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Reasoning with Sentences and Diagrams

ERIC HAMMER

Abstract A formal system is studied having both sentences and diagrams as
well-formed representations. Proofsin the system allow inference back and forth
between sentences and diagrams, as well as between diagrams and diagrams, and
between sentences and sentences. This sort of heterogeneous system is of interest
because external representations other than linguistic ones occur commonly in
actua reasoning in conjunction with language. Syntax, semantics, and rules of
inference for the system are given and it is shown to be sound and compl ete.

1 Introduction Therepresentationsused in actual inference comeinmany different
forms. Besides language, there are diagrams, charts, graphs, tables, etc. Moreover,
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Figure 1. An Euler diagram.

often two or more different types of representations are used in the very same proof
or reasoning task with great success. To giveasimple example, in actual practice one
would routinely assert that the two sentences “All A'sare B’s’ and “All B'sare C's’

together express the same claim as Euler diagram in Figure 1. Similarly, it would
be typical to state that it can be immediately seen from the diagram that all A's are
C’s, that this can be “read off” of the diagram or “inferred” from it. Beyond such
simple examples, diagrams occur in very complicated mathematical proofs for such
purposes asrevealing the overall structure of aproof, clarifying the main construction
of aproof, etc. They are used in many other types of complicated reasoning tasks as
well. Soininformal practice at any rate, inference between sentences and diagrams
and assertions of synonymy between diagrams and sentences are a matter of course.
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Perhapsitiscommon wisdomto say that whilediagramsdo appear at theexternal
level of the proofs people actualy give, till they are not an essential part of these
proofs. Rather, it is said that they are a heuristic tool or psychological aid, that the
real proof is best modeled as some finite sequence of sentences. Nevertheless, it is
not at all clear that thisis aview that should be defended at any cost. Such things as
the structure of the proofs given in informal practice, the length of the proofs given,
the types of rules applied and in what order, the simplicity of the rules used, etc. have
all been considered to beimportant factorsin the construction of logical systems. For
example, natural deduction systems are motivated by a desire to accurately model
the way proofs are actually structured, such as the use of temporary assumptions in
a proof, the method of breaking into cases, the use of proof by contradiction, etc.
Likewise, asecond-order logic rather than afirst-order logic might be taken to model
some inference practice smply because it appears to more adequately reflect the
type of inferences actually made, as illustrated by Boolosin [1]. Mere extensional
accuracy is not the only demand made of a mathematical model of a given inference
practice. It isonly one among many.

This being the case, there seems no reason why one shouldn’t consider the type
of representation used in actual proofsto bealegitimate motivationin the construction
of logics. Since diagrams are used in key placesin mathematical proofs, they should
appear in the same key placesin formal accounts of those types of proofs. Likewise,
sinceinferences are commonly made from diagramsto sentences and viceversa, such
inferences should also be duly analyzed from a logical point of view. The present
paper attempts to do this for asimple case.

A “heterogeneous’ inference system will be analyzed, heterogeneous in having
as representati ons both sentences and diagrams and in allowing inference between the
two types of representations. The system isbased on Shin’'swork in [3] and [4]. Shin
studies the syntax, semantics, and model theory of two purely diagrammatic systems
of Venn diagrams. In addition to the Venn diagrams studied by Shin, the present
system allowsinformation to be represented by means of first-order sentences. Rules
of inferenceallow oneto makeinferencesfrom sentencesto sentences, from sentences
to diagrams, from diagrams to diagrams, and from diagrams to sentences. While the
system is afairly simple example of a heterogenous logic, it will hopefully serve to
illustrate that such systems are alegitimate topic for logical analysisand also to raise
some topics of concern for them.

The syntax of the system’s well formed representations, both diagrams and
sentences, is described first. Semantics are given which encompass both types of
representations, thereby allowing for meaningful interaction between the two. Rules
of transformation are given, some of which are standard first-order rules, some of
which are purely diagrammatic, and some of which are heterogeneous. Therulesare
shown to be sound and complete with respect to the given semantics. Besides the
inferencerules, the diagramsthemsel ves of the system are heterogeneous, having both
diagrammatic and linguistic elements. The question therefore arises as to whether
a diagram is a consequence of another in virtue of its “diagrammatic features’ or
whether merely in virtue of its “linguistic features” The question aso arises as to
whether the purely diagrammatic rules of the system are complete with respect to
this notion of “diagrammatic consequence.” These matters are discussed in the final
section.

There are many potentialy interesting topics for further study concerning the
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formal properties of heterogeneouslogics. For example, the presence of two or more
different types of representations in such alogic suggests various comparisons of the
different components. Does one subsume the other with respect to expressive power?
Is one more computationally efficient than the other? Arethere any advantages (such
as length of proof) with proofs involving both (or all three, etc.) types of represen-
tations as opposed to proofs using just one type? |s one type of representation more
closely tied to the semantics than the other? Are the different types of representa
tions better suited to different types of expressive tasks? What sorts of claimsis each
component best designed to make? |s each component of the system complete?

2 Well-Formed Representations  The primitive diagrammati c objectsof the system
include both linguistic and diagrammatic objects. Among the linguistic primitives
are the basic symbols of first-order logic plus a lambda operator used to bind free
variablesin formulas:

1. Logical constants: V, 3, —, v, A, =, and A

2. Constant symbols: a, b, ¢, az, by, c1, ...

3. Variable symbols: X, Y, z, X1, Y1, 21, . ..

4. Predicate symbols of each arity: P, Q, R, P, Q1, Ry, ...

Thediagrammatic primitivesof the system consist of the* Rectangle,” “ Closed Curve,”
“Shading,” “Ling” and “X” as shown below:

Thetermsand well-formed formulas (wffs) of the system areformed in the usual
way. Inaddition, the system has set termsformed by abstracting over thefreevariable
inawff. These set terms are used to tag the closed curves of Venn diagrams. In other
words, the set of “set terms” is the smallest class satisfying the following condition:
AXg isaset term whenever X isavariable and ¢ isawff having at most the variable
x occurring free. For example, AxPilot(x) isaset term and will be interpreted in a
model as the extension of the predicate Pilot, i.e., as the set of pilots.

An*“X-sequence” is afinite number of X’s connected by linesinto achain. For
example, “® — ® — ® — ®” isan X-sequence. Likewise, for any constant symbol b,
a“b-sequence’ isafinite number of tokens of b connected by linesinto achain, such
as“‘b-—b-b’”

Definition 2.1 The set of “well-formed diagrams’ (wfds) is the smallest class
satisfying the following four conditions:

1. Any rectangleisawfd.

2. If D isawfd and C is a closed curve labelled by exactly one set term not
occurring in D, then the diagram obtained by adding C to D in accordance with
the partia overlapping ruleisawfd. The partial overlapping rule requires that
C intersect each enclosed region of D exactly once, and that it overlaps only
part of each enclosed region.
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3. If D isawfd and b is any constant symbol, then the diagram obtained by
adding a b-sequence or X-sequence to D isawfd, provided that every link of
the sequencefalls entirely within the rectangle and does not contact any border
of aclosed curve of D.

4. If D isawfd, then the diagram obtained by shading some enclosed areaof D is
awfd, provided that the shading is entirely bounded by parts of closed curves
and the rectangle.

A “well-formed representation” (wfr) is any wif or wfd. A “closed wfr” is any
sentence or wfd. The two diagramsin Figure 2, for example, are well-formed.

Figure 2: Two well-formed diagrams.

Intuitively, the region enclosed by a closed curve represents the set indicated by
itslabel. The region of overlap of two regions represents the intersection of the two
setsrepresented by the two regions, and so on. The shading of aregionisan assertion
that the set represented by that region isempty. Similarly, an X-sequence asserts non-
emptiness of the set represented, and a b-sequence asserts that b is a member of the
set represented. For example, in the right-hand diagram in Figure 2, the left-hand
closed curve represents the Q’s, and the right-hand curve represents those objects x
such that a bears R to x. The diagram asserts (by the shading) that there is no object
x whichisnon-Q such that a bears R to x, and (by the b-sequence) that b is such that
either a bears Rto b or else both bisnot Q and a does not bear Rto b.

AxPx
auPy

A xQx

axFx

Figure 3: Some non well-formed diagrams.

On the other hand, the three diagramsin Figure 3 are not well-formed. Thefirst
one has a closed curve not labelled by a set term. The second and third ones violate
the partial overlapping rule.

The relevant syntactic units of awfd are its “regions’ which are defined by its
rectangle and closed curves. Regions are defined as follows: A “basic region” of a
wfd D is any region enclosed by a closed curve occurring in D or enclosed by the
rectangle of D. Thus, in awfd having n closed curves there are n + 1 basic regions.
The “regions’ of D are then defined inductively as follows:
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1. If r and s areregions of D, then the combined region consisting of r together
with sisaregion (denoted by “r U s");

2. If r and s areregions of D that overlap, then the region composed of the area
of overlap of r and sisaregion (denoted by “r N s”);

3. If r and s areregions of D and s is a proper part of r, then the region that is
part of r but not part of sisaregion (denoted by “r — s");

4. Ifr isaregion of D, then the region within the rectangle of D but outside of r
isaregion (denoted by “1).

Finaly, a“minimal region” is any region which has no other region as a proper part,
and a“subregion” of aregionr isany region swhichisapart of r. If r isasubregion
of s, sisalsosaidto“contain” r. A wfd having n closed curveswill have 2" minimal
regions and 22" — 1 regions.

Note that the operations U, N, etc. in the definition of regions are operations on
parts of diagrams, i.e., on syntactic objects, not on sets. The same operation symbols
will be also be used with their usual set-theoretic meaning, but it will be clear from
context which operation is intended.

3 Correspondence Between Regions and Set Terms  While the logical connec-
tions between different sentences are often subjected to analysis, the corresponding
connections between sentence and diagram are not. However, with its requirement
that every closed curve be labelled by exactly one set term, the present system has all
the necessary apparatus for making the logical connections between sentences and
diagrams explicit.

The set termsthat tag the closed curves of wfdswill tell uswhat setsthose closed
curvesaremeant torepresent. For example, if AxPilot(x) tagsacurveenclosingregion
r, then r represents the set of objects that are pilots. If AX(P(X) v Q(X)) tags the
curve, thenr represents the objectsthat are either P or Q. And so on. Beyond these
basic regions, we are also interested in the set represented by the overlap of two closed
curves and the region enclosed by either curve, aswell asthe sets represented by more
complex regions. For example, if AXP(x) and AXR(X, X) tag two closed curves, we
want to be able to conclude that the region of overlap represents those objects that
have the property P and are also R-related to themselves. Similarly, we want to be
able to conclude that the region enclosed by the first but not the second closed curve
represents those objectsthat are P but are not R-related to themselves, that the region
enclosed by the rectangle but outside of thefirst closed curve represents those objects
that are not P, etc.

To precisely capture this intuition, it is necessary to syntactically connect the
basi c syntactic elements of wfds (regions) to set terms and thereby to language. With
thisin mind, we will define a syntactic “correspondence relation,” in symbols “=,”
which will hold between the regions of diagrams and various set terms derived from
thoseoccurringinthem. Thiscorrespondencerelationwill hold, for example, between
the region enclosed by a curve and its tag, and also between more complex regions
and set terms composed appropriately from tags of D. The correspondence relation
will determine the set a given region gets interpreted asin a particular model. 1t will
play the role of intermediary between diagrams and sentences.

Definition 3.1  Let D bean arbitrary diagram and X, y, and z be arbitrary variables.
Then the relation = is defined as the smallest relation satisfying the two conditions:
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1. If Axe(X) tagsaclosed curve of D and r isthe region enclosed by that closed
curve, thenr = Aye(y) provided y isfreein p(y).

2. Ifr = AXxp(X), s = Ayy(y), and z is free in both ¢(2) and v (2), then:
T = Az2—@(2),r Ns = Az2(p(2) AP (2),r Us = AzZ(p(2 vV ¥ (2),r —s =
AZ(p(2) A=Y (2),andT Us = Az(¢p(2) — ¥ (2)).

To illustrate the correspondence relation, consider the diagram D in Figure 4.
Let r be the region within the rectangle but outside al of its closed curves. Then
r = Ax—=(PX) Vv QX)VYYP(y)),r = 1y(=P(y) A—=Q(y) A—=VyP(y)), and so on.
Let s be the region of overlap of the upper two curves. Then s = Az(P(2) A Q(2)),
s = Ax—(P(x) — —Q(x)), etc. Letr’ betheregion enclosed by the upper right-hand
closed curve. Thenr’ = AxQ(x), r’ = Ax——=Q(x), and so on. It is easy to verify

Figure 4. A diagram.

that there is an effective procedure for determining whether any given region and set
term stand in the correspondence relation.

4 Counterpart Relation Between Regions  Itisconvenient to definea“ counterpart”
relation that holds between regions of different diagrams signifying that the two
regions are meant to represent the same set. For example, if two closed curves are
both tagged with the same set term, then the two regions enclosed by the curves are
intended to represent the same set. Further, the two regions falling outside the two
closed curves also are intended to represent the same set. Similarly, if regionsr of
diagram D andr’ of D’ represent the same set, and s of D and s’ of D’ represent the
same set, then the region of overlap of r and s represents the same set as the region
of overlap of r’ and s/, and likewise for the operations U and - on regions. More
precisely:

Definition 4.1  The “counterpart relation” is defined inductively as the smallest
binary relation on regions of diagrams such that for any two diagrams D having
regionsr and s and D’ having regionsr’ and s':

1. If r andr’ areregionsenclosed by closed curvestagged with the same set term,
thenr and r’ are counterparts, and

2. If r andr’ are counterpartsand s and s’ are counterparts, then so are: 7 and S;
rusandr’'us;rnsandr’'Nns;andr —sandr’ —¢s'.

5 Models and Truth in a Model  Models for the system will be extentions of
standard first-order models. As with first-order models, they will assign objects and
sets of tuplesto terms and predicate symbols. They will also assign setsto regions of
diagramsin away that respects the termsthat tag closed curves. The sets assigned to
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more complicated regions will depend systematically on the sets assigned to simpler
regions.

“First-order model,” “assignment function of values to variables,” “satisfaction
of awff ¢ by anassignment function vinamodel M” (insymbols M iirg-order ©[V]),
and “truth of asentenceinamodel” (in symbols M =iirg-order @) are dl defined inthe
usual way. The class of first-order modelsis now used to define “ extended first-order
models,” which are first-order models extended in a natural way to assign subsets of
the domain to each set term:

Definition 5.1 A pair (U, 1") is an “extended first-order model” provided that
there is some first order model (U, 1) such that: (1) The interpretation function
|” extends |, and (2) For every set term Axg, I'(Ax¢) = {d e U : (U, 1) &
¢[v] for some assignment function v on U assigning d to the variable x}.

Intuitively, this says simply that |’ must assign to a set term Ax¢ the set of all
objectsin the domain satisfying the formulag in (U, |).

Proposition 5.2  For every extended first-order model M’, there is a unique first-
order model M such that M” extends M. Furthermore, every first-order model can
be extended to an extended first-order model.

The extended first-order model s are now extended to full-fledged models. These
model sextend the extended first-order model sby assigning setsto regionsof diagrams
in accordance with the set terms labelling the closed curves of the diagrams. Thus:

Definition 5.3 A pair (U, |) isa“model” provided that there is an extended first-
order model (U, I') and function F from regions of diagrams into the powerset of U
suchthat I’ =1 U F, and for every wfd D:

1. If r isaregion of D enclosed by a closed curve tagged with Axe, then F(r) =
I (Axg),

2. If r istheregion of D enclosed by therectangle, then | (r) = U, and

3. Ifrandsareregionsof D,then F(r) =U — I (r), Fr us) =1 (r)ul(s),
Frnsy=1@)nl(s),andFT —s)=1()—1(s).

Proposition5.4  For every model M” thereis exactly one extended first order model
M’ and exactly one first-order model M such that M” extends M’ and M’ extends M.
Furthermore, every extended first-order model can be extended to a mode!.

Proof. Let (U, 1) be an extended first-order model. Then define an extention |’
of 1 tobel U F where F is defined inductively such that for any diagram D,

1. If r is the region enclosed by a closed curve of D tagged with Axe, then
F(r) =10Xp).

2. If r istheregion enclosed by the rectangle, then F(r) = U.

3. If r isaminima regionand s, ..., $, are dl the regions of closed curves that

include r plus the region of the rectangle, and ty, ..., t, are al the regions
enclosed by closed curves that r falls outside of, then F(r) = (F(sp) N...N

F(sn)) — (F(t) U ... U F(tm)).
4. Ifrisaregionands,, ..., S, aretheminimal regions congtitutingr, then F(r) =
F(sp)) U...UF(s).
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It is now routine to verify that F has the desired properties, and thusthat (U, 1) isa
model that extends (U, |), finishing the proof of the proposition.

We are now prepared to define the notions of “truth of awfd D in amodel M”
(insymbols M = D) and “truth of asentence ¢ inamodel M” (insymbols M = ¢).

Definition 5.5 Let (U, |) beamodel, D beawfd, and ¢ be asentence. Then:

1. (U,I) = D if and only if for every regionr of D: if r isshaded then I (r) is
empty; if r hasan X-sequencethen | (r) isnon-empty; andif r hasab-sequence,
thenl (b) € I (r), and

2. (U, Egifandonlyif (U, ") Efirg-order @, Where (U, 1) isthe first-order
fragment of (U, I).

A closed wfr § isa*“logical consequence’ of aset of closed wfrs A (in symbols
A = §8) provided that every model M such that every member of A istruein M issuch
that § istruein M. A sentence ¢ isa*“first-order consequence” of a set of sentences T’
(insymbolsT" =firg-order @) Provided that every first-order model M such that every
member of I istruein M issuch that ¢ istruein M.

6 Interpretation Lemma  The interpretation lemma plays a key role in both the
soundness and completeness theorems. It systematically links up the interpretation
of regions with the interpretation of set terms via the correspondence relation. Intu-
itively, it states that aregion isinterpreted in a model as the same set as any set term
corresponding to it.

Theorem 6.1 Interpretation Lemma Let (U, |) be a model, Ax¢ be a set term,
andr bearegion of D. Then, ifr = Axep, then 1 (r) = | (Axg).

Proof. The proof isby induction on ¢ . For the base case, let ¢ be atomic. Then
by the construction of =, r must be the region enclosed by some closed curve of D
which Ax¢ tags. So by the definition of model we havethat | (r) = | (Ax¢). For the
induction steps, suppose the lemma holds for every set term of lesser complexity than
AXg. There are several cases:

1Lr Z MW Ax)wherey Amise . We can assume that r is not a region
enclosed by aclosed curve which Ax¢ tags, sincein that case the result follows
immediately from the definition of model. By the definition of = there must
beregionssandt of D suchthatr issNt,s = Axyr, andt = Axm. Therefore,
I(r)y =1(snt)sincer issnt, which equas | (s) N I (t) by the definition
of model, which is | (Ax¥) N | (Axzr) by the induction hypothesis, which is
{deU: U,I) = y[v] for some assignment function v assigning d to x} N
{deU: (U,I) & x[v] for some assignment function v assigning d to x} by
the definition of model, whichequals{d € U : (U, |) = (¥ A )[v] for some
assignment function v assigning d to x} by the definition of satisfaction, which
is{d € U : (U, ) = ¢[v] for some assignment function v assigning d to x}
since ¥ A iS¢, whichis | (AXe) by the definition of model.

2. r = AXVyy(X) where Yy is ¢ . By the construction of =, r must be the
region enclosed by some closed curve of D that is tagged by AzVyyr(z) for
some z that isfreein v (z). Thus, by definition of model, | (r) = | (AX¢). The
cases for the other connectives are proved in a similar fashion, concluding the
proof of the interpretation lemma.



SENTENCES AND DIAGRAMS 81

Lemma6.2 Counterpart Lemma Let (U, |) beamodel andletr and s beregions
of diagrams D and D’. Thenifr and s are counterparts, then | (r) = I (s).

Proof. Since every closed curve of every diagram must be tagged with a set term,
and sincer andr’ are counterparts, thereisawff ¢ suchthatr = Axe andr’ = AXg.
By the interpretation lemma, then, 1 (r) = | (A\xp) = | ('), asdesired.

7 Rules of Inference  The rules of the system are of three sorts. Diagrammatic
rules alow one to infer a diagram from other diagrams. Heterogeneous rules allow
oneto infer afirst-order sentence from a diagram, or to infer a new diagram from a
first- order sentence and a diagram. First-order rules allow one to infer a sentence
from other sentences.

A closed wfo ¢ is“provable” from aset I" of closed wfo's (in symbolsT F ¢)
if and only if there is a finite sequence of sentences and diagrams, each of which is
either amember of I", an axiom, or obtainable from earlier members of the sequence
by one of the rules of inference. A sentence ¢ is “first-order provable” (in symbols
I Hirs-order @) from aset T of sentences if and only if there is a finite sequence of
sentences, each of which is either amember of I', afirst-order axiom, or obtainable
from earlier members of the sequence by one of the first-order rules of inference.

7.1 Diagrammatic Rules

Setup: A wfd with no shading or sequences may be asserted at any line of a proof.

Erasure: D’ is obtainable from D by thisrule if and only if D’ results from either
erasing aclosed curve of D, erasing the shading of someregion of D, or erasing
an entire X-sequenceof D. If itisacurvethat iserased, any shading that would
fill only part of some minimal region upon the erasure of the curve must also be
erased from that minimal region. For example, the right-hand diagram below
follows from the left-hand one by the erasure of a closed curve:

Q®
X AX

Extention of a Sequence: D’ isobtainablefrom D by thisruleif and only if D’ results
from D by the addition of extralinks to some sequence of D.

Erasure of Links: D’ isobtainable from D by thisruleif and only if D’ results from
D by the erasure of links of a sequence falling in shaded regions, provided the
remaining links are reconnected.

Unification of Diagrams. D” isobtainable from D and D’ by thisruleif and only if:

Every region of D” isthe counterpart of aregion of either D or D’. Conversely,
every region of either D or D’ isthe counterpart of aregion of D”.

If any region of D” isshaded (hasan X-sequence), it hasacounterpart in either
D or D’ which asoisshaded (hasan X-sequence). Conversely, if aregion
of either D or D’ is shaded (has an X-sequence), it has a counterpart in
D” that is shaded (has an X- sequence).



82 ERIC HAMMER

Non-Emptiness: D’ isobtainable from D by thisruleif and only if D" occurs
from D by the addition of a sequence such that some link of the sequence
fallsinto every minimal region of D.

7.2 HeterogeneousRules  The heterogeneousrulesare of two sorts. Observerules
allow one to infer a sentence from a diagram, while apply rules alow one to apply
the information expressed by a sentence to a diagram.

V-Apply: D’ isobtainable from the sentence Yx¢ and the diagram D by thisruleif
and only if thereissomeregionr of D suchthat r = Axg and D’ results from
D by the shading of any subregion of T or the addition of any sequencetor.

V-Observe: The sentence VXg is obtainable from D by thisruleif and only if there
issomeregionr of D suchthatr = Axe andT is shaded.

AxP

Ayly

Figure5: A diagram.

For example, YX((P(X) A Q(X)) V (=P (x) A—=Q(X))) isaobtainablefrom thediagram
inFigure5, sincethe non-shaded region correspondsto AX((P(X) A Q(X)) V(=P (X) A
—=Q(x))). Thesentence VX((—=P(X) A =Q(X)) Vv (P(X) A Q(x))) isalso obtainable
from the diagram by the samerule, asisVX((P(X) — QX)) A (=P (X) - —=Q(X)))
and many others. All of theseareinferencesonewould beinclined to makeininformal
practice. So the motivation behind using the correspondence relation to state these
rulesisto haverelatively powerful but natural heterogeneous rules which correspond
relatively closely to informal practice.

3-Apply: D’ is obtainable from the sentence 3x¢ and the diagram D by thisrule if
and only if thereisaregionr of D such that r = Ax¢ and D’ results from D
by the addition of an X-sequence to some region containing r.

3-Observe: The sentence Ixg is obtainable from D by thisrule if and only if there
isaregionr of D suchthat r = Ax¢ and either some subregion of r contains
asequence or elser is shaded.

Constant-Apply: D’ is obtainable from the sentence ¢ (a) and the diagram D by this
ruleif and only if thereisaregionr of D suchthatr = Axe(x) and D’ results
from D by the addition of an a-sequence to some region containing r.

Constant-Observe: The sentence ¢(a) is obtainable from D by thisruleif and only
if thereisaregionr of D suchthat r = Axe(x) and either some subregion of
r contains an a-sequence or elser is shaded.

Inconsistent Information: Any closed wfo r is obtainable from D by thisruleif and
only if thereisashaded regionr of D with asequencein one of its subregions.
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D VX(BX — ((AX A =CX) VvV (CX A = AX))) Premise
2 VX((AX v CX) — (—=Bx v (Bx A CX))) Premise
(©)] Vy((Cy v By) A =(Cy A By A —Ay)) Premise
4@ AX(AX v BX) Premise
5 xC(X) by Rule of Setup

AXA(X) _ XB(X)
(6) by V-Apply from (1) and (5)
(7 by V-Apply from (2) and (6)
(8 by V-Apply from (3) and (7)
9 by 3-Apply from (4) and (8)
(10) by Erasure of Links from (9)
(a1 AX(AX A CX A =BX) by 3-Observe from (10)

Figure 6: A heterogeneous proof in the system.
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7.3 First-Order Rules  The focus of the present paper is on the diagrammatic and
heterogenous aspects of the system. Therefore, rather than providing a particular set
of first-order rules and axioms, I'll simply assume that we have an axiomatization
which is sound and compl ete with respect to =firs-order -

Having now stated all the rules and axioms of the system, Figure 6 shows a proof
in the system of the last line from the first four lines. The two styles of shading are
used to highlight the region of focus and the rectangles are omitted.

8 Soundness

Lemma8.1 If I' isaset of sentencesand ¢ isa sentence, then " = ¢ if and only
ifI' Efirs-order -

Proof. This follows from the fact that every first-order model can be extended
to amodel, and that truth of a sentence in a model depends only on the first-order
fragment of the model.

Theorem 8.2 Soundness Theorem Let A be a set of wfos and § be a wfo. Then,
if A 8then A = 6.

Proof. By induction using the fact that each of the rulesisvalid. By a standard
argument, all the first-order rules are valid. For the remaining rules:

Unification: Let D” result from D and D’ by thisrule, and let D and D’ be truein
(U, I). Then every region of D” has a counterpart in either D or D’, and any
shading or sequence occurring in aregion of D” occurs aso in its counterpart
ineither D or D’. Therefore, since | assigns each of theseregions of D or D’
the empty set, anon-empty set, or aset containing aparticular object according
to whether it is shaded, has an X- sequence, or a constant-sequence, by the
counterpart lemmawe have that D” istruein (U, I).

V-Apply: Let (U, |) &= Vxe, (U, ) = D,r = AXg, and D’ be abtained from D by
the shading of some subregion of T or the addition of a sequencetor. By the
interpretation lemma, | (r) = | (AX¢). Further, since (U, |) &= VYXxg, we have
that (U, 1) & ¢[v] forevery assignment functionv inU. Thus, by thedefinition
of extended first-order model, | (Ax¢) = U. So | (r) = U. By thedefinition of
model, then, | () isempty. By the counterpart lemma, I's counterpartin D’ is
also assigned the empty set. Therefore, whatever subregion of s counterpart
in D’ is shaded in applying the rule, we havethat (U, 1) &= D’. Also, since U
isnon-empty, | (r) is non-empty and contains the denotation of every constant
symbol. Therefore, if a sequence isadded tor to get D’ we still have, using
the counterpart lemma, that (U, 1) = D.

V-Observe: Let(U, |) = D,r = Axg, andT beshaded. By theinterpretationlemma,
I (r) = I (AXe). Further,U — | (r) = | (r), whichisempty since (U, |) = D.
Sol(r) =U. Sol (Axe) = U. By definition of extended first-order model,
{deU: U, I)E ¢v] for some assignment function v assigning d to x}
= U. By the definition of truth in amodel, (U, |) &= Vx¢. The remaining
cases are verified similarly, concluding the proof.

9 Completeness Completenessof thesystemisproved by exploiting thefact that the
first-order fragment of the rulesconstituteacompl ete systemwith respect to =firg-order -
Therepresentation lemmaall owsthis standard result to be used by showing that every
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diagram has a linguistic counterpart that is provably and semantically equivalent to
it.
Lemma 9.1 Representation Lemma For every diagram D there is a formula ¢

such that: (1) ¢ is provable from D, (2) D is provable from ¢ , (3) D isa logical
consequence of ¢ , and (4) ¢ isalogical consequence of D.

Proof. Let D beadiagram. Let s betheshadedregionof D. Letry, ..., ry bethe
regions of D with X-sequences. Let ty, ..., ty be the regions of D with a -sequences
for1l <i < nwhereeacha issomeconstant symbol. Lets = AXS(X),ri = AXR (X)
foreachl <i <m,ti = AxTi(x) foreach1l < i < n. Thenthedesired formulag is:

—=3IXS(X) A IXRL(X) A ... AIXRM(X) A T1(@) A ... A Ta(an).

By the soundness theorem, to prove the representation lemmait suffices to prove (1)
and (2). To prove (1), observe that since s is shaded and s = AxS(x), it follows that
S = AX—S(X). Thus, we get from D by V-Observe Vx—S(x). Then, using first-order
ruleswe can get =3xS(x). Since each r; hasan X-sequence, and sincer; = AXR; (X)
foreach1l < i < m, we caninfer 3xR;(x) for each 1 < i < musing the rule 3-
Observe. Similarly, weget T; (g) foreach 1 < i < nfrom D using the rule Constant
Observe. Then, first-order rules yield the sentence ¢, completing the derivation of ¢
from D. To prove (2), usethe setup rule to get adiagram with the same tagged curves
as D. Thefirst-order rules give Vx—S(x), which alows s to be shaded by V-Apply.
Furthermore, each IxR; (x) and 3-Apply alows an X-seguence to be put into each
regionr;, 1 < i < n. Findly, each Ti(a) and the rule Constant-apply allows an
a —sequenceto beput in eachregiont;, 1 < i < m. This completes the proof.

Lemma 9.2 Equivalenceof = andt for sentences Let I" be a set of sentences and
¢ beasentence. ThenT" =g ifandonlyif ' F .

Proof. SupposeT” &= ¢ . ThenT' Efirgorder @- SO by the fact that irg-order
and Hirg.order COiNCide we have that I' Firgorder @. Therefore I' Hirg-order @ @nd sO
I Firg-order @ The other direction follows from soundness.

Theorem 9.3 Completeness Theorem  Let A be a set of closed well-formed rep-
resentations and & be a closed well-formed representation. Then A | § if and only
if AFS.

Proof: For any closed wfr y or set of wfrs T, let [y] and [I"] be the sentence
and set of sentences, respectively, that result from replacing each diagram occurring
in " U {y} withitslinguistic equivalent in accordance with the representation lemma.
Suppose A = §. By the representation lemma[A] = o for every o € A, and also
3 =[8]. So[A] & [4]. By the previous lemma, it followsthat [A] F [8]. Let [Ag]
be the finite subset used. Then [Ag] F [d]. By the representation lemma Ag F « for
every o € [Ag], and also [§] + 8. Hence Ag - §. But then since A + « for every
o € Ag, wehave A |- §, asdesired.

10 Isolating the Diagrammatic Fragment of the System  The above proof of com-
pleteness shows that the first-order rules along with the heterogeneous rules and the
setup rule form acompl ete system. In other words, it shows that none of the diagram-
matic rules save setup are needed for completeness. Nonetheless, the diagrammatic
rules often allow one to give more natural proofs between diagrams. For example,
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to eliminate a link of a sequence falling in a shaded region without the use of the
corresponding diagrammatic rule would require transferring information of the first
diagram into sentential form, carrying out afirst order proof from these sentencesto
the linguistic equivalent of the second diagram, and finally applying thisinformation
back into diagrammatic form. A result is therefore needed showing that the purely
diagrammatic rules of the system are complete with respect to some natural notion of
“diagrammatic consequence,” |=piag, holding among diagrams.

It is not sufficient to define D =pjag D’ as holding whenever D = D’ and
both D and D’ are diagrams. For let o« and B be any two sentences such that 8
is alogical consequence of «. Then, trivially, the right-hand diagram below is a
logical consequence of the left- hand diagram. But clearly this fact does not hold in
virtue of the two diagrams’ “diagrammatic” features. Rather, it holds only because
of the logical structure of the two set terms. A case of logical conseguence between
sentences has merely been superficially coded up as a question about diagrams. So
the desired notion (=pjag Will need to ignore such spurious examples.

How
xﬁ

The desired notion is obtained by treating the labels as atomic in the following
sense. Redefine “model” to alow basic regionsto be interpreted as any set, provided
only that any two basic regions sharing the same label are interpreted to represent the
same set. So the only feature of labels now that is semantically relevant is whether
or not the same label tags two curves. No analysis beyond mere identity is needed.
Then, let models be defined as before on non-basic regions, treating basic regions as
just described. In other words:

Definition 10.1 A pair (U, 1) isa“diagrammatic model” if and only if U is a set
and | afunction from regions into the powerset of U satisfying:

1. Any two basic regions enclosed by closed curves having the same label are
assigned the same subset of U, and

2. Ifr andsareregionsof adiagram D, then: I r Us) =1 (r)Ul(s),I (rNs) =
)N, lr—=—s)=I1)=I1(),andI T)=U —1(r).

Let =piag be the resulting notion of logical consequence between diagrams
arising from this new definition of model. Let -pjag be the syntactic notion holding
between a set A of diagrams and a diagram D if and only if there is a proof of D
from A using only the diagrammatic rules of the system with the exception of the
Rule of Non-Emptiness (which is just a concession to the non-emptiness assumption
of first-order logic).

In [3], Shin proved that for any finite set A U {D} of diagrams, A f=piag D if
and only if A Fpjag D. Hammer and Danner [2] extended this result to infinite sets,
proving that for any set A U {D} of diagrams, A [=piag D if and only if A Fpiag D.
This theorem provides the desired result, showing that the diagrammatic rules of the
system are complete with respect to the “ diagrammatic” notion of conseguence just
defined. So the system is “diagrammatically complete” in the sense that whenever a
diagram can be seen to follow from a set of diagramswithout analyzing labels beyond
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being able to recognize the identity of two labels, it can be proved from that set using
only diagrammatic rules of the system.
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