on V supposed to
interpret ∈. As a matter of fact,〈 V,E〉 |=ZFL is �1,NBG

1 .
By the condensation lemma for the L-hierarchy, the second conjunct implies that

〈Lκ,E〉, i.e. 〈 V,E〉 interpreted inside M , can be collapsed onto 〈Lα,∈〉, for some α,
κ ≤ α < κ+. “E is w.-f.” can be written by quantifying over ω-sequences of elements
of V, and hence is set-theoretical (compare this with “E is w.-f.” in Gödel’s proof).

The third conjunct ensures that every ordinal will be collapsed onto itself.
In the fourth conjunct, “z represents Z in 〈V,E〉” remains to be formalized. Let

π : 〈Lα,∈〉 ∼= 〈Lκ,E〉. That z represents Z in 〈V,E〉 means that π−1(z) = Z ∈ Lα.
Now, any w ∈ Lκ is ordinal definable in Lκ by a �ZFL

1 -formula 
(α0 . . . αn,−), i.e.,
w is unique with 〈Lκ,E〉 |= 
(α0 . . . αn,w). But then w is unique with 〈Lα,∈〉
|= 
(α0 . . . αn,w), too, by �ZFL

1 -absoluteness between 〈Lκ,∈〉 and 〈Lα,∈〉. Hence
π−1(w) is unique with 〈Lκ,E〉 |= 
(π−1(α0) . . . π−1(αn), π

−1(w)), i.e., with 〈Lκ,E〉
|= 
(α0 . . . αn, π

−1(w)), due to the third conjunct. This consideration shows that “z
represents Z in 〈V,E〉” can be written as:

∀w(w ∈ Z ↔ ∀�1-formulae �
� witnessing ordinal definability of w,

〈V,E〉 |= “the unique w with 
 is ∈ z”). (5)

(5) is �1,NBG
1 , and so finally the comprehension formula in (4 ) is �1

1(
℘Lκ ∩ L).

We had assumed that M |= �(X). It is now an easy exercise to show that under
this circumstance there are E and Z both from ℘Lκ ∩ L fulfilling, in M , the com-
prehension formula in (4 ). Moreover, such Z is unique. Hence, that formula can be
rewritten in �1

1-form and we are done.

One could rework this last proof to show the relative consistency 〈M,K,∈〉|=BL1

⇒ 〈M,�1
1(K),∈〉 |=BL1 under slightly weaker assumptions than M=Lκ for κ weakly

compact and K=℘Lκ ∩ L. This implies that the corollary could also be proved under
such weaker assumptions.

Proof Corollary: M = 〈Lκ,�
1
1(

℘Lκ ∩ L),∈〉 |= BL1, if κ is weakly compact.
Without proof, we use the fact that the model relation M |= � for �1

1-sentences � is
�1

1(
℘Lκ ∩ L)-definable. This is verified by checking that there are enough “classes”

to feed the appropriate definition. We can now use that model relation to define a
“universal” �1

1(
℘Lκ ∩ L)-class U with the property that any �1

1(
℘Lκ ∩ L)-class is a

projection of U; namely, let U = {〈���, y〉 : M |= ��(y)�}, where, for � a unary
�1

1-predicate, ϕ(y) is the result of substituting the free variable in � by y. We have

∀X ∈ �1
1(℘Lκ ∩ L) ∃x ∈ Lκ X = {y : 〈x, y〉 ∈ U}. (6)
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If U was �1
1(

℘Lκ ∩ L), too, i.e. U∈ �1
1(

℘Lκ ∩ L), then U′ = {y : 〈y, y〉 �∈ U}
would be �1

1(
℘Lκ ∩ L) and by (4 ) we could find u ∈ Lx with U′ = {y : 〈u, y〉 ∈U).

But then we would have u ∈U′ iff 〈u, u〉 ∈ U iff u �∈U′. Contradiction! �
Our dilemma may now be summarized as follows. We cannot believe in the

existence of nonpredicative classes on philosophical grounds. Our only apparently
good arguments for the existence of large cardinals stem from applications of reflec-
tion principles, and in particular from PR�1

1, the weakest formalization of such a prin-
ciple doing the required job. Regrettably, already PR�1

1 forces nonpredicative classes
to exist. Hence we do not have any good reasons for believing in the existence of large
cardinals, but would anyone dare to assert that there are no such cardinals at all? To
plagiarize words from Hume, I cannot discover any theory which gives me satisfac-
tion on this head.
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